www.nature.com/scientificreports

scientific reports

W) Check for updates

An in silico deep learning approach
to multi-epitope vaccine design:
a SARS-CoV-2 case study

ZikunYang, Paul Bogdan™‘ & Shahin Nazarian

The rampant spread of COVID-19, an infectious disease caused by SARS-CoV-2, all over the world

has led to over millions of deaths, and devastated the social, financial and political entities around
the world. Without an existing effective medical therapy, vaccines are urgently needed to avoid the
spread of this disease. In this study, we propose an in silico deep learning approach for prediction

and design of a multi-epitope vaccine (DeepVacPred). By combining the in silicoimmunoinformatics
and deep neural network strategies, the DeepVacPred computational framework directly predicts

26 potential vaccine subunits from the available SARS-CoV-2 spike protein sequence. We further use
in silico methods to investigate the linear B-cell epitopes, Cytotoxic T Lymphocytes (CTL) epitopes,
Helper T Lymphocytes (HTL) epitopes in the 26 subunit candidates and identify the best 11 of them to
construct a multi-epitope vaccine for SARS-CoV-2 virus. The human population coverage, antigenicity,
allergenicity, toxicity, physicochemical properties and secondary structure of the designed vaccine
are evaluated via state-of-the-art bioinformatic approaches, showing good quality of the designed
vaccine. The 3D structure of the designed vaccine is predicted, refined and validated by in silico

tools. Finally, we optimize and insert the codon sequence into a plasmid to ensure the cloning and
expression efficiency. In conclusion, this proposed artificial intelligence (Al) based vaccine discovery
framework accelerates the vaccine design process and constructs a 694aa multi-epitope vaccine
containing 16 B-cell epitopes, 82 CTL epitopes and 89 HTL epitopes, which is promising to fight the
SARS-CoV-2 viral infection and can be further evaluated in clinical studies. Moreover, we trace the
RNA mutations of the SARS-CoV-2 and ensure that the designed vaccine can tackle the recent RNA
mutations of the virus.

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2)'2 First detected in December 2019 in Wuhan, the virus has spread globally, with
basic reproduction number (R0) reaching 5.7°, millions of deaths, and unprecedented financial, social and politi-
cal impacts all over the world*. Efficacious vaccines are therefore desperately needed’. The main clinical features
of the COVID-19 are fever, cough and myalgia or fatigue®; the virus has caused clusters of severe respiratory
illness similar to severe acute respiratory syndrome coronavirus and is associated with ICU (Intensive Care Unit)
admission and high mortality rates’.

Currently, without a single specific antiviral therapy for SARS-CoV-2, the control methods of the COVID-19
are early diagnosis, reporting, isolation, supportive treatments, and timely publishing epidemic information with
only limited impact on the coronavirus®’. Researchers have proposed several approaches to develop vaccines
for the SARS-CoV-2'. Traditional process of vaccine design is based on growing pathogens, which represents a
very time-consuming process of isolating, inactivating and injecting the virus that causes the disease''2. Such
process usually takes more than a year to result in efficacious vaccines and hence contributes very little to avoid
the current spread of the disease'*'*. Recently, researchers have worked on constructing multi-epitope vaccines
by in silico methods based on immunoinformatics without the need to grow pathogens to accelerate the vaccine
design process'>™'7. Multi-epitope vaccines are constructed by multiple virus protein fragments rich in overlap-
ping epitopes. They contain the vital part of the virus to elicit either a cellular or a humoral immune response and
they reduce unwanted components that can trigger adverse effects'®. Multi-epitope vaccines can be powerful for
fighting viral infections, providing excellent vaccine candidates for clinical trials. The genome sequencing of the
SARS-CoV-2 is completed® and researchers have studied the details in the SARS-CoV-2 proteins'®. Coronavirus
is studded on its exterior with spike proteins, which are key components to infect and attack human cells®. The
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Figure 1. Schematic Diagram of In Silico Vaccine Design Process. (A) Traditional in silico vaccine design
process. We have to use numerous vaccine design tools. The evaluation and subunits selection is very time
consuming. No current tool is able to include all the predictions to comprehensively analyze and select out the
best vaccine subunits directly. (B) In silico vaccine design by DeepVacPred framework. By replacing the many
predictions, evaluations and selections with a DNN architecture inside the DeepVacPred framework, we are able
to directly predict a very small number of potential vaccine subunits within a second and start the following
evaluation and vaccine construction on a much smaller amount of data.

spike protein of the SARS-CoV-2 can latch onto cells and force the virus through the cell membrane, which
enables the virus entry. Previous studies reveal that the spike protein of the SARS-CoV-2 plays a decisive role
during the infection. Proteolytic activation of spike protein by host cell proteases is also a critical determinant?'.
It is promising to combat the COVID-19 by inducing the B-cells and T-cells that can perform immune responses
against the SARS-CoV-2 spike protein. Hence, in this study, we choose the spike protein sequence of the SARS-
CoV-2 as the main subject to design our multi-epitope vaccine.

Although the in silico vaccine design approaches are looked at as fairly efficient, they may not be sufficiently
fast to keep pace with the emergence of various pandemics. Figure 1A shows the schematic diagram of a tra-
ditional in silico vaccine design process. Researchers usually use numerous in silico tools to predict the B-cell,
CTL and HTL epitopes on the whole virus proteins®»?. The antigenicity and other physicochemical properties
of the overlapping fragments are also necessary to be evaluated*. To select the best virus protein regions for
constructing an efficacious vaccine, we need to carefully and comprehensively evaluate all the predicted results,
which creates a large overhead and can be very time consuming. Currently, each in silico vaccine design tool can
only achieve one single prediction goal. For example, BepiPred?® is a very popular B-cell epitope prediction tool
and many researchers use this tool to predict the B-cell epitopes. However, BepiPred can only be used to address
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the one step of B-cell epitope prediction, and when it comes to T-cell epitope prediction, a different tool such as
NetMHCpan? is needed. No current tool is able to conduct multiple predictions and comprehensively analyze
the results for us at once to directly identify the best vaccine subunits for further construction and evaluation.

To overcome the above challenges of the in silico vaccine design, we propose DeepVacPred, a novel Al-based
in silico multi-epitope vaccine design framework. We successfully replace the multiple necessary predictions
and the comprehensive evaluations with a deep neural network (DNN) architecture. When the DNN takes one
peptide sequence as input, it can then judge whether this input sequence can be a potential vaccine subunit.
In the DeepVacPred framework, the number of potential vaccine subunits can be firstly reduced to around 30,
then further evaluation and vaccine construction is done on the predicted subunits by reliable and popular in
silico methods to construct the final vaccine. Our novel approach aims to achieve a much better efficiency of
the in silico vaccine design.

With DeepVacPred, this study designs a multi-epitope vaccine in a novel in silico fashion. We first use
the DNN architecture to lock down 26 fragments in the SARS-CoV-2 spike protein as vaccine subunit candi-
dates. Next, we predict the linear B-cell epitopes, CTL epitopes and HTL epitopes to select and construct our
final vaccine. We further analyze the human population coverage, antigenicity, allergenicity, toxicity and other
physicochemical properties to validate the quality. We also predict the secondary structure and 3D structure
model. This model is eventually refined and validated. Finally, the codon optimization and in silico cloning are
performed to check the vaccine genome and protein constructions and ensure its effective expression. In addi-
tion, DeepVacPred allows us to quickly check for newly emerging threats caused by the RNA mutations of the
SARS-CoV-2. We prove that our vaccine can tackle the virus RNA mutations.

DeepVacPred

Background. An in silico vaccine design process can be seen as selecting good fragments of the virus pro-
teins, then constructing them together into a final vaccine*’. A fragment with multiple merits can be selected
as a subunit of the final vaccine. For example, an ideal subunit should contain multiple B-cell epitopes and
T-cell epitopes and it should have high antigenicity to trigger human protective reactions?**. These merits can
be predicted by in silico approaches and currently there are numerous in silico vaccine design tools. However,
these tools are designed to address only one of the several predictions at a time. Consequently, researchers have
to overcome the time-consuming tasks of analyzing each individual prediction result from different tools while
adopting a comprehensive view of the vaccine design. No current tool can take all the necessary merits into
consideration and directly predict the vaccine subunit candidates from the virus proteins.

There are two drawbacks to the current situation: (i) We usually need only the best 10-20 subunits to con-
struct the final vaccine while each prediction tool may provide us with hundreds or even thousands of potential
locations to choose, which creates a large overhead to comprehensively select out the subunits we need and
no current tool can achieve both the prediction and the selection for us. (ii) Nearly 90% prediction results are
eventually discarded because they have only part of the merits, resulting in too much of unnecessary analysis
and wasting many computing resources. Consequently, traditional approaches may produce vaccines that are
too late or ineffective for pandemics.

