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An in silico deep learning approach 
to multi‑epitope vaccine design: 
a SARS‑CoV‑2 case study
Zikun Yang, Paul Bogdan* & Shahin Nazarian

The rampant spread of COVID‑19, an infectious disease caused by SARS‑CoV‑2, all over the world 
has led to over millions of deaths, and devastated the social, financial and political entities around 
the world. Without an existing effective medical therapy, vaccines are urgently needed to avoid the 
spread of this disease. In this study, we propose an in silico deep learning approach for prediction 
and design of a multi‑epitope vaccine (DeepVacPred). By combining the in silico immunoinformatics 
and deep neural network strategies, the DeepVacPred computational framework directly predicts 
26 potential vaccine subunits from the available SARS‑CoV‑2 spike protein sequence. We further use 
in silico methods to investigate the linear B‑cell epitopes, Cytotoxic T Lymphocytes (CTL) epitopes, 
Helper T Lymphocytes (HTL) epitopes in the 26 subunit candidates and identify the best 11 of them to 
construct a multi‑epitope vaccine for SARS‑CoV‑2 virus. The human population coverage, antigenicity, 
allergenicity, toxicity, physicochemical properties and secondary structure of the designed vaccine 
are evaluated via state‑of‑the‑art bioinformatic approaches, showing good quality of the designed 
vaccine. The 3D structure of the designed vaccine is predicted, refined and validated by in silico 
tools. Finally, we optimize and insert the codon sequence into a plasmid to ensure the cloning and 
expression efficiency. In conclusion, this proposed artificial intelligence (AI) based vaccine discovery 
framework accelerates the vaccine design process and constructs a 694aa multi‑epitope vaccine 
containing 16 B‑cell epitopes, 82 CTL epitopes and 89 HTL epitopes, which is promising to fight the 
SARS‑CoV‑2 viral infection and can be further evaluated in clinical studies. Moreover, we trace the 
RNA mutations of the SARS‑CoV‑2 and ensure that the designed vaccine can tackle the recent RNA 
mutations of the virus.

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2)1,2. First detected in December 2019 in Wuhan, the virus has spread globally, with 
basic reproduction number (R0) reaching 5.73, millions of deaths, and unprecedented �nancial, social and politi-
cal impacts all over the  world4. E�cacious vaccines are therefore desperately  needed5. �e main clinical features 
of the COVID-19 are fever, cough and myalgia or  fatigue6; the virus has caused clusters of severe respiratory 
illness similar to severe acute respiratory syndrome coronavirus and is associated with ICU (Intensive Care Unit) 
admission and high mortality rates7.

Currently, without a single speci�c antiviral therapy for SARS-CoV-2, the control methods of the COVID-19 
are early diagnosis, reporting, isolation, supportive treatments, and timely publishing epidemic information with 
only limited impact on the  coronavirus8,9. Researchers have proposed several approaches to develop vaccines 
for the SARS-CoV-210. Traditional process of vaccine design is based on growing pathogens, which represents a 
very time-consuming process of isolating, inactivating and injecting the virus that causes the  disease11,12. Such 
process usually takes more than a year to result in e�cacious vaccines and hence contributes very little to avoid 
the current spread of the  disease13,14. Recently, researchers have worked on constructing multi-epitope vaccines 
by in silico methods based on immunoinformatics without the need to grow pathogens to accelerate the vaccine 
design  process15–17. Multi-epitope vaccines are constructed by multiple virus protein fragments rich in overlap-
ping epitopes. �ey contain the vital part of the virus to elicit either a cellular or a humoral immune response and 
they reduce unwanted components that can trigger adverse  e�ects18. Multi-epitope vaccines can be powerful for 
�ghting viral infections, providing excellent vaccine candidates for clinical trials. �e genome sequencing of the 
SARS-CoV-2 is  completed8 and researchers have studied the details in the SARS-CoV-2  proteins19. Coronavirus 
is studded on its exterior with spike proteins, which are key components to infect and attack human  cells20. �e 
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spike protein of the SARS-CoV-2 can latch onto cells and force the virus through the cell membrane, which 
enables the virus entry. Previous studies reveal that the spike protein of the SARS-CoV-2 plays a decisive role 
during the infection. Proteolytic activation of spike protein by host cell proteases is also a critical  determinant21. 
It is promising to combat the COVID-19 by inducing the B-cells and T-cells that can perform immune responses 
against the SARS-CoV-2 spike protein. Hence, in this study, we choose the spike protein sequence of the SARS-
CoV-2 as the main subject to design our multi-epitope vaccine.

Although the in silico vaccine design approaches are looked at as fairly e�cient, they may not be su�ciently 
fast to keep pace with the emergence of various pandemics. Figure 1A shows the schematic diagram of a tra-
ditional in silico vaccine design process. Researchers usually use numerous in silico tools to predict the B-cell, 
CTL and HTL epitopes on the whole virus  proteins22,23. �e antigenicity and other physicochemical properties 
of the overlapping fragments are also necessary to be  evaluated24. To select the best virus protein regions for 
constructing an e�cacious vaccine, we need to carefully and comprehensively evaluate all the predicted results, 
which creates a large overhead and can be very time consuming. Currently, each in silico vaccine design tool can 
only achieve one single prediction goal. For example,  BepiPred25 is a very popular B-cell epitope prediction tool 
and many researchers use this tool to predict the B-cell epitopes. However, BepiPred can only be used to address 

Figure 1.  Schematic Diagram of In Silico Vaccine Design Process. (A) Traditional in silico vaccine design 
process. We have to use numerous vaccine design tools. �e evaluation and subunits selection is very time 
consuming. No current tool is able to include all the predictions to comprehensively analyze and select out the 
best vaccine subunits directly. (B) In silico vaccine design by DeepVacPred framework. By replacing the many 
predictions, evaluations and selections with a DNN architecture inside the DeepVacPred framework, we are able 
to directly predict a very small number of potential vaccine subunits within a second and start the following 
evaluation and vaccine construction on a much smaller amount of data.
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the one step of B-cell epitope prediction, and when it comes to T-cell epitope prediction, a di�erent tool such as 
 NetMHCpan26 is needed. No current tool is able to conduct multiple predictions and comprehensively analyze 
the results for us at once to directly identify the best vaccine subunits for further construction and evaluation.

To overcome the above challenges of the in silico vaccine design, we propose DeepVacPred, a novel AI-based 
in silico multi-epitope vaccine design framework. We successfully replace the multiple necessary predictions 
and the comprehensive evaluations with a deep neural network (DNN) architecture. When the DNN takes one 
peptide sequence as input, it can then judge whether this input sequence can be a potential vaccine subunit. 
In the DeepVacPred framework, the number of potential vaccine subunits can be �rstly reduced to around 30, 
then further evaluation and vaccine construction is done on the predicted subunits by reliable and popular in 
silico methods to construct the �nal vaccine. Our novel approach aims to achieve a much better e�ciency of 
the in silico vaccine design.

With DeepVacPred, this study designs a multi-epitope vaccine in a novel in silico fashion. We �rst use 
the DNN architecture to lock down 26 fragments in the SARS-CoV-2 spike protein as vaccine subunit candi-
dates. Next, we predict the linear B-cell epitopes, CTL epitopes and HTL epitopes to select and construct our 
�nal vaccine. We further analyze the human population coverage, antigenicity, allergenicity, toxicity and other 
physicochemical properties to validate the quality. We also predict the secondary structure and 3D structure 
model. �is model is eventually re�ned and validated. Finally, the codon optimization and in silico cloning are 
performed to check the vaccine genome and protein constructions and ensure its e�ective expression. In addi-
tion, DeepVacPred allows us to quickly check for newly emerging threats caused by the RNA mutations of the 
SARS-CoV-2. We prove that our vaccine can tackle the virus RNA mutations.

DeepVacPred
Background. An in silico vaccine design process can be seen as selecting good fragments of the virus pro-
teins, then constructing them together into a �nal  vaccine24. A fragment with multiple merits can be selected 
as a subunit of the �nal vaccine. For example, an ideal subunit should contain multiple B-cell epitopes and 
T-cell epitopes and it should have high antigenicity to trigger human protective  reactions22,23. �ese merits can 
be predicted by in silico approaches and currently there are numerous in silico vaccine design tools. However, 
these tools are designed to address only one of the several predictions at a time. Consequently, researchers have 
to overcome the time-consuming tasks of analyzing each individual prediction result from di�erent tools while 
adopting a comprehensive view of the vaccine design. No current tool can take all the necessary merits into 
consideration and directly predict the vaccine subunit candidates from the virus proteins.

�ere are two drawbacks to the current situation: (i) We usually need only the best 10–20 subunits to con-
struct the �nal vaccine while each prediction tool may provide us with hundreds or even thousands of potential 
locations to choose, which creates a large overhead to comprehensively select out the subunits we need and 
no current tool can achieve both the prediction and the selection for us. (ii) Nearly 90% prediction results are 
eventually discarded because they have only part of the merits, resulting in too much of unnecessary analysis 
and wasting many computing resources. Consequently, traditional approaches may produce vaccines that are 
too late or ine�ective for pandemics.