In order to improve the efficiency and reliability of the vaccine design process, we improve over state-of-the-
art tools by providing a DNN approach, DeepVacPred, an efficient in silico vaccine design process to address the
afore-mentioned concerns. DeepVacPred directly predicts the best vaccine subunit candidates (the number is
within 30) from the virus protein sequences within a second by replacing the prediction and selection with deep
neural network architecture, hence promising much higher efficiencies for the vaccine design and test process.

Data collection and dataset design. Reliable data is essential for the performance of supervised
learning”, thus, it plays a crucial role in the outcome of the vaccine design process. We collected 5000 latest
known B-cell epitopes (B) and 2000 known T-cell epitopes containing both MHC (major histocompatibility
complex)-1 and MHC-2 binders? (T) from the IEDB database, combining with the same number of proteins
which are not T-cell or B-cell epitopes, forming a dataset of epitopes and non-epitopes. 100 known latest viral
protective antigens are selected from the IEDB database, and the same number of proteins without protective
functions are randomly selected, combining with the 400 antigens from previous work?, forming a dataset with
600 antigens.

DeepVacPred is built based on supervised learning on a subtly designed dataset. To directly predict the vac-
cine subunit candidates, the protein sequences in the positive dataset must contain at least one T-cell epitope and
one B-cell epitope and must be protective antigens. Cartesian Product™ is the set that contains all ordered pairs
from two sets. Thus, the two Cartesian Products, T x B and B x T, which are formed between the collected B-cell
epitopes dataset and the T-cell epitopes dataset can cover all the possible combinations of the known B-cell and
T-cell epitopes. We use the 600 antigens to train a neural network that can identify protective antigens. We use
this neural network on the Cartesian Product to sieve out 706,970 peptides sequences that are predicted to be
protective antigens. Those 706,970 peptides contain both B-cell epitopes and T-cell epitopes and are protective
antigens, referred in this paper as the positive vaccine dataset. The same number of peptides randomly bridged by
negative T-cell and B-cell epitopes form our negative vaccine dataset. The dataset we design addresses the three
most important predictions, the B-cell epitopes, T-cell epitopes and antigenicity in the vaccine design process.

All the datasets we collected, designed and created for the DNNs training can be found in the Data Availability
section. The descriptions of each dataset are shown in Table 1.

Network training. A multi-layer convolutional neural network (CNN) and a four-layer linear neural net-
work connect together, forming a deep neural network (DNN) with a two-class output. The positive and nega-
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Datasets Number of peptides Descriptions

Known T-cell epitopes with both MHC-1 and MHC-2
T 2000 binders collected from the IEDB database. Used for creat-
ing the vaccine datasets

Known B-cell epitopes collected from the IEDB database.

B 5000 Used for creating the vaccine datasets

Known viral protective antigens collected from both the
IEDB database and previous work. Used for training a

DNN to identify protective antigens in order to sieve out
the positive vaccine dataset from the Cartesian Products

The Cartesian Products of TxB and BxT. The products
include all the peptides generated from the T and B datasets
which contain at least one T-cell epitope and one B-cell
epitope in each peptide

NT 2000 2000 peptides which are not T-cell epitopes
NB 5000 5000 peptides which are not B-cell epitopes

Protective antigens 300

Cartesian products 2000 % 5000 x 2

N protective antigens 300 300 peptides which are not viral protective antigens

Sieved out from the Cartesian Products by using the DNN
trained by the protective antigen datasets. Each of the
peptide in this dataset contains at least one T-cell epitope
and one B-cell epitope and the whole sequence is predicted
to be protective antigens. Used for training the DNN to
predict vaccine subunits

Positive vaccine dataset 706,970

The negative dataset to train the DNN to predict vaccine
subunits. Each peptide in this dataset does not contain at
least one T-cell and one B-cell epitope or it is predicted to
be non-protective antigens

Negative vaccine dataset 706,970

Table 1. Description of the datasets used for analysis and DNN training.
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Figure 2. ROC Curves for the DNN-V in DeepVacPred. The area under the ROC curves represent the ability
of the DNN-V to classify potential vaccine subunits and non-potential vaccine subunits. The high area under
the ROC curves suggests that the DNN-V has strong classification ability and high accuracy at most threshold
values.

tive datasets are annotated by Z-descriptors®!, then converted to the same length of 45 vectors with auto cross
covariance (ACC) transformation®. Trained by the transformed dataset above, the DNN achieves the classifica-
tion function to predict whether the input is a protective antigen containing both the B-cell and T-cell epitopes,
realizing the ability to directly judge whether a sequence can be a potential vaccine subunit. This DNN is the core
part of the rapid vaccine design process of our DeepVacPred framework and we name it as DNN-V. In addition,
we train another DNN with the same structure on the T-cell epitope dataset which can judge whether an input
sequence can be a T-cell epitope and we name it as DNN-T. The detailed neural network structures, training
process and hyper-parameters can be found in “DNN Design and Training in DeepVacPred Framework” in the
Methods section.

Validation. ROC curves. Receiver operating characteristic (ROC) curve is a graphical plot that illustrates
the diagnostic ability of a binary classifier system as its discrimination threshold is varied*. DNN-V is a novel
approach that needs to be validated. We use the ROC curves to evaluate the DNN-V in DeepVacPred. We
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Validation AUC Threshold Accuracy Sensitivity Specificity
Train set 0.9999 0.32 0.995 0.99 0.99
Test set 0.9703 0.5 0.95 0.95 0.95

Table 2. DeepVacPred Validation. For the Training Set, we reach the highest accuracy of 0.995 if the threshold
value is set at 0.32. At this threshold value, the sensitivity and specificity are 0.99 each. For the Testing Set, we
reach the highest accuracy of 0.95 if the threshold value is set at 0.5. At this threshold value, the sensitivity and
specificity are 0.95 each. The experimental data shows high accuracy and strong classification ability of the
proposed DeepVacPred framework.

Location Proteins | Start | End | Number of vaccine subunits
Location 1 Spike 6 36 2
Location 2 Spike 53 104 3
Location 3 Spike 105 167 |8
Location 4 Spike 206 322 |22
Location 5 Spike 352 585 30
Location 6 Spike 601 741 19
Location 7 Spike 751 862 17
Location 8 Spike 878 981 16
Location 9 Spike 1034 | 1063 |1
Location 10 | Spike 1057 | 1186 |12
Location 11 Spike 1188 | 1218 |2

Table 3. DeepVacPred first round prediction results. Here we show the number of predicted vaccine subunits
for each location.

test the trained DNN-V with two datasets, namely the train set and the test set, each of which containing 200
protein sequences. The training set contains 200 proteins randomly selected from the dataset; we use to train
the DNN-V, with 100 positive and 100 negative protein sequences. We also selected known B-cell epitopes and
T-cell epitopes that are not in our collected data and use the above steps to form the testing set, also with 100
positive and 100 negative protein sequences. The ROC curves are shown in Fig. 2. The validation data appears in
Table 2. The thresholds are ranged from 0 to 1. The accuracy reported in Table 2 is the greatest value among all
thresholds. The sensitivity and specificity values in Table 2 are reported for the case with the highest accuracy.
The AUC (Area Under the ROC Curve) value of 0.9703 for the test set which indicates the high accuracy of the
classification of DNN-V to identify potential vaccine subunits.

Vaccine design test. 'The false positive rate (FPR) will fall down to 0 if we set the threshold to a very low value,
e.g., 0.0003, since we only care about discarding all the non-candidates. We use the DNN-V in our DeepVacPred
framework on the 1273aa spike protein sequence of the SARS-CoV-2. 132 vaccine candidates are predicted.
We use BepiPred?’, NetMHCpan?® and Vaxijen® to examine each candidate. All of the candidates contain both
T-cell and B-cell epitopes and only 14 of them are predicted by Vaxijen to be non-protective antigens.

DeepVacPred framework. Figure 1B provides the schematic diagram of the vaccine design process using
DeepVacPred framework. DeepVacPred first uses DNN-V to predict a very small number of potential vac-
cine subunits directly from the virus protein sequences. DeepVacPred further uses DNN-T to examine all the
overlapping sequences in these subunits and select the subunit candidates which have multiple T-cell epitopes.
These two prediction rounds take less than 1 s and reduce the number of potential vaccine subunits to around
30. Compared to traditional approaches, the most time-consuming subunits selection part can be easily done by
DeepVacPred within less than a second, saving a large amount of time and computational resources.