In order to improve the e�ciency and reliability of the vaccine design process, we improve over state-of-the-
art tools by providing a DNN approach, DeepVacPred, an e�cient in silico vaccine design process to address the 
afore-mentioned concerns. DeepVacPred directly predicts the best vaccine subunit candidates (the number is 
within 30) from the virus protein sequences within a second by replacing the prediction and selection with deep 
neural network architecture, hence promising much higher e�ciencies for the vaccine design and test process.

Data collection and dataset design. Reliable data is essential for the performance of supervised 
 learning27, thus, it plays a crucial role in the outcome of the vaccine design process. We collected 5000 latest 
known B-cell epitopes (B) and 2000 known T-cell epitopes containing both MHC (major histocompatibility 
complex)-1 and MHC-2  binders28 (T) from the IEDB database, combining with the same number of proteins 
which are not T-cell or B-cell epitopes, forming a dataset of epitopes and non-epitopes. 100 known latest viral 
protective antigens are selected from the IEDB database, and the same number of proteins without protective 
functions are randomly selected, combining with the 400 antigens from previous  work29, forming a dataset with 
600 antigens.

DeepVacPred is built based on supervised learning on a subtly designed dataset. To directly predict the vac-
cine subunit candidates, the protein sequences in the positive dataset must contain at least one T-cell epitope and 
one B-cell epitope and must be protective antigens. Cartesian  Product30 is the set that contains all ordered pairs 
from two sets. �us, the two Cartesian Products, T × B and B × T, which are formed between the collected B-cell 
epitopes dataset and the T-cell epitopes dataset can cover all the possible combinations of the known B-cell and 
T-cell epitopes. We use the 600 antigens to train a neural network that can identify protective antigens. We use 
this neural network on the Cartesian Product to sieve out 706,970 peptides sequences that are predicted to be 
protective antigens. �ose 706,970 peptides contain both B-cell epitopes and T-cell epitopes and are protective 
antigens, referred in this paper as the positive vaccine dataset. �e same number of peptides randomly bridged by 
negative T-cell and B-cell epitopes form our negative vaccine dataset. �e dataset we design addresses the three 
most important predictions, the B-cell epitopes, T-cell epitopes and antigenicity in the vaccine design process.

All the datasets we collected, designed and created for the DNNs training can be found in the Data Availability 
section. �e descriptions of each dataset are shown in Table 1.

Network training. A multi-layer convolutional neural network (CNN) and a four-layer linear neural net-
work connect together, forming a deep neural network (DNN) with a two-class output. �e positive and nega-
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tive datasets are annotated by Z-descriptors31, then converted to the same length of 45 vectors with auto cross 
covariance (ACC)  transformation32. Trained by the transformed dataset above, the DNN achieves the classi�ca-
tion function to predict whether the input is a protective antigen containing both the B-cell and T-cell epitopes, 
realizing the ability to directly judge whether a sequence can be a potential vaccine subunit. �is DNN is the core 
part of the rapid vaccine design process of our DeepVacPred framework and we name it as DNN-V. In addition, 
we train another DNN with the same structure on the T-cell epitope dataset which can judge whether an input 
sequence can be a T-cell epitope and we name it as DNN-T. �e detailed neural network structures, training 
process and hyper-parameters can be found in “DNN Design and Training in DeepVacPred Framework” in the 
Methods section.

Validation. ROC curves. Receiver operating characteristic (ROC) curve is a graphical plot that illustrates 
the diagnostic ability of a binary classi�er system as its discrimination threshold is  varied33. DNN-V is a novel 
approach that needs to be validated. We use the ROC curves to evaluate the DNN-V in DeepVacPred. We 

Table 1.  Description of the datasets used for analysis and DNN training.

Datasets Number of peptides Descriptions

T 2000
Known T-cell epitopes with both MHC-1 and MHC-2 
binders collected from the IEDB database. Used for creat-
ing the vaccine datasets

B 5000
Known B-cell epitopes collected from the IEDB database. 
Used for creating the vaccine datasets

Protective antigens 300

Known viral protective antigens collected from both the 
IEDB database and previous work. Used for training a 
DNN to identify protective antigens in order to sieve out 
the positive vaccine dataset from the Cartesian Products

Cartesian products 2000 × 5000 × 2

�e Cartesian Products of TxB and BxT. �e products 
include all the peptides generated from the T and B datasets 
which contain at least one T-cell epitope and one B-cell 
epitope in each peptide

NT 2000 2000 peptides which are not T-cell epitopes

NB 5000 5000 peptides which are not B-cell epitopes

N protective antigens 300 300 peptides which are not viral protective antigens

Positive vaccine dataset 706,970

Sieved out from the Cartesian Products by using the DNN 
trained by the protective antigen datasets. Each of the 
peptide in this dataset contains at least one T-cell epitope 
and one B-cell epitope and the whole sequence is predicted 
to be protective antigens. Used for training the DNN to 
predict vaccine subunits

Negative vaccine dataset 706,970

�e negative dataset to train the DNN to predict vaccine 
subunits. Each peptide in this dataset does not contain at 
least one T-cell and one B-cell epitope or it is predicted to 
be non-protective antigens

Figure 2.  ROC Curves for the DNN-V in DeepVacPred. �e area under the ROC curves represent the ability 
of the DNN-V to classify potential vaccine subunits and non-potential vaccine subunits. �e high area under 
the ROC curves suggests that the DNN-V has strong classi�cation ability and high accuracy at most threshold 
values.
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test the trained DNN-V with two datasets, namely the train set and the test set, each of which containing 200 
protein sequences. �e training set contains 200 proteins randomly selected from the dataset; we use to train 
the DNN-V, with 100 positive and 100 negative protein sequences. We also selected known B-cell epitopes and 
T-cell epitopes that are not in our collected data and use the above steps to form the testing set, also with 100 
positive and 100 negative protein sequences. �e ROC curves are shown in Fig. 2. �e validation data appears in 
Table 2. �e thresholds are ranged from 0 to 1. �e accuracy reported in Table 2 is the greatest value among all 
thresholds. �e sensitivity and speci�city values in Table 2 are reported for the case with the highest accuracy. 
�e AUC (Area Under the ROC Curve) value of 0.9703 for the test set which indicates the high accuracy of the 
classi�cation of DNN-V to identify potential vaccine subunits.

Vaccine design test. �e false positive rate (FPR) will fall down to 0 if we set the threshold to a very low value, 
e.g., 0.0003, since we only care about discarding all the non-candidates. We use the DNN-V in our DeepVacPred 
framework on the 1273aa spike protein sequence of the SARS-CoV-2. 132 vaccine candidates are predicted. 
We use  BepiPred25,  NetMHCpan26 and  Vaxijen34 to examine each candidate. All of the candidates contain both 
T-cell and B-cell epitopes and only 14 of them are predicted by Vaxijen to be non-protective antigens.

DeepVacPred framework. Figure 1B provides the schematic diagram of the vaccine design process using 
DeepVacPred framework. DeepVacPred �rst uses DNN-V to predict a very small number of potential vac-
cine subunits directly from the virus protein sequences. DeepVacPred further uses DNN-T to examine all the 
overlapping sequences in these subunits and select the subunit candidates which have multiple T-cell epitopes. 
�ese two prediction rounds take less than 1 s and reduce the number of potential vaccine subunits to around 
30. Compared to traditional approaches, the most time-consuming subunits selection part can be easily done by 
DeepVacPred within less than a second, saving a large amount of time and computational resources.

�e following steps in the DeepVacPred framework are as follows: (i) selecting the best subunits from only 
about 30 candidates and (ii) constructing the �nal vaccine based on the evaluations by various reliable in sil-
ico tools, including Linear B-cell epitopes prediction, CTL and HTL epitopes prediction, population coverage 
analysis, vaccine construction, evaluation of antigenicity, allergenicity, solubility, immunogenicity, toxicity and 
other physicochemical properties, structure prediction, 3D modeling, in silico cloning, molecular docking and 
molecular dynamics simulation. Compared to the popular computational process, those evaluations are done 
on a much smaller amount of data, hence improving the e�ciency.

Results
Data retrieval. �e genome sequence of SARS-CoV-2 isolate Wuhan-Hu-1 is retrieved from the NCBI 
database with accession number  MN90894735. �e protein sequences are retrieved according to their transla-
tion. Especially, the spike protein (protein ID: QHD43416.1) has a length of 1273 amino acids (aa), and the 

Table 2.  DeepVacPred Validation. For the Training Set, we reach the highest accuracy of 0.995 if the threshold 
value is set at 0.32. At this threshold value, the sensitivity and speci�city are 0.99 each. For the Testing Set, we 
reach the highest accuracy of 0.95 if the threshold value is set at 0.5. At this threshold value, the sensitivity and 
speci�city are 0.95 each. �e experimental data shows high accuracy and strong classi�cation ability of the 
proposed DeepVacPred framework.

Validation AUC �reshold Accuracy Sensitivity Speci�city

Train set 0.9999 0.32 0.995 0.99 0.99

Test set 0.9703 0.5 0.95 0.95 0.95

Table 3.  DeepVacPred �rst round prediction results. Here we show the number of predicted vaccine subunits 
for each location.

Location Proteins Start End Number of vaccine subunits

Location 1 Spike 6 36 2

Location 2 Spike 53 104 3

Location 3 Spike 105 167 8

Location 4 Spike 206 322 22

Location 5 Spike 352 585 30

Location 6 Spike 601 741 19

Location 7 Spike 751 862 17

Location 8 Spike 878 981 16

Location 9 Spike 1034 1063 1

Location 10 Spike 1057 1186 12

Location 11 Spike 1188 1218 2
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receptor binding domain (RBD) is from 347 to  520aa20. �e following experiments are mainly focused on the 
spike protein region.

DeepVacPred vaccine subunits prediction. All the overlapping protein fragments with a length of 
30aa are generated out of the 1273aa SARs-CoV-2 spike protein sequence. DeepVacPred �rst tests these 1244 
30aa protein sequences and predicts 132 potential vaccine subunits (see Table 3). �e DeepVacPred framework 
further predicts the T-cell epitopes at these locations and discards the subunits which have less than 8 T-cell 
 epitopes36. A�er this prediction, our DeepVacPred provides us with 26 potential vaccine subunits for further 
evaluation and construction (see Table 4). �ese subunits are very likely to contain B-cell epitopes and multiple 
T-cell epitopes. �ey are also very likely to have high antigenicity and low allergenicity. We start the following in 
silico vaccine design process directly from the predicted 26 vaccine subunits, which is very e�cient.

Linear B‑cell epitopes prediction. B-cell epitopes are portions of antigens binding to immunoglobulin 
or antibody to trigger the B-cells to provide immune  response37. Linear B-cell epitopes are predicted on the 26 
vaccine subunits. Linear B-cell epitopes are predicted by four online servers including  BepiPred25,  SVMtrip38, 
 ABCPred39 and  BCPreds40. We �rst use BepiPred for the main prediction and we use the other three servers to 
check the prediction results by BepiPred. A B-cell epitope predicted by the BepiPred will be discarded if it is not 
predicted by any of the other three servers. B-cell epitopes must be located in the solvent-exposed region of the 
antigens to be possible to combine with the B-cell37, thus it is essential to predict the surface availability of the 
structural protein sequence. �e surface availability is predicted by Emini  tool41,42 on the whole SARS-CoV-2 
spike protein sequence, and we discarded the epitopes that are not exposed on the surface. A�er the predictions, 
we select out 14 vaccine subunits (see Table 5). We further use the RaptorX Property server to evaluate the sur-
face accessibility of the SARS-CoV-2 to validate that the B-cell epitopes in those subunits are well-exposed (see 
Fig. 3).

Table 4.  DeepVacPred second round prediction results. Here we get 26 vaccine subunits for further evaluation 
and construction. �ose 26 vaccine subunits are very likely to have high antigenicity and contain multiple 
B-cell and T-cell epitopes. With DeepVacPred, those 26 vaccine subunits are reached within less than a second, 
while it can take days to select those subunits from the virus protein if we use traditional methods. Next, 
DeepVacPred simply checks the epitopes and other merits on those 26 subunits and constructs the multi-
epitope vaccine directly from those 26 candidates, which is much more e�cient than traditional approaches.

Vaccine subunits Protein Start End Peptide sequence

Subunit 1 Spike 19 48 TTRTQLPPAYTNSFTRGVYYPDKVFRSSVL

Subunit 2 Spike 34 63 RGVYYPDKVFRSSVLHSTQDLFLPFFSNVT

Subunit 3 Spike 71 100 SGTNGTKRFDNPVLPFNDGVYFASTEKSNI

Subunit 4 Spike 141 170 LGVYYHKNNKSWMESEFRVYSSANNCTFEY

Subunit 5 Spike 191 220 FVFKNIDGYFKIYSKHTPINLVRDLPQGFS

Subunit 6 Spike 209 238 PINLVRDLPQGFSALEPLVDLPIGINITRF

Subunit 7 Spike 306 335 FTVEKGIYQTSNFRVQPTESIVRFPNITNL

Subunit 8 Spike 359 388 SNCVADYSVLYNSASFSTFKCYGVSPTKLN

Subunit 9 Spike 402 431 IRGDEVRQIAPGQTGKIADYNYKLPDDFTG

Subunit 10 Spike 439 468 NNLDSKVGGNYNYLYRLFRKSNLKPFERDI

Subunit 11 Spike 480 509 CNGVEGFNCYFPLQSYGFQPTNGVGYQPYR

Subunit 12 Spike 510 539 VVVLSFELLHAPATVCGPKKSTNLVKNKCV

Subunit 13 Spike 584 613 ILDITPCSFGGVSVITPGTNTSNQVAVLYQ

Subunit 14 Spike 626 655 ADQLTPTWRVYSTGSNVFQTRAGCLIGAEH

Subunit 15 Spike 655 684 HVNNSYECDIPIGAGICASYQTQTNSPRRA 

Subunit 16 Spike 697 726 MSLGAENSVAYSNNSIAIPTNFTISVTTEI

Subunit 17 Spike 709 738 NNSIAIPTNFTISVTTEILPVSMTKTSVDC

Subunit 18 Spike 773 802 EQDKNTQEVFAQVKQIYKTPPIKDFGGFNF

Subunit 19 Spike 805 834 LPDPSKPSKRSFIEDLLFNKVTLADAGFIK

Subunit 20 Spike 866 895 TDEMIAQYTSALLAGTITSGWTFGAGAALQ

Subunit 21 Spike 946 975 GKLQDVVNQNAQALNTLVKQLSSNFGAISS

Subunit 22 Spike 1017 1046 EIRASANLAATKMSECVLGQSKRVDFCGKG

Subunit 23 Spike 1034 1063 LGQSKRVDFCGKGYHLMSFPQSAPHGVVFL

Subunit 24 Spike 1094 1123 VFVSNGTHWFVTQRNFYEPQIITTDNTFVS

Subunit 25 Spike 1156 1185 FKNHTSPDVDLGDISGINASVVNIQKEIDR

Subunit 26 Spike 1179 1208 IQKEIDRLNEVAKNLNESLIDLQELGKYEQ



7

Vol.:(0123456789)

Scientific Reports |         (2021) 11:3238  | https://doi.org/10.1038/s41598-021-81749-9

www.nature.com/scientificreports/

Cytotoxic T lymphocytes (CTL) epitopes prediction. Cytotoxic T Lymphocytes (CTL) recognize the 
infected cells by using the MHC class I molecules to bind with certain CTL  epitopes26. We use NetMHCpan 4.1 
 server43 to predict potential CTL epitopes. All the overlapping 9aa peptide sequences in the 14 vaccine subunits 

Figure 3.  Surface accessibility of the SARS-CoV-2. �e red color represents the exposed residues, the yellow 
color represents the medium exposed residues and the blue color represents the buried residues. In the SARS-
CoV-2 spike protein, the B-cell epitopes in the 14 vaccine subunits are well-exposed according to the surface 
accessibility prediction, showing good potential that the B-cell receptor is able to interact with the virus to 
trigger the immune response.

Table 5.  Linear B-cell Epitopes Prediction Results. Here, we show the selected 14 vaccine subunits, the 
contained B-cell epitopes and their Emini scores.

Vaccine Subunits Protein Start End Peptide Sequence B-cell Epitopes Emini Score

Subunit 1 Spike 19 48
TTRTQLPPAYTNSFTRGVYYPDKV-
FRSSVL

TTRTQLPPAYTNSF 1.937

Subunit 3 Spike 71 100
SGTNGTKRFDNPVLPFNDGVY-
FASTEKSNI

NGTKRFD 2.678

KSNI 1.395

Subunit 4 Spike 141 170
LGVYYHKNNKSWMESEFRVYSSAN-
NCTFEY

YYHKNNKS 3.544

Subunit 5 Spike 191 220
FVFKNIDGYFKIYSKHTPIN-
LVRDLPQGFS

HTPIN 1.207

Subunit 9 Spike 402 431
IRGDEVRQIAPGQTGKIADYNYKLP-
DDFTG

EVRQIAPGQTGKIADYNYK 1.775

Subunit 10 Spike 439 468
NNLDSKVGGNYNYLYRLFRKSNLKP-
FERDI

NNLDSKV 1.508

LFRKSN 2.403

Subunit 13 Spike 584 613
ILDITPCSFGGVSVITPGTNTSNQ-
VAVLYQ

GTNTSN 1.888

Subunit 15 Spike 655 684
HVNNSYECDIPIGAG-
ICASYQTQTNSPRRA 

HVNNSY 1.460

YQTQTNSPRRAR 3.849

Subunit 18 Spike 773 802
EQDKNTQEVFAQVKQIYKTPPIKD-
FGGFNF

QDKNTQ 4.752

KQIYKTPPI 2.243

Subunit 19 Spike 805 834
LPDPSKPSKRSFIEDLLFNKVTLAD-
AGFIK

LPDPSKPSKR 3.136

Subunit 23 Spike 1034 1063
LGQSKRVDFCGKGYHLMSFPQSAPH-
GVVFL

GQSKRVDFC 1.098

FPQSAPH 1.001

Subunit 24 Spike 1094 1123
VFVSNGTHWFVTQRNFYEPQI-
ITTDNTFVS

FYEPQIITTD 1.627

Subunit 25 Spike 1156 1185
FKNHTSPDVDLGDISGINASV-
VNIQKEIDR

DKYFKNHTSPDVDLGDIS 1.833

IQKEIDR 1.666

Subunit 26 Spike 1179 1208
IQKEIDRLNEVAKNLNESLIDLQEL-
GKYEQ

IQKEIDR 1.666

ELGKY 2.802
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are tested with the most common 12 human-leukocyte-antigen (HLA) Class I alleles including HLA-A1, HLA-
A2, HLA-A3, HLA-A24, HLA-A26, HLA-B7, HLA-B8, HLA-B27, HLA-B39, HLA-B44, HLA-B58 and HLA-B62 
to evaluate their binding a�nities and predict potential CTL  epitopes26,44. �e total HLA score is calculated for 
each vaccine subunits. �e results are shown in Table 6.