The following steps in the DeepVacPred framework are as follows: (i) selecting the best subunits from only
about 30 candidates and (ii) constructing the final vaccine based on the evaluations by various reliable in sil-
ico tools, including Linear B-cell epitopes prediction, CTL and HTL epitopes prediction, population coverage
analysis, vaccine construction, evaluation of antigenicity, allergenicity, solubility, immunogenicity, toxicity and
other physicochemical properties, structure prediction, 3D modeling, in silico cloning, molecular docking and
molecular dynamics simulation. Compared to the popular computational process, those evaluations are done
on a much smaller amount of data, hence improving the efficiency.

Results

Data retrieval. The genome sequence of SARS-CoV-2 isolate Wuhan-Hu-1 is retrieved from the NCBI
database with accession number MN908947%. The protein sequences are retrieved according to their transla-
tion. Especially, the spike protein (protein ID: QHD43416.1) has a length of 1273 amino acids (aa), and the
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Vaccine subunits | Protein | Start | End | Peptide sequence

Subunit 1 Spike 19 48 TTRTQLPPAYTNSFTRGVYYPDKVFRSSVL
Subunit 2 Spike 34 63 RGVYYPDKVFRSSVLHSTQDLFLPFFSNVT
Subunit 3 Spike 71 100 SGTNGTKRFDNPVLPFNDGVYFASTEKSNI
Subunit 4 Spike 141 170 | LGVYYHKNNKSWMESEFRVYSSANNCTFEY
Subunit 5 Spike 191 220 FVFKNIDGYFKIYSKHTPINLVRDLPQGFS
Subunit 6 Spike 209 238 PINLVRDLPQGFSALEPLVDLPIGINITRF
Subunit 7 Spike 306 335 FTVEKGIYQTSNFRVQPTESIVRFPNITNL
Subunit 8 Spike 359 388 SNCVADYSVLYNSASESTFKCYGVSPTKLN
Subunit 9 Spike 402 431 IRGDEVRQIAPGQTGKIADYNYKLPDDFTG
Subunit 10 Spike 439 468 NNLDSKVGGNYNYLYRLFRKSNLKPFERDI
Subunit 11 Spike 480 | 509 | CNGVEGFNCYFPLQSYGFQPTNGVGYQPYR
Subunit 12 Spike 510 539 VVVLSFELLHAPAT VCGPKKSTNLVKNKCV
Subunit 13 Spike 584 613 ILDITPCSFGGVSVITPGTNTSNQVAVLYQ
Subunit 14 Spike 626 655 ADQLTPTWRVYSTGSNVFQTRAGCLIGAEH
Subunit 15 Spike 655 684 HVNNSYECDIPIGAGICASYQTQTNSPRRA
Subunit 16 Spike 697 726 MSLGAENSVAYSNNSIAIPTNFTISVTTEIL
Subunit 17 Spike 709 738 NNSIAIPTNFTISVTTEILPVSMTKTSVDC
Subunit 18 Spike 773 802 EQDKNTQEVFAQVKQIYKTPPIKDFGGENF
Subunit 19 Spike 805 834 LPDPSKPSKRSFIEDLLENKVTLADAGFIK
Subunit 20 Spike 866 895 TDEMIAQYTSALLAGTITSGWTFGAGAALQ
Subunit 21 Spike 946 | 975 | GKLQDVVNQNAQALNTLVKQLSSNFGAISS
Subunit 22 Spike 1017 | 1046 | EIRASANLAATKMSECVLGQSKRVDFCGKG
Subunit 23 Spike 1034 | 1063 | LGQSKRVDFCGKGYHLMSFPQSAPHGVVFL
Subunit 24 Spike 1094 | 1123 | VFVSNGTHWFVTQRNFYEPQIITTDNTFVS
Subunit 25 Spike 1156 | 1185 | FKNHTSPDVDLGDISGINASVVNIQKEIDR
Subunit 26 Spike 1179 | 1208 | IQKEIDRLNEVAKNLNESLIDLQELGKYEQ

Table 4. DeepVacPred second round prediction results. Here we get 26 vaccine subunits for further evaluation
and construction. Those 26 vaccine subunits are very likely to have high antigenicity and contain multiple
B-cell and T-cell epitopes. With DeepVacPred, those 26 vaccine subunits are reached within less than a second,
while it can take days to select those subunits from the virus protein if we use traditional methods. Next,
DeepVacPred simply checks the epitopes and other merits on those 26 subunits and constructs the multi-
epitope vaccine directly from those 26 candidates, which is much more efficient than traditional approaches.

receptor binding domain (RBD) is from 347 to 520aa®. The following experiments are mainly focused on the
spike protein region.

DeepVacPred vaccine subunits prediction. All the overlapping protein fragments with a length of
30aa are generated out of the 1273aa SARs-CoV-2 spike protein sequence. DeepVacPred first tests these 1244
30aa protein sequences and predicts 132 potential vaccine subunits (see Table 3). The DeepVacPred framework
further predicts the T-cell epitopes at these locations and discards the subunits which have less than 8 T-cell
epitopes®. After this prediction, our DeepVacPred provides us with 26 potential vaccine subunits for further
evaluation and construction (see Table 4). These subunits are very likely to contain B-cell epitopes and multiple
T-cell epitopes. They are also very likely to have high antigenicity and low allergenicity. We start the following in
silico vaccine design process directly from the predicted 26 vaccine subunits, which is very efficient.

Linear B-cell epitopes prediction. B-cell epitopes are portions of antigens binding to immunoglobulin
or antibody to trigger the B-cells to provide immune response”. Linear B-cell epitopes are predicted on the 26
vaccine subunits. Linear B-cell epitopes are predicted by four online servers including BepiPred®, SVMtrip*®,
ABCPred* and BCPreds*. We first use BepiPred for the main prediction and we use the other three servers to
check the prediction results by BepiPred. A B-cell epitope predicted by the BepiPred will be discarded if it is not
predicted by any of the other three servers. B-cell epitopes must be located in the solvent-exposed region of the
antigens to be possible to combine with the B-cell”’, thus it is essential to predict the surface availability of the
structural protein sequence. The surface availability is predicted by Emini tool**? on the whole SARS-CoV-2
spike protein sequence, and we discarded the epitopes that are not exposed on the surface. After the predictions,
we select out 14 vaccine subunits (see Table 5). We further use the RaptorX Property server to evaluate the sur-
face accessibility of the SARS-CoV-2 to validate that the B-cell epitopes in those subunits are well-exposed (see
Fig. 3).
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Vaccine Subunits | Protein | Start | End | Peptide Sequence B-cell Epitopes Emini Score
Subunit 1 Spike 19 48 TTRTQLPPAYTNSFTRGVYYPDKV- | o1y ppAY TNSE 1.937
FRSSVL
: NGTKRFD 2,678
Subunit 3 spike - 100 | SGTNGTKRFDNPVLPENDGVY:
FASTEKSNI KSNI 1395
) ) LGVYYHKNNKSWMESEFRVYSSAN-
Subunit 4 Spike 141 170 NCTEEY YYHKNNKS 3.544
) ) FVEKNIDGYFKIYSKHTPIN-
Subunit 5 Spike 191 220 | [VRDLP QGES HTPIN 1.207
Subunit 9 Spike 402 | 431 g{DGFDTEGVRQIAPGQTGKIADYNYKLP‘ EVRQIAPGQTGKIADYNYK | 1.775
_ | NNLDSKV 1.508
Subunit 10 spike 139 |4gs | NNLDSKVGGNYNYLYRLFRKSNLKP
FERDI LFRKSN 2.403
) ) ILDITPCSFGGVSVITPGTNTSNQ-
Subunit 13 Spike 584 613 |y AVLYQ GTNTSN 1.888
) ) HVNNSYECDIPIGAG- HVNNSY 1.460
Subunit 15 Spike 655 684
P ICASYQTQTNSPRRA YQTQTNSPRRAR 3.849
_ | QDKNTQ 4.752
Subunit 18 spike 273|802 | EQDKNTQEVFAQVKQIYKTPPIKD
FGGENF KQIYKTPPI 2243
Subunit 19 Spike 805 | 834 IAPGI;I;EKPSKRSFIEDLLFNKVTLAD' LPDPSKPSKR 3.136
_ | GQSKRVDFC 1.098
Subunit 23 spike 1034 | 1063 | LGQSKRVDFCGKGYHLMSFPQSAPH
GVVFL FPQSAPH 1.001
) ) VFVSNGTHWFVTQRNFYEPQI-
Subunit 24 Spike 1094 | 1123 | [rroNTRYS FYEPQIITTD 1.627
: DKYFKNHTSPDVDLGDIS | 1.833
Subunit 25 Spike 1156 | 1185 | PKNHTSPDVDLGDISGINASV
VNIQKEIDR IQKEIDR 1.666
_ | IQKEIDR 1.666
Subunit 26 Spike 1179 | 1208 | [QKEIDRLNEVAKNLNESLIDLQEL
GKYEQ ELGKY 2.802

Table 5. Linear B-cell Epitopes Prediction Results. Here, we show the selected 14 vaccine subunits, the

contained B-cell epitopes and their Emini scores.
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Figure 3. Surface accessibility of the SARS-CoV-2. The red color represents the exposed residues, the yellow
color represents the medium exposed residues and the blue color represents the buried residues. In the SARS-
CoV-2 spike protein, the B-cell epitopes in the 14 vaccine subunits are well-exposed according to the surface
accessibility prediction, showing good potential that the B-cell receptor is able to interact with the virus to

trigger the immune response.