Helper T lymphocytes (HTL) epitopes prediction. Helper T Lymphocytes (HTL) help the activity of 
other immune cells and they recognize the infection by using MHC class II molecules to bind with certain HTL 
 epitopes45. We use NetMHCIIpan 4.0  server46 to predict potential HTL epitopes. All the overlapping 15aa pep-
tide sequences in the 14 vaccine subunits are tested with the most common 13 HLA Class II alleles including 
HLA-DRB1-0101, HLA-DRB1-0301, HLA-DRB1-0401, HLA-DRB1-0701, HLA-DRB1-0801, HLA-DRB1-0901, 
HLA-DRB1-1001, HLA-DRB1-1101, HLA-DRB1-1201, HLA-DRB1-1301, HLA-DRB1-1401, HLA-DRB1-1501, 

Table 6.  CTL epitopes prediction results.

Subunits Peptide sequence CTL epitopes HLA class I alleles and supertypes HLA score

Subunit 1 TTRTQLPPAYTNSFTRGVYYPDKVFRSSVL 9 A1, A2, A24, A26, B7, B8, B27, B39, B58, B62 4.652

Subunit 3
SGTNGTKRFDNPVLPFNDGVYFASTEK-
SNI

6 A1, A3, A24, B7, B27, B39, B62 2.492

Subunit 4
LGVYYHKNNKSWMESEFRVYSSAN-
NCTFEY

9 A1, A3, A24, A26, B39, B40, B58, B62 6.124

Subunit 5 FVFKNIDGYFKIYSKHTPINLVRDLPQGFS 9 A1, A2, A24, A26, B7, B8, B27, B39, B58, B62 7.131

Subunit 9
IRGDEVRQIAPGQTGKIADYNYKLPDD-
FTG

6 A2, A3, B7, B27, B62 3.092

Subunit 10
NNLDSKVGGNYNYLYRLFRKSNLKP-
FERDI

9 A1, A3, A24, B8, B27, B39, B62 4.326

Subunit 13 ILDITPCSFGGVSVITPGTNTSNQVAVLYQ 5 A1, A3, A24, B8, B27, B39, B62 5.837

Subunit 15 HVNNSYECDIPIGAGICASYQTQTNSPRRA 3 A1, B7, B40, B62 0.211

Subunit 18
EQDKNTQEVFAQVKQIYKTPPIKDFG-
GFNF

7 A1, A2, A3, A24, A26, B8, B39, B40, B62 4.282

Subunit 19 LPDPSKPSKRSFIEDLLFNKVTLADAGFIK 8
A1, A2, A3, A24, B7, B8, B27, B39, B40, 
B58, B62

5.763

Subunit 23
LGQSKRVDFCGKGYHLMSFPQSAPHGV-
VFL

8 A1, A2, A3, A24, A26, B7, B8, B39, B58, B62 6.167

Subunit 24
VFVSNGTHWFVTQRNFYEPQIITTDNT-
FVS

8 A2, A3, A24, A26, B27, B39, B58, B62 5.66

Subunit 25 FKNHTSPDVDLGDISGINASVVNIQKEIDR 4 A2, A26, B39 1.341

Subunit 26 IQKEIDRLNEVAKNLNESLIDLQELGKYEQ 5 A1, A2, B7, B8, B40, B62 3.26

Table 7.  HTL epitopes prediction results.

Subunits Peptide sequence HTL epitopes HLA class II (HLA-DRB1*:01) alleles HLA score

Subunit 1 TTRTQLPPAYTNSFTRGVYYPDKVFRSSVL 9 01, 03, 04, 07, 08, 09, 10, 11, 13, 15, 16 18.031

Subunit 3
SGTNGTKRFDNPVLPFNDGVYFASTEK-
SNI

10 01, 04, 07, 08, 09, 10, 12, 13, 14, 15 9.07

Subunit 4
LGVYYHKNNKSWMESEFRVYSSAN-
NCTFEY

9 04, 08, 10, 11, 13, 15, 16 7.38

Subunit 5 FVFKNIDGYFKIYSKHTPINLVRDLPQGFS 14 01, 03, 04, 07, 08, 09, 10, 11, 12, 13, 14, 15, 16 26.785

Subunit 9
IRGDEVRQIAPGQTGKIADYNYKLPDD-
FTG

7 01, 07, 09, 10, 14 4.932

Subunit 10
NNLDSKVGGNYNYLYRLFRKSNLKP-
FERDI

8 07, 08, 11, 13, 14, 16 12.14

Subunit 13 ILDITPCSFGGVSVITPGTNTSNQVAVLYQ 2 10 0.618

Subunit 15
HVNNSYECDIPIGAG-
ICASYQTQTNSPRRA 

4 01, 03, 04, 09, 10, 16 3.986

Subunit 18
EQDKNTQEVFAQVKQIYKTPPIKDFG-
GFNF

9 03, 04 ,07, 08, 09, 10, 11, 12, 13, 14, 15, 16 21.858

Subunit 19 LPDPSKPSKRSFIEDLLFNKVTLADAGFIK 8 03, 04, 08, 09, 10, 11, 14 5.479

Subunit 23
LGQSKRVDFCGKGYHLMSFPQSAPHGV-
VFL

4 01, 04, 08, 10, 11 2.996

Subunit 24
VFVSNGTHWFVTQRNFYEPQIITTDNT-
FVS

8 03, 04, 07, 08, 09, 10, 11, 12, 13, 14, 15, 16 11.56

Subunit 25 FKNHTSPDVDLGDISGINASVVNIQKEIDR 8 01, 04, 07, 08, 09, 10, 11, 12, 13, 14, 15 11.925

Subunit 26 IQKEIDRLNEVAKNLNESLIDLQELGKYEQ 6 08, 11, 12, 14 3.489
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HLA-DRB1-1601 to evaluate their binding a�nities and predict the potential HTL  epitopes45,47. �e total HLA 
score is calculated for each vaccine subunits. �e results appears in Table 7.

Worldwide human population coverage analysis. �e vaccine we design should have wide human 
population coverage. We use the IEDB population coverage analysis  tool48 to evaluate the worldwide human 
population coverage of the 14 vaccine subunits. �e 25 HLA alleles we used to predict the T-cell epitopes can 
cover 98.39% of the human population. �e human population coverage of each vaccine subunit is shown in 
Table 8. �e results suggest that our 14 vaccine subunits can cover a very wide range of human population.

Multi‑epitope vaccine construction. We discard Subunits 9, 15 and 26 for their poor performance in the 
CTL and HTL epitope predictions. We use the remaining 11 vaccine subunits to construct a �nal multi-epitope 
vaccine (see Fig. 4). To avoid potential autoimmunity, we perform a BLASTp screening against the Uniprot data-
base on those 11 vaccine subunits. A subunit with a higher-than-35% identity will be considered as homologous 
protein with human proteome. Among the 11 vaccine subunits we choose for the �nal vaccine construction, 
none of them show high degree of homology with the human proteome. �e �nal vaccine contains an adjuvant, 
50S ribosomal protein  L249,50 (accession no. AXI95322.1), to improve the immune  response51, linked with the 
amino (N) terminum of the multi-subunit sequence through an EAAAK  linker52. �e multi-subunit sequence 
has a CTL multi-epitope peptides region followed by an HTL multi-epitope peptides region. �e CTL region is 
constructed by 6 subunits which have better performance in the CTL epitopes prediction. AAY  linkers52 are used 
in this region to fuse the subunits. �e HTL region is constructed by 6 subunits which have better performance 
in the HTL epitopes prediction. GPGPG  linkers52 are used in this region to fuse the subunits. �e two regions are 
linked through a GPGPG linker. In addition, Subunit 5 is used twice in both CTL and HTL region for its good 
performance in both CTL and HTL epitope predictions. In the end, a 6xHis tag is added at the C-terminal to 

Table 8.  Worldwide human population coverage analysis results.