Cytotoxic T lymphocytes (CTL) epitopes prediction.

Cytotoxic T Lymphocytes (CTL) recognize the

infected cells by using the MHC class I molecules to bind with certain CTL epitopes®®. We use NetMHCpan 4.1
server® to predict potential CTL epitopes. All the overlapping 9aa peptide sequences in the 14 vaccine subunits
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Subunits Peptide sequence CTL epitopes | HLA class I alleles and supertypes HLA score
Subunit 1 TTRTQLPPAYTNSFTRGVYYPDKVEFRSSVL | 9 Al, A2, A24, A26, B7, B8, B27, B39, B58, B62 | 4.652
Subunit 3 gg;l“NGTKRFDNPVLPFNDGVYFASTEK— 6 Al, A3, A24, B7, B27, B39, B62 2.492
Subunit 4 LGVYYHRNNKSWMESEFRVYSSAN- 9 Al, A3, A24, A26, B39, B40, B58, B62 6.124
NCTFEY
Subunit 5 FVFKNIDGYFKIYSKHTPINLVRDLPQGEFS | 9 Al, A2, A24, A26, B7, B8, B27, B39, B58, B62 | 7.131
Subunit 9 {:l}%DEVRQIAPGQTGKIADYNYKLPDD- 6 A2, A3, B7, B27, B62 3.092
Subunit 10 ?é\gb[;SKVGGNYNYLYRLFRKSNLKP_ 9 Al, A3, A24, B8, B27, B39, B62 4.326
Subunit 13 ILDITPCSFGGVSVITPGTNTSNQVAVLYQ |5 Al, A3, A24, B8, B27, B39, B62 5.837
Subunit 15 HVNNSYECDIPIGAGICASYQTQTNSPRRA | 3 Al, B7, B40, B62 0.211
subunit 18 | EQDKNTQEVFAQVKQIYKTPPIKDEG- | A1, A2, A3, A24, A26, BS, B39, B40, B62 | 4.282

GENF

Al, A2, A3, A24, B7, B8, B27, B39, B40,

Subunit 19 LPDPSKPSKRSFIEDLLENKVTLADAGFIK | 8 B58. B62 5.763
Subunit 23 {}%SSKRVDFCGKGYHLMSFPQSAPHGV_ 8 Al, A2, A3, A24, A26, B7, B8, B39, B58,B62 | 6.167
Subunit24 | Vo YSNGTHWEVIQRNFYEPQUTTDNT- 4 A2, A3, A24, A26, B27, B39, B58, B62 5.66
Subunit 25 FKNHTSPDVDLGDISGINASVVNIQKEIDR | 4 A2, A26,B39 1.341
Subunit 26 IQKEIDRLNEVAKNLNESLIDLQELGKYEQ | 5 Al, A2, B7, B8, B40, B62 3.26
Table 6. CTL epitopes prediction results.
Subunits Peptide sequence HTL epitopes | HLA class II (HLA-DRB1*:01) alleles HLA score
Subunit 1 TTRTQLPPAYTNSFTRGVYYPDKVEFRSSVL | 9 01, 03, 04, 07, 08, 09, 10, 11, 13, 15, 16 18.031
Subunit 3 SI(\;IFNGTKRFDNPVLPFNDGVYFASTEK_ 10 01, 04, 07, 08, 09, 10, 12, 13, 14, 15 9.07
. LGVYYHKNNKSWMESEFRVYSSAN-
Subunit 4 NCTFEY 9 04, 08, 10, 11, 13, 15, 16 7.38
Subunit 5 FVFKNIDGYFKIYSKHTPINLVRDLPQGES | 14 01, 03, 04, 07, 08, 09, 10, 11, 12, 13, 14, 15, 16 | 26.785
Subunit 9 {:I}FG(?EVRQIAPGQTGKIADYNYKLPDD- 7 01, 07, 09, 10, 14 4.932
Subunit 10 NNLDSKVGGNYNYLYRLFRKSNLKP- 8 07,08, 11, 13, 14, 16 12.14
FERDI
Subunit 13 ILDITPCSFGGVSVITPGTNTSNQVAVLYQ |2 10 0.618
. HVNNSYECDIPIGAG-
Subunit 15 ICASYQTQTNSPRRA 4 01, 03, 04, 09, 10, 16 3.986
Subunit 18 E%EENTQEVFAQVKQIYKTPPIKDFG_ 9 03, 04,07, 08, 09, 10, 11, 12, 13, 14, 15, 16 21.858
Subunit 19 LPDPSKPSKRSFIEDLLENKVTLADAGFIK | 8 03, 04, 08, 09, 10, 11, 14 5.479
Subunit 23 %,CF;IQ‘SKRVDFCGKGYHLMSFPQSAPHGV_ 4 01, 04, 08, 10, 11 2.996
Subunit 24 X\E;/SNGTHWFVTQRNFYEPQIITTDNT- 8 03, 04, 07, 08, 09, 10, 11, 12, 13, 14, 15, 16 11.56
Subunit 25 FKNHTSPDVDLGDISGINASVVNIQKEIDR | 8 01, 04, 07, 08, 09, 10, 11, 12, 13, 14, 15 11.925
Subunit 26 IQKEIDRLNEVAKNLNESLIDLQELGKYEQ | 6 08,11,12,14 3.489

Table 7. HTL epitopes prediction results.

are tested with the most common 12 human-leukocyte-antigen (HLA) Class I alleles including HLA-A1, HLA-
A2, HLA-A3,HLA-A24, HLA-A26, HLA-B7, HLA-B8, HLA-B27, HLA-B39, HLA-B44, HLA-B58 and HLA-B62
to evaluate their binding affinities and predict potential CTL epitopes?>**. The total HLA score is calculated for
each vaccine subunits. The results are shown in Table 6.

Helper T lymphocytes (HTL) epitopes prediction. Helper T Lymphocytes (HTL) help the activity of
other immune cells and they recognize the infection by using MHC class II molecules to bind with certain HTL
epitopes®. We use NetMHClIpan 4.0 server to predict potential HTL epitopes. All the overlapping 15aa pep-
tide sequences in the 14 vaccine subunits are tested with the most common 13 HLA Class II alleles including
HLA-DRB1-0101, HLA-DRB1-0301, HLA-DRB1-0401, HLA-DRB1-0701, HLA-DRB1-0801, HLA-DRB1-0901,
HLA-DRB1-1001, HLA-DRB1-1101, HLA-DRB1-1201, HLA-DRB1-1301, HLA-DRB1-1401, HLA-DRB1-1501,
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Vaccine subunits | Protein | Start | End | Peptide sequence Population coverage (worldwide) %
Subunit 1 Spike 19 48 TTRTQLPPAY TNSFTRGVYYPDKVFRSSVL 96.95
Subunit 3 Spike 71 100 SGTNGTKRFDNPVLPFNDGVYFASTEKSNI 83.02
Subunit 4 Spike 141 170 LGVYYHKNNKSWMESEFRVYSSANNCTFEY | 81.74
Subunit 5 Spike 191 220 | FVFKNIDGYFKIYSKHTPINLVRDLPQGFS 97.04
Subunit 9 Spike 402 431 IRGDEVRQIAPGQTGKIADYNYKLPDDFTG 77.19
Subunit 10 Spike 439 468 NNLDSKVGGNYNYLYRLFRKSNLKPFERDI 78.51
Subunit 13 Spike 584 613 ILDITPCSFGGVSVITPGTNTSNQVAVLYQ 61.44
Subunit 15 Spike 655 | 684 | HVYNNSYECDIPIGAGICASYQTQTNSPRRA 68.94
Subunit 18 Spike 773 802 EQDKNTQEVFAQVKQIYKTPPIKDFGGENF 90.19
Subunit 19 Spike 805 834 LPDPSKPSKRSFIEDLLENKVTLADAGFIK 76.12
Subunit 23 Spike 1034 | 1063 | LGQSKRVDFCGKGYHLMSFPQSAPHGVVEL | 68.38
Subunit 24 Spike 1094 | 1123 | VEVSNGTHWFVTQRNFYEPQIITTDNTFVS 94.90
Subunit 25 Spike 1156 | 1185 | FKNHTSPDVDLGDISGINASVVNIQKEIDR 87.47
Subunit 26 Spike 1179 | 1208 | IQKEIDRLNEVAKNLNESLIDLQELGKYEQ 76.72

Table 8. Worldwide human population coverage analysis results.