Vaccine subunits Protein Start End Peptide sequence Population coverage (worldwide) %

Subunit 1 Spike 19 48 TTRTQLPPAYTNSFTRGVYYPDKVFRSSVL 96.95

Subunit 3 Spike 71 100 SGTNGTKRFDNPVLPFNDGVYFASTEKSNI 83.02

Subunit 4 Spike 141 170 LGVYYHKNNKSWMESEFRVYSSANNCTFEY 81.74

Subunit 5 Spike 191 220 FVFKNIDGYFKIYSKHTPINLVRDLPQGFS 97.04

Subunit 9 Spike 402 431 IRGDEVRQIAPGQTGKIADYNYKLPDDFTG 77.19

Subunit 10 Spike 439 468 NNLDSKVGGNYNYLYRLFRKSNLKPFERDI 78.51

Subunit 13 Spike 584 613 ILDITPCSFGGVSVITPGTNTSNQVAVLYQ 61.44

Subunit 15 Spike 655 684 HVNNSYECDIPIGAGICASYQTQTNSPRRA 68.94

Subunit 18 Spike 773 802 EQDKNTQEVFAQVKQIYKTPPIKDFGGFNF 90.19

Subunit 19 Spike 805 834 LPDPSKPSKRSFIEDLLFNKVTLADAGFIK 76.12

Subunit 23 Spike 1034 1063 LGQSKRVDFCGKGYHLMSFPQSAPHGVVFL 68.38

Subunit 24 Spike 1094 1123 VFVSNGTHWFVTQRNFYEPQIITTDNTFVS 94.90

Subunit 25 Spike 1156 1185 FKNHTSPDVDLGDISGINASVVNIQKEIDR 87.47

Subunit 26 Spike 1179 1208 IQKEIDRLNEVAKNLNESLIDLQELGKYEQ 76.72

Figure 4.  Schematic Presentation of the �nal Multi-epitope Vaccine. �e vaccine is constructed by 11 subunits 
(Subunit 5 is used twice in both CTL and HTL region for its good performance), an adjuvant and a 6xHis tag, 
linked by EAAAK, AAY and GPGPG linkers. �e �nal vaccine consists of 694 amino acid residues. It contains 
16 B-cell epitopes, 82 CTL epitopes and 89 HTL epitopes.
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help purify and identify the  protein53. �e �nal vaccine consists of 694 amino acid residues. It contains 16 B-cell 
epitopes, 82 CTL epitopes and 89 HTL epitopes.

Antigenicity, allergenicity and solubility evaluation. �e antigenicity of the �nal multi-epitope vac-
cine sequence is evaluated by the Vaxijen 2.0 online  server34,54 and the AntigenPro  server55. We also evaluate 
the antigenicity of each vaccine subunit, including the adjuvant (see Table 9). �e Vaxijen score for the whole 
�nal vaccine is 0.5705 with a virus model at a threshold of 0.4, suggesting a high antigenicity of our �nal vac-
cine. �e AllergenFP 1.0 server and AllerTOP 2.0  server56 predict the �nal vaccine and its every subunit to be 
non-allergenic (see Table 9). �e solubility of the �nal vaccine and its every subunit is evaluated by  SolPro57 and 
Protein-sol  server58. �e predicted values suggest that our �nal vaccine and its every subunit have good solubility 
(see Table 9).

Toxicity and physicochemical properties analysis. �e vaccine must not have toxicity potential and 
the physicochemical properties are also important to evaluate how the vaccine interacts with the  environments59. 
We use the ToxinPred  server60 to predict the toxicity. Other physicochemical properties, including hydropathic-
ity, charge, half-life, instability index, pI (theoretical isoelectric point value) and molecule wheight, are predicted 
by ExPASy ProtParam  Tool61. For the whole �nal vaccine sequence and the adjuvant sequence, we use the pro-

Table 9.  Antigenicity, allergenicity and solubility Evaluation Results. NA: non-allergen. Higher Vaxijen and 
Antigen Pro scores suggest higher antigenicity. Higher SolPro and Protein-sol scores suggest higher solubility.

Vaccine subunits Vaxijen score Antigen pro score AllerTOP result Allergen FP result
Solubility by 
SolPro

Solubility by 
protein-sol

Adjuvant 0.7447 0.8205 NA NA 0.7568 0.716

Subunit 1 0.2486 0.4137 NA NA 0.5890 0.684

Subunit 3 0.4791 0.5923 NA NA 0.8113 0.660

Subunit 4 0.3891 0.7364 NA NA 0.6242 0.608

Subunit 5 0.4757 0.4768 NA NA 0.7819 0.686

Subunit 10 0.3615 0.6256 NA NA 0.6023 0.652

Subunit 13 0.8318 0.4032 NA NA 0.9114 0.730

Subunit 18 0.2449 0.3076 NA NA 0.9928 0.742

Subunit 19 0.3605 0.4991 NA NA 0.7831 0.636

Subunit 23 0.6713 0.7355 NA NA 0.6891 0.640

Subunit 24 0.4012 0.5211 NA NA 0.9747 0.545

Subunit 25 0.6035 0.7433 NA NA 0.6425 0.947

Final Vaccine 0.5705 0.8814 NA NA 0.7555 0.723

Table 10.  Toxicity and physicochemical properties prediction results. NT: none-toxicity. We use the protein 
screening mode in the ToxinPred server to check the overlapping peptides in the �nal vaccine and adjuvant 
sequence and they do not contain any toxic peptide. For the rest subunits, we directly use the SVM based 
prediction to predict their toxicity.

Toxicity Hydropathicity Charge
Half-life (in 
vitro)

Half-life (in 
vivo)

Instability 
index Stability pI

Mol. 
weight

Final vaccine No toxic part −  0.521 37.00 30 h  > 20 h 34.01 Yes 9.76 76,428.68

Adjuvant No toxic part −  0.679 28.00 30 h  > 20 h 38.94 Yes 10.30 30,396.93

Subunit 1 NT −  0.510 3.00 7.2 h  > 20 h 34.35 Yes 9.99 3465.91

Subunit 3 NT −  0.670 0.00 1.9 h  > 20 h 45.82 Yes 5.84 3277.00

Subunit 4 NT −  0.880 0.50 5.5 h 3 min 69.83 No 6.75 3668.46

Subunit 5 NT −  0.170 2.50 1.1 h 3 min 18.96 Yes 9.40 3545.56

Subunit 10 NT −  1.053 3.00 1.4 h 3 min 7.15 Yes 9.71 3635.55

Subunit 13 NT −  0.010 −  1.0 20 h 30 min 1.99 Yes 3.80 3095.51

Subunit 18 NT −  0.897 0.00 1 h 30 min 25.35 Yes 6.31 3518.40

Subunit 19 NT −  0.183 1.00 5.5 h 3 min 67.50 No 8.43 3348.34

Subunit 23 NT −  0.050 3.00 5.5 h 3 min 38.38 Yes 9.20 3307.31

Subunit 24 NT −  0.150 −  0.50 100 h  > 20 h 17.10 Yes 5.33 3548.92

Subunit 25 NT −  0.450 −  1.50 1.1 h 3 min 24.99 Yes 7.75 3283.07

6xHis Tag NT −  3.20 0.00 3.5 h 10 min 8.33 Yes 7.21 840.86
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tein screening mode in the ToxinPred server to check all its overlapping peptides with length no more than 50 
aa. �e whole vaccine and the adjuvant do not contain any toxic part peptide. Other subunits and the 6xHis tag 
are checked by the SVM prediction mode in the ToxinPred server and all the subunits and the 6xHis tag are non-
toxicity. �e hydropathicity value of the �nal vaccine is predicted to be − 0.521. �is negative value suggests that 
our �nal vaccine is hydrophilic in nature and can interact with water molecules  easily62. �e charge is 37.00; this 
value will decrease in alkaline environment so usually it is better if the charge values are positive. �e half-life of 
the �nal vaccine is predicted to be 30 h in vitro and > 20 h in vivo. An Instability Index of 34.01 is predicted; this 

Figure 5.  Graphical Representation of the Secondary Structure Features. �e alpha helix residues are in 
pink, the beta strand residues are in yellow and the coil residues are in grey. �e predicted secondary stucture 
indicates that the �nal vaccine constitutes 10.8% alpha helix, 24.6% beta strand, and 64.6% coil, respectively.

Figure 6.  Solvent Accessibility and Disorder Regions Prediction Results. In the solvent accessibility prediction 
results, the red color represents the exposed residues, the yellow color represents the medium exposed residues 
and the blue color represents the buried residues. �e peptides marked in red boxes are B-cell epitopes. �e 
prediction results show that the B-cell epitopes in the �nal vaccine have good surface accessibility and also they 
are not close to each other. In the disorder regions prediction results, the ordered regions are in blue while the 
disordered regions are in red. A total of 60 residues (8%) are in disordered regions, showing good order in 
structure.
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being less than 40 threshold value suggests that our �nal vaccine is stable. �e pI of the �nal vaccine is calculated 
to be 9.75, which is an alkaline value, indicating its highly basic existence in nature. �e molecular weight of 
the �nal vaccine is calculated to be 76 kDa. We also check the toxocity and physicochemical properties of every 
subunit and the results are shown in Table 10.