EAAAK Linker AAY L|n|-(ers GPGPG,Linkers

CTL Multi- ept[ope Peptides

HHHHHH
|

Subunit 1: S-19
Subunit 3 8-71
Subunit 5: S-191
Subunit 10: S-439
Subunit 18: S-773
Subunit 25: 3-1179

Figure 4. Schematic Presentation of the final Multi-epitope Vaccine. The vaccine is constructed by 11 subunits
(Subunit 5 is used twice in both CTL and HTL region for its good performance), an adjuvant and a 6xHis tag,
linked by EAAAK, AAY and GPGPG linkers. The final vaccine consists of 694 amino acid residues. It contains
16 B-cell epitopes, 82 CTL epitopes and 89 HTL epitopes.

HLA-DRBI1-1601 to evaluate their binding affinities and predict the potential HTL epitopes*>*’. The total HLA
score is calculated for each vaccine subunits. The results appears in Table 7.

Worldwide human population coverage analysis. The vaccine we design should have wide human
population coverage. We use the IEDB population coverage analysis tool*® to evaluate the worldwide human
population coverage of the 14 vaccine subunits. The 25 HLA alleles we used to predict the T-cell epitopes can
cover 98.39% of the human population. The human population coverage of each vaccine subunit is shown in
Table 8. The results suggest that our 14 vaccine subunits can cover a very wide range of human population.

Multi-epitope vaccine construction. We discard Subunits 9, 15 and 26 for their poor performance in the
CTL and HTL epitope predictions. We use the remaining 11 vaccine subunits to construct a final multi-epitope
vaccine (see Fig. 4). To avoid potential autoimmunity, we perform a BLASTp screening against the Uniprot data-
base on those 11 vaccine subunits. A subunit with a higher-than-35% identity will be considered as homologous
protein with human proteome. Among the 11 vaccine subunits we choose for the final vaccine construction,
none of them show high degree of homology with the human proteome. The final vaccine contains an adjuvant,
50S ribosomal protein L2#*° (accession no. AX195322.1), to improve the immune response®!, linked with the
amino (N) terminum of the multi-subunit sequence through an EAAAK linker*. The multi-subunit sequence
has a CTL multi-epitope peptides region followed by an HTL multi-epitope peptides region. The CTL region is
constructed by 6 subunits which have better performance in the CTL epitopes prediction. AAY linkers** are used
in this region to fuse the subunits. The HTL region is constructed by 6 subunits which have better performance
in the HTL epitopes prediction. GPGPG linkers®* are used in this region to fuse the subunits. The two regions are
linked through a GPGPG linker. In addition, Subunit 5 is used twice in both CTL and HTL region for its good
performance in both CTL and HTL epitope predictions. In the end, a 6xHis tag is added at the C-terminal to
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Solubility by Solubility by
Vaccine subunits | Vaxijen score | Antigen pro score | AllerTOP result | Allergen FP result | SolPro protein-sol
Adjuvant 0.7447 0.8205 NA NA 0.7568 0.716
Subunit 1 0.2486 0.4137 NA NA 0.5890 0.684
Subunit 3 0.4791 0.5923 NA NA 0.8113 0.660
Subunit 4 0.3891 0.7364 NA NA 0.6242 0.608
Subunit 5 0.4757 0.4768 NA NA 0.7819 0.686
Subunit 10 0.3615 0.6256 NA NA 0.6023 0.652
Subunit 13 0.8318 0.4032 NA NA 0.9114 0.730
Subunit 18 0.2449 0.3076 NA NA 0.9928 0.742
Subunit 19 0.3605 0.4991 NA NA 0.7831 0.636
Subunit 23 0.6713 0.7355 NA NA 0.6891 0.640
Subunit 24 0.4012 0.5211 NA NA 0.9747 0.545
Subunit 25 0.6035 0.7433 NA NA 0.6425 0.947
Final Vaccine 0.5705 0.8814 NA NA 0.7555 0.723

Table 9. Antigenicity, allergenicity and solubility Evaluation Results. NA: non-allergen. Higher Vaxijen and
Antigen Pro scores suggest higher antigenicity. Higher SolPro and Protein-sol scores suggest higher solubility.

Half-life (in | Half-life (in | Instability Mol.

Toxicity Hydropathicity | Charge | vitro) vivo) index Stability | pI weight
Final vaccine | No toxic part | — 0.521 37.00 30h >20h 34.01 Yes 9.76 76,428.68
Adjuvant No toxic part | — 0.679 28.00 30h >20h 38.94 Yes 10.30 | 30,396.93
Subunit 1 NT - 0.510 3.00 72h >20h 34.35 Yes 9.99 3465.91
Subunit 3 NT - 0.670 0.00 1.9h >20h 45.82 Yes 5.84 3277.00
Subunit 4 NT - 0.880 0.50 55h 3 min 69.83 No 6.75 3668.46
Subunit 5 NT - 0.170 2.50 1.1h 3 min 18.96 Yes 9.40 3545.56
Subunit 10 NT - 1.053 3.00 14h 3 min 7.15 Yes 9.71 3635.55
Subunit 13 NT - 0.010 - 1.0 20h 30 min 1.99 Yes 3.80 3095.51
Subunit 18 NT - 0.897 0.00 1h 30 min 25.35 Yes 6.31 3518.40
Subunit 19 NT - 0.183 1.00 55h 3 min 67.50 No 8.43 3348.34
Subunit 23 NT - 0.050 3.00 55h 3 min 38.38 Yes 9.20 3307.31
Subunit 24 NT - 0.150 - 0.50 100 h >20h 17.10 Yes 5.33 3548.92
Subunit 25 NT - 0.450 - 1.50 1.1h 3 min 24.99 Yes 7.75 3283.07
6xHis Tag NT - 3.20 0.00 35h 10 min 8.33 Yes 7.21 840.86

Table 10. Toxicity and physicochemical properties prediction results. NT: none-toxicity. We use the protein
screening mode in the ToxinPred server to check the overlapping peptides in the final vaccine and adjuvant
sequence and they do not contain any toxic peptide. For the rest subunits, we directly use the SVM based
prediction to predict their toxicity.

help purify and identify the protein®. The final vaccine consists of 694 amino acid residues. It contains 16 B-cell
epitopes, 82 CTL epitopes and 89 HTL epitopes.

Antigenicity, allergenicity and solubility evaluation. The antigenicity of the final multi-epitope vac-
cine sequence is evaluated by the Vaxijen 2.0 online server’*** and the AntigenPro server®. We also evaluate
the antigenicity of each vaccine subunit, including the adjuvant (see Table 9). The Vaxijen score for the whole
final vaccine is 0.5705 with a virus model at a threshold of 0.4, suggesting a high antigenicity of our final vac-
cine. The AllergenFP 1.0 server and AllerTOP 2.0 server™ predict the final vaccine and its every subunit to be
non-allergenic (see Table 9). The solubility of the final vaccine and its every subunit is evaluated by SolPro*” and
Protein-sol server™. The predicted values suggest that our final vaccine and its every subunit have good solubility
(see Table 9).

Toxicity and physicochemical properties analysis. The vaccine must not have toxicity potential and
the physicochemical properties are also important to evaluate how the vaccine interacts with the environments®.
We use the ToxinPred server® to predict the toxicity. Other physicochemical properties, including hydropathic-
ity, charge, half-life, instability index, pI (theoretical isoelectric point value) and molecule wheight, are predicted
by ExPASy ProtParam Tool®. For the whole final vaccine sequence and the adjuvant sequence, we use the pro-
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Figure 5. Graphical Representation of the Secondary Structure Features. The alpha helix residues are in
pink, the beta strand residues are in yellow and the coil residues are in grey. The predicted secondary stucture
indicates that the final vaccine constitutes 10.8% alpha helix, 24.6% beta strand, and 64.6% coil, respectively.
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Figure 6. Solvent Accessibility and Disorder Regions Prediction Results. In the solvent accessibility prediction
results, the red color represents the exposed residues, the yellow color represents the medium exposed residues
and the blue color represents the buried residues. The peptides marked in red boxes are B-cell epitopes. The
prediction results show that the B-cell epitopes in the final vaccine have good surface accessibility and also they
are not close to each other. In the disorder regions prediction results, the ordered regions are in blue while the
disordered regions are in red. A total of 60 residues (8%) are in disordered regions, showing good order in
structure.

tein screening mode in the ToxinPred server to check all its overlapping peptides with length no more than 50
aa. The whole vaccine and the adjuvant do not contain any toxic part peptide. Other subunits and the 6xHis tag
are checked by the SVM prediction mode in the ToxinPred server and all the subunits and the 6xHis tag are non-
toxicity. The hydropathicity value of the final vaccine is predicted to be — 0.521. This negative value suggests that
our final vaccine is hydrophilic in nature and can interact with water molecules easily®”. The charge is 37.00; this
value will decrease in alkaline environment so usually it is better if the charge values are positive. The half-life of
the final vaccine is predicted to be 30 h in vitro and > 20 h in vivo. An Instability Index of 34.01 is predicted; this
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Figure 7. Vaccine 3D Structure Modeling by RaptorX based on the template with PDB ID 3j3vC. All the 694
amino acids in the final vaccine are modeled. The P-value of this model is 4.13x 10— 14 and this very low value
indicates high quality of this 3D model. The unnormalized Global Distance Test (uGDT) score of this model is
506 (>50), indicating good absolute model quality.