Secondary structure prediction. We use  PSIPRED63 to generate the secondary structure of our �nal vac-
cine. Graphical representation of the secondary structure features are shown in Fig. 5. �e predicted secondary 
stucture indicates that the �nal vaccine constitutes 10.8% alpha helix, 24.6% beta strand, and 64.6% coil. �e 
solvent accessibility (ACC), and disorder regions (DISO) are predicted by RaptorX Property  server64,65 (see 
Fig. 6). Among the 694 amino acid residues in our �nal vaccine, 44% are predicted to be exposed, 27% medium 
exposed, and 27% are predicted to be buried. �e peptides marked in red boxes in Fig. 6 are the B-cell epitopes, 
showing good surface accessibility and they are not close to each other. A total of 60 residues (8%) are predicted 
to be located in disordered regions.

Vaccine 3D structure modeling. We use the RaptorX  server66 to build the 3D structure models of our 
�nal vaccine. �e protein structure with PDB ID 3j3vC is predicted by RaptorX to be the best template, based 
on which this server constructs the 3D structure model of our �nal vaccine (see Fig. 7). In this model, 100% 
(694) amino acids in the �nal vaccine are modeled in four domains. �e P-value quanti�es the likelihood of the 
predicted model being worse than other models generated randomly. �e P-value for this model is calculated 
to be 4.13 × 10−14, which is a very low value, suggesting high quality of this 3D model. �e unnormalized Global 
Distance Test (uGDT) score measures the absolute model quality. �e overall uGDT score is predicted to be 506 
and being greater than the 50 threshold value for a protein with more than 100 amino acid residues indicates that 
the 3D model of our �nal vaccine is good for further re�nement.

Vaccine 3D structure refinement. We use GalaxyRe�ne  server67 to re�ne the 3D structure model of our 
�nal vaccine. Among the 5 re�ned models predicted by GalaxyRe�ne, we choose the Model 2 shown in Fig. 8 as 

Figure 8.  Re�ned Vaccine 3D Structure Model by GalaxyRe�ne. �is model has a Global Distance Test—High 
Accuracy (GDT-HA) score of 0.900, a Root Mean Square Deviation (RMSD) score of 0.580, a MolProbity score 
of 2.618, a clash score of 33.5 and a Ramachandran plot score of 87.5%, showing great overall model quality. �e 
B-cell epitopes in this �nal vaccine 3D model are highlighted in yellow.

Figure 7.  Vaccine 3D Structure Modeling by RaptorX based on the template with PDB ID 3j3vC. All the 694 
amino acids in the �nal vaccine are modeled. �e P-value of this model is 4.13 × 10 − 14 and this very low value 
indicates high quality of this 3D model. �e unnormalized Global Distance Test (uGDT) score of this model is 
506 (> 50), indicating good absolute model quality.
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our �nal vaccine model based on its model quality scores (see Table 11). �e predicted B-cell epitopes are high-
lighted in yellow, showing good surface accessibility. Global Distance Test—High Accuracy (GDT-HA) score 
measures the similarity between two protein structures. �e GDT-HA score between this re�ned model and the 
initial model reaches a high value of 0.900, indicating that they have high similarity. �e distance between atoms 
is measured by the Root Mean Square Deviation (RMSD) score. Lower RMSD value suggests better stability 
and usually an RMSD score ranges between 0 and 1.2 is acceptable. �is model has an RMSD score of 0.580. 
Such RMSD score indicates stable protein structure. Molprobity score re�ects the crystallographic resolution of 
the model. �e MolProbity score of our identi�ed vaccine model is 2.618, which is much lower than the initial 
model, showing that the re�nement has lowered the critical errors of the 3D model. �e Clash Score re�ects the 
number of unfavorable all-atom steric overlaps and the re�nement reduced the clash score of the model from 
137.8 to 33.5, improving the model stability to a high level. �e Ramachandran plot score represents the size of 
energetically favoured regions and usually a value greater than 85% is acceptable. �e Ramachandran plot score 
has been improved from 78.3 to 87.5% by the re�nement. �e quality scores of the re�ned model shows good 
overall quality.

Vaccine 3D structure validation. We use ProSA-web68 to validate the overall model quality of the re�ned 
�nal vaccine model. ProSA predicts a Z-score of -6.51 (see Fig. 9) for the re�ned model, which is lying inside the 
score range of the comparable sized native proteins, indicating good overall model quality. ProSA also checks 
the local model quality and the residue scores are plotted in Fig. 9. Negative values suggest no erroneous parts 
of the model structure. We also use RAMPAGE server to do the Ramachandran plot analysis and it reveals a 
Ramachandran plot score of 87.5%, which is consistent with the results of GalaxyRe�ne.

Conformational B‑cell epitope prediction. �e structure and folding of the new protein can result in 
new conformational B-cell epitopes which requires additional predictions. We use ElliPro  server69 to predict 
the conformational B-cell epitopes in the re�ned 3D model. �e ElliPro server predicts 6 new conformational 
B-cell epitopes which involved 387 residues with scores ranging from 0.531 to 0.963. �e detailed 3D model and 
information of those 6 epitopes are shown in Fig. 10.

Codon optimization and in silico cloning. We analyze the cloning and expression e�ciency and opti-
mize the codon usage of vaccine construct in E. coli (Escherichia coli) strain K12) by Java Codon Adaptation 
 Tool70. �e length of the optimized codon sequence is 2082 nucleotides. Its Codon Adaptation Index (CAI) is 
0.997, and the average GC content is 50.73%, indicating a great potential of good expression of the �nal vac-
cine in the E. coli host. A�er the optimization, we use the SnapGene tool to insert the codon sequences into 
pET28a( +) vector for  cloning71 (see Fig. 11). �e codon sequence of the �nal vaccine is presented in red, which is 
the 2082 bp gene sequence generated by the JCat server. �e pET28a( +) expression vector is in black. �e codon 
sequence is inserted between Eco53KI (188) and EcoRV (1573), forming a clone with a total length of 6066 bp.

Molecular docking. Molecular docking can evaluate the interactions between a ligand molecule and the 
receptor molecule to check the stability and binding a�nity of their docked complex. Toll-like receptor 4 is an 
important human protein for pathogen recognition and immune response. Consequently, we choose TLR4 as 
the immune receptor to perform the molecular docking. We use the ClusPro 2.0  server72 to perform the molecu-
lar docking between the re�ned 3D model of our �nal vaccine and the TLR4 (PDB ID: 4G8A) immune receptor. 
Among all the generated docking model, we select the one with the lowest energy score of -1311.5 as the best 
docked complex, suggesting that the vaccine model occupies the receptor properly and indicating good binding 
a�nity (see Fig. 12).

Molecular dynamics simulation of the vaccine‑receptor complex. To evaluate the stability and 
physical movements of the vaccine-TLR4 docked  complex17,73, we perform molecular dynamics simulation by 
the iMOD  server74. �e main-chain deformability is shown in Fig. 13a. �e locations with hinges are regions 
with high deformability. �e B-factor values calculated by normal mode analysis are proportional to root mean 
square (see Fig. 13b). B-factor values quantify the uncertainty of each atom. Figure 13c presents the eigenvalues 
which are closely related to the energy required to deform the structure and the eigenvalue of the complex is 
5.426 × 10−6. �e covariance matrix between the pairs of residues is shown in Fig. 13d, indicating their correla-
tions (red: correlated, white: uncorrelated, blue: anti-correlated). �e elastic network model is shown in Fig. 13e, 

Table 11.  Quality scores of the models predicted by GalaxyRe�ne.

Model GDT-HA RMSD MolProbity Clash score Rama favored

Initial model 1.0000 0.000 4.229 137.8 78.3

Model 1 0.8941 0.588 2.703 33.4 87.5

Model 2 0.9000 0.580 2.618 33.5 87.5

Model 3 0.8922 0.590 2.657 33.9 87.2

Model 4 0.8966 0.583 2.698 33.7 87.3

Model 5 0.8977 0.582 2.632 34.0 87.5
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suggesting the connection between atoms and springs. �e molecular dynamic simulation results suggest that 
our vaccine model is stable.

RNA mutations. As the SARS-CoV-2 spreads all over the world, its RNA sequence is going through muta-
tions, translating out di�erent virus proteins. Such mutations can have in�uences on the epitope based vaccines, 
since a single amino acid di�erence can change the epitope prediction results. �erefore it is important to prove 
that the proposed �nal multi-epitope vaccine can tackle the mutations. With our DeepVacPred, we are also able 
to quickly examine the mutated protein sequences to search for new potential vaccine subunits.

�e RNA sequence we use to translate the spike protein and design the vaccines is from Wuhan, which is the 
place of the original  virus35. �e RNA mutations lead to three most frequent changes in the spike protein area of 
the SARS-CoV-2 and each of the changes contains one amino acid  change75. Table 12 shows the mutation details.

Figure 9.  Vaccine 3D Structure Validation by ProSA-web. �e Z-score of the re�ned model is -6.51 which is 
lying inside the score range. ProSA-web also plots the residues scores to check the local model quality and the 
negative values suggest no erroneous parts of the model structure.

Figure 10.  �e 3D model of the 6 predicted conformational B-cell epitopes in the re�ned �nal vaccine 
structure. �e yellow parts are the conformational B-cell epitopes and the grey parts are the rest of the residues. 
(a) 3 residues with a score of 0.963. (b) 30 residues with a score of 0.757. (c) 167 residues with a score of 0.711. 
(d) 161 residues with a score of 0.688. (e) 23 residues with a score of 0.59. (f) 3 residues with a score of 0.531.
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�e mutation at the 614aa in spike protein from D to G is the most frequent mutation with 116 known 
 isolates75. �is mutation is very common in many cities in North America. In Europe and South America the 
D614G mutation occurs in less than 10 isolates. �is change has no in�uence on the �nal multi-epitope vaccine 
since it does not contain the 614aa of the spike protein. With DeepVacPred, we are also able to quickly check and 
identify whether the mutation can create new potential vaccine subunits. We input the mutated protein sequence 
into DeepVacPred and the predicted subunits are the same as the original virus.

At 476aa in spike protein there is a frequent mutation from G to S, which occurs in 3 isolates from Washington 
 DC75. �is mutation has no in�uence on the �nal multi-epitope vaccine since it does not contain the 476aa of 
the spike protein. We input the mutated protein sequence into DeepVacPred and the predicted subunits are the 
same as the original virus.

At 483aa in spike protein there is a frequent mutation from V to A, which occurs in 6 isolates from Washing-
ton  DC75. �is mutation has no in�uence on the �nal multi-epitope vaccine since it does not contain the 483aa 
of the spike protein. We input the mutated protein sequence into DeepVacPred and the predicted subunits are 
the same as the original virus.

Figure 11.  Final Vaccine in silico cloning into the pET28a( +) vector. �e codon sequence of the �nal vaccine 
is in red, which is a 2082 bp gene sequence generated by the JCat server. �e pET28a( +) expression vector is in 
black. �e codon sequence is inserted between Eco53KI (188) and EcoRV (1573), forming a clone with a toal 
length of 6066 bp. �is image was created by SnapGene 5.1.5 so�ware (from Insightful Science; available at https 
://www.snapg ene.com).

Figure 12.  �e docked complex of the vaccine model and the TLR4 immune receptor. �e vaccine protein is 
in yellow and the rest of the residues is the TLR4 receptor. �e lowest energy score of this complex model is 
-1311.5, indiating good binding a�nity.

https://www.snapgene.com
https://www.snapgene.com
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In conclusion, our designed multi-epitope vaccine can tackle the current RNA mutations of the coronavirus. 
�e current RNA mutations of the coronavirus create no new potential vaccine subunits.

Discussion
In silico vaccine design has high value of e�cacy and it strongly emphasizes the multi-epitope in the vaccine 
peptides. In this study, we develop DeepVacPred, an e�cient vaccine subunit sieving framework, that exploits an 
AI-based approach to rapidly select 26 potential vaccine subunit candidates, introducing a new way for achieving 
a much higher speed and e�ciency in in silico vaccine design. �e goal is to directly predict the potential vaccine 
subunit sequence without the need to do a large number of di�erent predictions, as well as to evaluate and select 
the predicted results manually. With this AI-based framework, we are able to skip at least 95% of unnecessary 
predictions and let the computer analyze and select the best vaccine subunits for us. DeepVacPred predicts the 
26 vaccine subunits within less than a second, which enables us to skip the most time consuming part of the in 
silico vaccine design. With DeepVacPred, a researcher can construct a multi-epitope vaccine for a new virus and 
validate its quality within an hour.

�is approach can be further developed by enhancing the complexity and coverage of the dataset. In this 
study, we selected a part of known epitopes and protective antigens to form the dataset and use it for training 
the DNN architecture. We use the simple bridging of one B-cell epitopes and one T-cell epitopes. With a more 
comprehensive dataset and more possibilities of epitope combinations, we will be able to develop a better, more 
comprehensive and quicker vaccine design tool. In spite of limited available datasets, the current framework can 
still deal with most of the situations now and provide an e�cacious vaccine design.

�e application of AI, and DNN methodology in particular, to protein sequences classi�cation shows great 
potential. Most of the online tools rely on the SVM learning approaches. In the highly popular protective antigens 
prediction tool  Vaxijen34, the AUC of the ROC curve can only reach 0.743, which cannot perform very accurate 
predictions. �e dataset to train Vaxijen only contains 200 proteins, so it becomes more time consuming and 
challenging to rely on the SVM model with increasing number of discovered protective antigens. Consequently, 

Figure 13.  �e molecular dynamics simulation of the vaccine-TLR4 docked complex. (a) Main-chain 
deformability simulation, the hinges are regions with high deformability. (b) B-factor values calculated by 
normal mode analysis, quantifying the uncertainty of each atom. (c) �e eigenvalue of the docked complex, 
showing the energy required to deform the structure. (d) �e covariance matrix between pairs of residues (red: 
correlated, white: uncorrelated, blue: anti-correlated). (e) �e elastic network model, suggesting the connection 
between atoms and springs. �e springs are more rigid if their greys are darker.

Table 12.  Spike protein mutations. Occurrence is the number of isolates that showed the mutation. Region is 
the origin of the isolates.

Mutations Occurrence Regions

G476S 3 Washington

V483A 6 Washington

D614G 116 Washington, Los Angeles, New York, South America, Europe
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the proposed DeepVacPred proves that DNN can perform a very accurate prediction with over 700,000 di�erent 
proteins in the dataset.

�is study eventually results in a novel multi-epitope vaccine with a length of 649aa against the SARS-CoV-2. 
It contains an adjuvant, 11 subunits with 16 B-cell epitopes, 82 CTL epitopes and 89 HTL epitopes. It shows good 
antigenicity, population coverage and good physichochemical properties and structures, providing great potential 
for the next step COVID-19 vaccine design with actual experiments and clinical studies.

Furthermore, we trace the RNA mutations of the SARS-CoV-2 virus. Basically, the RNA mutations can result 
in one amino acid change in the spike protein or other related proteins. �e proposed vaccine design framework 
can also tackle the three most frequently observed mutations as well as it can be extended to deal with other 
potentially unknown mutations. �e investigation on the RNA mutations also proves the high e�ciency of our 
DeepVacPred. As future work, we will investigate novel AI algorithms and architectures capable of constructing 
multi-epitope vaccine designs that can overcome the unknown unknowns of viruses evolution.

Methods
DNN design and training in DeepVacPred framework. Each data input to the DNN architecture is a 
sequence with a length of 45 vectors which is converted from its protein sequence by Z-descriptors31 and ACC 
 transformation32. Convolutional Neural Network (CNN) exhibits good performance to identify and process 
such vectors while multi-layer linear neural network is broadly connected to the ouput layer of the CNN, form-
ing a complex DNN to enhance the classi�cation ability. Hence, our DNN is constructed by the following layers 
and the parameters of each layer is decided using a random search to obtain high accuracy while maintaining 
good computing speed:

i. CNN, in channels = 1, out channels = 16, kernel size = 3, stride = 2, padding = 1, Tanh function;
ii. CNN, in channels = 16, out channels = 16, kernel size = 3, stride = 2, padding = 1, Tanh function;
iii. CNN, in channels = 16, out channels = 1, kernel size = 3, stride = 2, padding = 1, Tanh function, average 

pooling;
iv. Linear, in features = 32, out features = 64 , Tanh function;
v. Linear, in features = 64, out features = 32, Tanh function;
vi. Linear, in features = 32, out features = 16, Tanh function;
vii. Linear, in features = 16, out features = 2, Sigmoid function.
�e hyper-parameters of the DNN training are listed below. �e selected hyper-parameter values are marked 

in bold. We choose the hyper-parameters with good accuracy while maintaining good computing speed by using 
a random search.

i. Learning rate: [0.0001, 0.0005, 0.001, 0.0015, 0.002];
ii. Optimizer: [SGD, RMSProp, Adam];
iii. Epochs: [2000, 4000, 6000, 8000, 10000];
iv. Batch size: [1024, 2048, 4096, 8192].