Figure 8. Refined Vaccine 3D Structure Model by GalaxyRefine. This model has a Global Distance Test—High
Accuracy (GDT-HA) score of 0.900, a Root Mean Square Deviation (RMSD) score of 0.580, a MolProbity score
of 2.618, a clash score of 33.5 and a Ramachandran plot score of 87.5%, showing great overall model quality. The
B-cell epitopes in this final vaccine 3D model are highlighted in yellow.

being less than 40 threshold value suggests that our final vaccine is stable. The pI of the final vaccine is calculated
to be 9.75, which is an alkaline value, indicating its highly basic existence in nature. The molecular weight of
the final vaccine is calculated to be 76 kDa. We also check the toxocity and physicochemical properties of every
subunit and the results are shown in Table 10.

Secondary structure prediction. We use PSIPRED® to generate the secondary structure of our final vac-
cine. Graphical representation of the secondary structure features are shown in Fig. 5. The predicted secondary
stucture indicates that the final vaccine constitutes 10.8% alpha helix, 24.6% beta strand, and 64.6% coil. The
solvent accessibility (ACC), and disorder regions (DISO) are predicted by RaptorX Property server® (see
Fig. 6). Among the 694 amino acid residues in our final vaccine, 44% are predicted to be exposed, 27% medium
exposed, and 27% are predicted to be buried. The peptides marked in red boxes in Fig. 6 are the B-cell epitopes,
showing good surface accessibility and they are not close to each other. A total of 60 residues (8%) are predicted
to be located in disordered regions.

Vaccine 3D structure modeling. We use the RaptorX server® to build the 3D structure models of our
final vaccine. The protein structure with PDB ID 3j3vC is predicted by RaptorX to be the best template, based
on which this server constructs the 3D structure model of our final vaccine (see Fig. 7). In this model, 100%
(694) amino acids in the final vaccine are modeled in four domains. The P-value quantifies the likelihood of the
predicted model being worse than other models generated randomly. The P-value for this model is calculated
to be 4.13 x 1074, which is a very low value, suggesting high quality of this 3D model. The unnormalized Global
Distance Test (uGDT) score measures the absolute model quality. The overall uGDT score is predicted to be 506
and being greater than the 50 threshold value for a protein with more than 100 amino acid residues indicates that
the 3D model of our final vaccine is good for further refinement.

Vaccine 3D structure refinement.  We use GalaxyRefine server® to refine the 3D structure model of our
final vaccine. Among the 5 refined models predicted by GalaxyRefine, we choose the Model 2 shown in Fig. 8 as
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Model GDT-HA | RMSD | MolProbity | Clash score | Rama favored
Initial model 1.0000 0.000 4.229 137.8 78.3
Model 1 0.8941 0.588 2.703 33.4 87.5
Model 2 0.9000 0.580 2.618 335 87.5
Model 3 0.8922 0.590 2.657 33.9 87.2
Model 4 0.8966 0.583 2.698 33.7 87.3
Model 5 0.8977 0.582 2.632 34.0 87.5

Table 11. Quality scores of the models predicted by GalaxyRefine.

our final vaccine model based on its model quality scores (see Table 11). The predicted B-cell epitopes are high-
lighted in yellow, showing good surface accessibility. Global Distance Test—High Accuracy (GDT-HA) score
measures the similarity between two protein structures. The GDT-HA score between this refined model and the
initial model reaches a high value of 0.900, indicating that they have high similarity. The distance between atoms
is measured by the Root Mean Square Deviation (RMSD) score. Lower RMSD value suggests better stability
and usually an RMSD score ranges between 0 and 1.2 is acceptable. This model has an RMSD score of 0.580.
Such RMSD score indicates stable protein structure. Molprobity score reflects the crystallographic resolution of
the model. The MolProbity score of our identified vaccine model is 2.618, which is much lower than the initial
model, showing that the refinement has lowered the critical errors of the 3D model. The Clash Score reflects the
number of unfavorable all-atom steric overlaps and the refinement reduced the clash score of the model from
137.8 to 33.5, improving the model stability to a high level. The Ramachandran plot score represents the size of
energetically favoured regions and usually a value greater than 85% is acceptable. The Ramachandran plot score
has been improved from 78.3 to 87.5% by the refinement. The quality scores of the refined model shows good
overall quality.

Vaccine 3D structure validation. We use ProSA-web® to validate the overall model quality of the refined
final vaccine model. ProSA predicts a Z-score of -6.51 (see Fig. 9) for the refined model, which is lying inside the
score range of the comparable sized native proteins, indicating good overall model quality. ProSA also checks
the local model quality and the residue scores are plotted in Fig. 9. Negative values suggest no erroneous parts
of the model structure. We also use RAMPAGE server to do the Ramachandran plot analysis and it reveals a
Ramachandran plot score of 87.5%, which is consistent with the results of GalaxyRefine.

Conformational B-cell epitope prediction. The structure and folding of the new protein can result in
new conformational B-cell epitopes which requires additional predictions. We use ElliPro server® to predict
the conformational B-cell epitopes in the refined 3D model. The ElliPro server predicts 6 new conformational
B-cell epitopes which involved 387 residues with scores ranging from 0.531 to 0.963. The detailed 3D model and
information of those 6 epitopes are shown in Fig. 10.

Codon optimization and in silico cloning. We analyze the cloning and expression efficiency and opti-
mize the codon usage of vaccine construct in E. coli (Escherichia coli) strain K12) by Java Codon Adaptation
Tool”. The length of the optimized codon sequence is 2082 nucleotides. Its Codon Adaptation Index (CAI) is
0.997, and the average GC content is 50.73%, indicating a great potential of good expression of the final vac-
cine in the E. coli host. After the optimization, we use the SnapGene tool to insert the codon sequences into
pET28a( +) vector for cloning” (see Fig. 11). The codon sequence of the final vaccine is presented in red, which is
the 2082 bp gene sequence generated by the JCat server. The pET28a(+) expression vector is in black. The codon
sequence is inserted between Eco53KI (188) and EcoRV (1573), forming a clone with a total length of 6066 bp.

Molecular docking. Molecular docking can evaluate the interactions between a ligand molecule and the
receptor molecule to check the stability and binding affinity of their docked complex. Toll-like receptor 4 is an
important human protein for pathogen recognition and immune response. Consequently, we choose TLR4 as
the immune receptor to perform the molecular docking. We use the ClusPro 2.0 server’ to perform the molecu-
lar docking between the refined 3D model of our final vaccine and the TLR4 (PDB ID: 4G8A) immune receptor.
Among all the generated docking model, we select the one with the lowest energy score of -1311.5 as the best
docked complex, suggesting that the vaccine model occupies the receptor properly and indicating good binding
affinity (see Fig. 12).

Molecular dynamics simulation of the vaccine-receptor complex. To evaluate the stability and
physical movements of the vaccine-TLR4 docked complex'””?, we perform molecular dynamics simulation by
the iMOD server’®. The main-chain deformability is shown in Fig. 13a. The locations with hinges are regions
with high deformability. The B-factor values calculated by normal mode analysis are proportional to root mean
square (see Fig. 13b). B-factor values quantify the uncertainty of each atom. Figure 13¢ presents the eigenvalues
which are closely related to the energy required to deform the structure and the eigenvalue of the complex is
5.426 x 107°. The covariance matrix between the pairs of residues is shown in Fig. 13d, indicating their correla-
tions (red: correlated, white: uncorrelated, blue: anti-correlated). The elastic network model is shown in Fig. 13e,
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Figure 9. Vaccine 3D Structure Validation by ProSA-web. The Z-score of the refined model is -6.51 which is
lying inside the score range. ProSA-web also plots the residues scores to check the local model quality and the
negative values suggest no erroneous parts of the model structure.

Figure 10. The 3D model of the 6 predicted conformational B-cell epitopes in the refined final vaccine
structure. The yellow parts are the conformational B-cell epitopes and the grey parts are the rest of the residues.
(a) 3 residues with a score of 0.963. (b) 30 residues with a score of 0.757. (c) 167 residues with a score of 0.711.
(d) 161 residues with a score of 0.688. (e) 23 residues with a score of 0.59. (f) 3 residues with a score of 0.531.

suggesting the connection between atoms and springs. The molecular dynamic simulation results suggest that
our vaccine model is stable.

RNA mutations. As the SARS-CoV-2 spreads all over the world, its RNA sequence is going through muta-
tions, translating out different virus proteins. Such mutations can have influences on the epitope based vaccines,
since a single amino acid difference can change the epitope prediction results. Therefore it is important to prove
that the proposed final multi-epitope vaccine can tackle the mutations. With our DeepVacPred, we are also able
to quickly examine the mutated protein sequences to search for new potential vaccine subunits.

The RNA sequence we use to translate the spike protein and design the vaccines is from Wuhan, which is the
place of the original virus*. The RNA mutations lead to three most frequent changes in the spike protein area of
the SARS-CoV-2 and each of the changes contains one amino acid change”. Table 12 shows the mutation details.
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Figure 11. Final Vaccine in silico cloning into the pET28a( +) vector. The codon sequence of the final vaccine

is in red, which is a 2082 bp gene sequence generated by the JCat server. The pET28a(+) expression vector is in
black. The codon sequence is inserted between Eco53KI (188) and EcoRV (1573), forming a clone with a toal
length of 6066 bp. This image was created by SnapGene 5.1.5 software (from Insightful Science; available at https
://www.snapgene.com).

Figure 12. The docked complex of the vaccine model and the TLR4 immune receptor. The vaccine protein is
in yellow and the rest of the residues is the TLR4 receptor. The lowest energy score of this complex model is
-1311.5, indiating good binding affinity.

The mutation at the 614aa in spike protein from D to G is the most frequent mutation with 116 known
isolates”. This mutation is very common in many cities in North America. In Europe and South America the
D614G mutation occurs in less than 10 isolates. This change has no influence on the final multi-epitope vaccine
since it does not contain the 614aa of the spike protein. With DeepVacPred, we are also able to quickly check and
identify whether the mutation can create new potential vaccine subunits. We input the mutated protein sequence
into DeepVacPred and the predicted subunits are the same as the original virus.

At 476aa in spike protein there is a frequent mutation from G to S, which occurs in 3 isolates from Washington
DC?. This mutation has no influence on the final multi-epitope vaccine since it does not contain the 476aa of
the spike protein. We input the mutated protein sequence into DeepVacPred and the predicted subunits are the
same as the original virus.

At 483aa in spike protein there is a frequent mutation from V to A, which occurs in 6 isolates from Washing-
ton DC™. This mutation has no influence on the final multi-epitope vaccine since it does not contain the 483aa
of the spike protein. We input the mutated protein sequence into DeepVacPred and the predicted subunits are
the same as the original virus.
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Figure 13. The molecular dynamics simulation of the vaccine-TLR4 docked complex. (a) Main-chain
deformability simulation, the hinges are regions with high deformability. (b) B-factor values calculated by
normal mode analysis, quantifying the uncertainty of each atom. (c) The eigenvalue of the docked complex,
showing the energy required to deform the structure. (d) The covariance matrix between pairs of residues (red:
correlated, white: uncorrelated, blue: anti-correlated). (e) The elastic network model, suggesting the connection
between atoms and springs. The springs are more rigid if their greys are darker.

Mutations Occurrence Regions

G476S 3 Washington

V483A 6 Washington

D614G 116 Washington, Los Angeles, New York, South America, Europe

Table 12. Spike protein mutations. Occurrence is the number of isolates that showed the mutation. Region is
the origin of the isolates.

In conclusion, our designed multi-epitope vaccine can tackle the current RNA mutations of the coronavirus.
The current RNA mutations of the coronavirus create no new potential vaccine subunits.

Discussion

In silico vaccine design has high value of efficacy and it strongly emphasizes the multi-epitope in the vaccine
peptides. In this study, we develop DeepVacPred, an efficient vaccine subunit sieving framework, that exploits an
Al-based approach to rapidly select 26 potential vaccine subunit candidates, introducing a new way for achieving
amuch higher speed and efficiency in in silico vaccine design. The goal is to directly predict the potential vaccine
subunit sequence without the need to do a large number of different predictions, as well as to evaluate and select
the predicted results manually. With this Al-based framework, we are able to skip at least 95% of unnecessary
predictions and let the computer analyze and select the best vaccine subunits for us. DeepVacPred predicts the
26 vaccine subunits within less than a second, which enables us to skip the most time consuming part of the in
silico vaccine design. With DeepVacPred, a researcher can construct a multi-epitope vaccine for a new virus and
validate its quality within an hour.

This approach can be further developed by enhancing the complexity and coverage of the dataset. In this
study, we selected a part of known epitopes and protective antigens to form the dataset and use it for training
the DNN architecture. We use the simple bridging of one B-cell epitopes and one T-cell epitopes. With a more
comprehensive dataset and more possibilities of epitope combinations, we will be able to develop a better, more
comprehensive and quicker vaccine design tool. In spite of limited available datasets, the current framework can
still deal with most of the situations now and provide an efficacious vaccine design.

The application of AL, and DNN methodology in particular, to protein sequences classification shows great
potential. Most of the online tools rely on the SVM learning approaches. In the highly popular protective antigens
prediction tool Vaxijen®, the AUC of the ROC curve can only reach 0.743, which cannot perform very accurate
predictions. The dataset to train Vaxijen only contains 200 proteins, so it becomes more time consuming and
challenging to rely on the SVM model with increasing number of discovered protective antigens. Consequently,
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the proposed DeepVacPred proves that DNN can perform a very accurate prediction with over 700,000 different
proteins in the dataset.

This study eventually results in a novel multi-epitope vaccine with a length of 649aa against the SARS-CoV-2.
It contains an adjuvant, 11 subunits with 16 B-cell epitopes, 82 CTL epitopes and 89 HTL epitopes. It shows good
antigenicity, population coverage and good physichochemical properties and structures, providing great potential
for the next step COVID-19 vaccine design with actual experiments and clinical studies.

Furthermore, we trace the RNA mutations of the SARS-CoV-2 virus. Basically, the RNA mutations can result
in one amino acid change in the spike protein or other related proteins. The proposed vaccine design framework
can also tackle the three most frequently observed mutations as well as it can be extended to deal with other
potentially unknown mutations. The investigation on the RNA mutations also proves the high efficiency of our
DeepVacPred. As future work, we will investigate novel Al algorithms and architectures capable of constructing
multi-epitope vaccine designs that can overcome the unknown unknowns of viruses evolution.

Methods

DNN design and training in DeepVacPred framework. Each data input to the DNN architecture is a
sequence with a length of 45 vectors which is converted from its protein sequence by Z-descriptors*' and ACC
transformation®’. Convolutional Neural Network (CNN) exhibits good performance to identify and process
such vectors while multi-layer linear neural network is broadly connected to the ouput layer of the CNN, form-
ing a complex DNN to enhance the classification ability. Hence, our DNN is constructed by the following layers
and the parameters of each layer is decided using a random search to obtain high accuracy while maintaining
good computing speed:

i. CNN, in channels =1, out channels =16, kernel size = 3, stride =2, padding =1, Tanh function;

ii. CNN, in channels =16, out channels = 16, kernel size = 3, stride =2, padding = 1, Tanh function;

iii. CNN, in channels =16, out channels = 1, kernel size =3, stride=2, padding =1, Tanh function, average
pooling;

iv. Linear, in features = 32, out features = 64 , Tanh function;

v. Linear, in features = 64, out features = 32, Tanh function;

vi. Linear, in features = 32, out features = 16, Tanh function;

vii. Linear, in features = 16, out features = 2, Sigmoid function.

The hyper-parameters of the DNN training are listed below. The selected hyper-parameter values are marked
in bold. We choose the hyper-parameters with good accuracy while maintaining good computing speed by using
a random search.

i. Learning rate: [0.0001, 0.0005, 0.001, 0.0015, 0.002];

ii. Optimizer: [SGD, RMSProp, Adam];

iii. Epochs: [2000, 4000, 6000, 8000, 10000];

iv. Batch size: [1024, 2048, 4096, 8192].

Linear B-cell epitopes prediction. We use four popular server to predict the linear B-cell epitopes on
each vaccine subunit candidates. (1) BepiPred-2.0 web server (http://www.cbs.dtu.dk/services/BepiPred/).
BepiPred is a reliable machine learning based tool trained by random forest algorithm and its training dataset
covers a large number of known linear B-cell epitopes from the IEDB database®. (2) ABCpred (http://www.
imtech.res.in/raghava/abcpred/). ABCPred applies recurrent neural network to the classification of epitopes and
non-epitopes to improve the accuracy®. (3) SVMTrip (http://sysbio.unl.edu/SVMTriP/). SVMTrip uses support
vector machine to predict antigenic epitopes and its AUC reaches a value of 0.702%. (4) BCPreds (http://ailab.ist.
psu.edu/bepred/). BCPreds is also based on SVM model with an AUC value of 0.758 and its prediction relies on
kernel methods*. The B-cell surface accessibility is checked by IEDB Emini tool*2.

Cytotoxic T lymphocytes (CTL) epitopes prediction. We use NetMHCpan 4.1 server (http://www.cbs.
dtu.dk/services/NetMHCpan/) to predict the CTL epitopes on each vaccine subunit candidates. We predict the
CTL epitopes with a length of 9aa. All the parameters are set at default. NetMHCpan predicts peptide binding
to any MHC Class I molecule of known sequence using artificial neural networks (ANNs) which is trained on
a combination of more than 850,000 quantitative Binding Affinity (BA) and Mass-Spectrometry Eluted Ligands
(EL) peptides, providing reliable prediction results*.

Helper T lymphocytes (HTL) epitopes prediction. We use NetMHCIIpan 4.0 server (http://www.cbs.
dtu.dk/services/NetMHClIIpan/) to predict the HTL epitopes on each vaccine subunit candidates. We predict the
HTL epitopes with a length of 15aa. All the parameters are set at default. NetMHCIIpan predicts peptide bind-
ing to any MHC II molecule of known sequence using artificial neural networks (ANNs) which is trained on an
extensive dataset of over 500,000 measurements of Binding Affinity (BA) and Eluted Ligand mass spectrometry
(EL), covering the three human HLA-DR, HLA-DQ and HLA-DP alleles, providing reliable prediction results*.

Multi-epitope vaccine construction. In this section, the BLASTp screening is done by the Uniprot server
(https://www.uniprot.org/blast). BLASTp can identify similar regions between two sequences.

Worldwide human population coverage analysis. The worldwide human population coverage of each
subunit is evaluated by IEDB population coverage analysis tool (http://tools.iedb.org/population/). The evlua-
tion is done on the worldwide human population.
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Antigenicity, allergenicity and solubility evaluation. The antigenicity of the final vaccine and its
every subunit is predicted by VaxiJen 2.0 server (http://www.ddg-pharmfac.net/ vaxijen/VaxiJen/VaxiJen.html)
and AntigenPro server (http://scratch.proteomics.ics.uci.edu). Vaxijen is based on auto cross covariance (ACC)
transformation of protein sequences into uniform vectors of principal amino acid properties*. Antigenpro is a
sequence-based, alignment-free and pathogen-independant predictor of protein antigenicity™. The allergenicity
of the final vaccine and its every subunit is checked by AllergenFP 1.0 server (http://ddg-pharmfac.net/Aller
genFP/) and AllerTOP 2.0 server (https://www.ddg-pharmfac.net/AllerTOP/). AllergenFP and is a binary class-
fier between allergens and non-allergens. The dataset is described by five E-descriptors and the strings are trans-
formed into uniform vectors by auto-cross covariance (ACC) transformation’®. AllerTop is also based on ACC
transformation and E-descriptors®. The solubility is evaluated by SolPro server (http://scratch.proteomics.ics.
uci.edu) and Protein-sol server (https://protein-sol.manchester.ac.uk). SolPro is an SVM based tool to predict
the solubility of a protein sequence with an overall accuracy of over 74% estimated by tenfold cross-validation®’.
Protein-sol is based on available data for Escherichia coli protein solubility in a cell-free expression system.

Toxicity and physicochemical properties analysis.  The toxicity of the final vaccine and its every subu-
nit is predicted by ToxinPred server (http://crdd.osdd.net/raghava/toxinpred/). TonxinPred is based on SVM
model to classify toxicity and non-toxicity. The dataset used in its method consists of 1805 toxic peptides (<35
residues)®. The physicochemical properties of the final vaccine and its every subunit is predicted by ExPASy
ProtParam server (https://web.expasy.org/protparam/). The physicochemical properties include hydropathicity,
charge, half-life, instability index, pI (Theoretical isoelectric point value) and molecule wheight®’.

Secondary structure prediction. PSIPRED is used for the secondary structure prediction of our final
vaccine (http://bioinf.cs.ucl.ac.uk/psipred/). PSIPRED incorporates two feed-forward neural networks which
perform an analysis on output obtained from PSI-BLAST (Position Specific Iterated—BLAST). It achieves an
average Q3 score of 81.6%, which can achieve accurate secondary structure prediction®. We also use RaptorX
Property web server (http://raptorx.uchicago.edu/StructurePropertyPred/predict/) to predict the solvent acces-
sibility (ACC) and disorder regions (DISO). RaptorX employs an emerging machine learning model called
DeepCNF (Deep Convolutional Neural Fields) to predict secondary structure (SS), solvent accessibility (ACC),
and disorder regions (DISO) simultaneously®.

Vaccine 3D structure modeling. The 3D model of the final vaccine is constructed by RaptorX server
(http://raptorx.uchicago.edu/ContactMap). RaptorX provides distance-based protein folding powered by deep
learning. This server was officially ranked 1st in contact prediction in both CASP12 and CASP13 and initiated
the revolution of protein structure prediction by deep learning®®.

Vaccine 3D structure refinement. The 3D model built by RaptorX server is refined by GalaxyRefine
(http://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE). GalaxyRefine first rebuilds side chains and per-
forms side-chain repacking and subsequent overall structure relaxation by molecular dynamics simulation.
According to the CASP10 assessment, the GalaxyRefine server method performed the best in improving local
structure quality®” The quality of the refined model is evaluated in terms of its GDT-HA socre, RMSD score,
Molprobity score, clash score and Ramachandran plot score.

Vaccine 3D structure validation. The final refined 3D model of our final vaccine is validated by ProSA-
web server(https://prosa.services.came.sbg.ac.at/prosa.php). ProSA calculates an overall quality score for a spe-
cific input structure. If this score is outside a range characteristic for native proteins the structure probably
contains errors. A plot of local quality scores points to problematic parts of the model which are also highlighted
in a 3D molecule viewer to facilitate their detection®.

Conformational B-cell epitope prediction. The conformational B-cell epitopes in the refined final vac-
cine 3D structure model are predicted by the ElliPro Server (http: //tools.iedb.org/ellipro). ElliPro is based on
the geometrical properties of protein structure. Among the current conformational B-cell epitope prediction
tools, ElliPro has the best AUC score of 0.732, which is a very reliable tool for identifying antibody epitopes in
protein antigens®.

Codon optimization and in silico cloning. Java Codon Adaptation Tool (JCat) server is used for codon
optimization (https://urldefense.com/v3/__http://www.jcat.de/LIr3w8kk_Xxm!7wR]J08pRiYapODc_l0a3L
u91JwL-k63K5zWwthwiCfq_ctg6SmoWSkB2]JxUzyRA). JCat adapts the codon usage to most sequenced prokar-
yotic organisms and selected eukaryotic organisms”’. The optimized codon sequence is insert into pET28a(+)
vector with SnapGene 5.1.5 software (from Insightful Science; available at https://www.snapgene.com).

Molecular docking. The molecular docking is done by ClusPro 2.0 server (https://cluspro.bu.edu). ClusPro
is a widely used tool for protein—protein docking. Docking with each energy parameter set results in ten models
defined by centers of highly populated clusters of low-energy docked structures”. We choose TLR4 (PDB ID:
4G8A) as the immune receptor. We select the docked complex with the lowest energy score.

Molecular dynamics simulation of the vaccine-receptor complex. The molecular dynamics simu-
lation is done by iMOD server (iMODS) (http://imods.chaconlab.org). iMODS facilitates the exploration of
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such modes and generates feasible transition pathways between two homologous structures’. The iMOD server
evaluates the protein stability by computing its internal coordinates through normal mode analysis (NMA). The
stability of the protein is represented in terms of its main-chain deformability plot, B-factor values, eigenvalue,
covariance matrix and elastic network model.

Data availability

We obtained the genome sequence and the spike protein sequence of SARS-CoV-2 from NCBI database (https
://www.ncbi.nlm. nih.gov) with accession number MN908947 and protein ID QHD43416.1. The protein data
we collected and processed to train the DeepVacPred is available on github.com (https://github.com/zikunyang/
DCVST).

Code availability
The code used for data generation and/or analysis in the study are available on github.com (https://github.com/
zikunyang/DCVST).
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