Linear B‑cell epitopes prediction. We use four popular server to predict the linear B-cell epitopes on 
each vaccine subunit candidates. (1) BepiPred-2.0 web server (http://www.cbs.dtu.dk/servi ces/BepiP red/). 
BepiPred is a reliable machine learning based tool trained by random forest algorithm and its training dataset 
covers a large number of known linear B-cell epitopes from the IEDB  database25. (2) ABCpred (http://www.
imtec h.res.in/ragha va/abcpr ed/). ABCPred applies recurrent neural network to the classi�cation of epitopes and 
non-epitopes to improve the  accuracy39. (3) SVMTrip (http://sysbi o.unl.edu/SVMTr iP/). SVMTrip uses support 
vector machine to predict antigenic epitopes and its AUC reaches a value of 0.70238. (4) BCPreds (http://ailab .ist.
psu.edu/bcpre d/). BCPreds is also based on SVM model with an AUC value of 0.758 and its prediction relies on 
kernel  methods40. �e B-cell surface accessibility is checked by IEDB Emini  tool42.

Cytotoxic T lymphocytes (CTL) epitopes prediction. We use NetMHCpan 4.1 server (http://www.cbs.
dtu.dk/servi ces/NetMH Cpan/) to predict the CTL epitopes on each vaccine subunit candidates. We predict the 
CTL epitopes with a length of 9aa. All the parameters are set at default. NetMHCpan predicts peptide binding 
to any MHC Class I molecule of known sequence using arti�cial neural networks (ANNs) which is trained on 
a combination of more than 850,000 quantitative Binding A�nity (BA) and Mass-Spectrometry Eluted Ligands 
(EL) peptides, providing reliable prediction  results43.

Helper T lymphocytes (HTL) epitopes prediction. We use NetMHCIIpan 4.0 server (http://www.cbs.
dtu.dk/servi ces/NetMH CIIpa n/) to predict the HTL epitopes on each vaccine subunit candidates. We predict the 
HTL epitopes with a length of 15aa. All the parameters are set at default. NetMHCIIpan predicts peptide bind-
ing to any MHC II molecule of known sequence using arti�cial neural networks (ANNs) which is trained on an 
extensive dataset of over 500,000 measurements of Binding A�nity (BA) and Eluted Ligand mass spectrometry 
(EL), covering the three human HLA-DR, HLA-DQ and HLA-DP alleles, providing reliable prediction  results46.

Multi‑epitope vaccine construction. In this section, the BLASTp screening is done by the Uniprot server 
(https ://www.unipr ot.org/blast ). BLASTp can identify similar regions between two sequences.

Worldwide human population coverage analysis. �e worldwide human population coverage of each 
subunit is evaluated by IEDB population coverage analysis tool (http://tools .iedb.org/popul ation /). �e evlua-
tion is done on the worldwide human population.

http://www.cbs.dtu.dk/services/BepiPred/
http://www.imtech.res.in/raghava/abcpred/
http://www.imtech.res.in/raghava/abcpred/
http://sysbio.unl.edu/SVMTriP/
http://ailab.ist.psu.edu/bcpred/
http://ailab.ist.psu.edu/bcpred/
http://www.cbs.dtu.dk/services/NetMHCpan/
http://www.cbs.dtu.dk/services/NetMHCpan/
http://www.cbs.dtu.dk/services/NetMHCIIpan/
http://www.cbs.dtu.dk/services/NetMHCIIpan/
https://www.uniprot.org/blast
http://tools.iedb.org/population/
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Antigenicity, allergenicity and solubility evaluation. �e antigenicity of the �nal vaccine and its 
every subunit is predicted by VaxiJen 2.0 server (http://www.ddg-pharm fac.net/ vaxijen/VaxiJen/VaxiJen.html) 
and AntigenPro server (http://scrat ch.prote omics .ics.uci.edu). Vaxijen is based on auto cross covariance (ACC) 
transformation of protein sequences into uniform vectors of principal amino acid  properties34. Antigenpro is a 
sequence-based, alignment-free and pathogen-independant predictor of protein  antigenicity55. �e allergenicity 
of the �nal vaccine and its every subunit is checked by AllergenFP 1.0 server (http://ddg-pharm fac.net/Aller 
genFP /) and AllerTOP 2.0 server (https ://www.ddg-pharm fac.net/Aller TOP/). AllergenFP and is a binary class-
�er between allergens and non-allergens. �e dataset is described by �ve E-descriptors and the strings are trans-
formed into uniform vectors by auto-cross covariance (ACC)  transformation76. AllerTop is also based on ACC 
transformation and E-descriptors56. �e solubility is evaluated by SolPro server (http://scrat ch.prote omics .ics.
uci.edu) and Protein-sol server (https ://prote in-sol.manch ester .ac.uk). SolPro is an SVM based tool to predict 
the solubility of a protein sequence with an overall accuracy of over 74% estimated by tenfold cross-validation57. 
Protein-sol is based on available data for Escherichia coli protein solubility in a cell-free expression  system58.

Toxicity and physicochemical properties analysis. �e toxicity of the �nal vaccine and its every subu-
nit is predicted by ToxinPred server (http://crdd.osdd.net/ragha va/toxin pred/). TonxinPred is based on SVM 
model to classify toxicity and non-toxicity. �e dataset used in its method consists of 1805 toxic peptides (≤ 35 
residues)60. �e physicochemical properties of the �nal vaccine and its every subunit is predicted by ExPASy 
ProtParam server (https ://web.expas y.org/protp aram/). �e physicochemical properties include hydropathicity, 
charge, half-life, instability index, pI (�eoretical isoelectric point value) and molecule  wheight61.

Secondary structure prediction. PSIPRED is used for the secondary structure prediction of our �nal 
vaccine (http://bioin f.cs.ucl.ac.uk/psipr ed/). PSIPRED incorporates two feed-forward neural networks which 
perform an analysis on output obtained from PSI-BLAST (Position Speci�c Iterated—BLAST). It achieves an 
average Q3 score of 81.6%, which can achieve accurate secondary structure  prediction63. We also use RaptorX 
Property web server (http://rapto rx.uchic ago.edu/Struc tureP roper tyPre d/predi ct/) to predict the solvent acces-
sibility (ACC) and disorder regions (DISO). RaptorX employs an emerging machine learning model called 
DeepCNF (Deep Convolutional Neural Fields) to predict secondary structure (SS), solvent accessibility (ACC), 
and disorder regions (DISO)  simultaneously65.

Vaccine 3D structure modeling. �e 3D model of the �nal vaccine is constructed by RaptorX server 
(http://rapto rx.uchic ago.edu/Conta ctMap ). RaptorX provides distance-based protein folding powered by deep 
learning. �is server was o�cially ranked 1st in contact prediction in both CASP12 and CASP13 and initiated 
the revolution of protein structure prediction by deep  learning66.

Vaccine 3D structure refinement. �e 3D model built by RaptorX server is re�ned by GalaxyRe�ne 
(http://galax y.seokl ab.org/cgi-bin/submi t.cgi?type=REFIN E). GalaxyRe�ne �rst rebuilds side chains and per-
forms side-chain repacking and subsequent overall structure relaxation by molecular dynamics simulation. 
According to the CASP10 assessment, the GalaxyRe�ne server method performed the best in improving local 
structure  quality67 �e quality of the re�ned model is evaluated in terms of its GDT-HA socre, RMSD score, 
Molprobity score, clash score and Ramachandran plot score.

Vaccine 3D structure validation. �e �nal re�ned 3D model of our �nal vaccine is validated by ProSA-
web server(https ://prosa .servi ces.came.sbg.ac.at/prosa .php). ProSA calculates an overall quality score for a spe-
ci�c input structure. If this score is outside a range characteristic for native proteins the structure probably 
contains errors. A plot of local quality scores points to problematic parts of the model which are also highlighted 
in a 3D molecule viewer to facilitate their  detection68.

Conformational B‑cell epitope prediction. �e conformational B-cell epitopes in the re�ned �nal vac-
cine 3D structure model are predicted by the ElliPro Server (http: //tools.iedb.org/ellipro). ElliPro is based on 
the geometrical properties of protein structure. Among the current conformational B-cell epitope prediction 
tools, ElliPro has the best AUC score of 0.732, which is a very reliable tool for identifying antibody epitopes in 
protein  antigens69.

Codon optimization and in silico cloning. Java Codon Adaptation Tool (JCat) server is used for codon 
optimization (https ://urlde fense .com/v3/__http://www.jcat.de/LIr3w 8kk_Xxm!7wRJ0 8pRiY apODc _l0a3L 
u91Jw L-k63K5 zWwth wiCfq _ctg6S moWSk B2JxU zyRA). JCat adapts the codon usage to most sequenced prokar-
yotic organisms and selected eukaryotic  organisms70. �e optimized codon sequence is insert into pET28a( +) 
vector with SnapGene 5.1.5 so�ware (from Insightful Science; available at https ://www.snapg ene.com).

Molecular docking. �e molecular docking is done by ClusPro 2.0 server (https ://clusp ro.bu.edu). ClusPro 
is a widely used tool for protein–protein docking. Docking with each energy parameter set results in ten models 
de�ned by centers of highly populated clusters of low-energy docked  structures72. We choose TLR4 (PDB ID: 
4G8A) as the immune receptor. We select the docked complex with the lowest energy score.

Molecular dynamics simulation of the vaccine‑receptor complex. �e molecular dynamics simu-
lation is done by iMOD server (iMODS) (http://imods .chaco nlab.org). iMODS facilitates the exploration of 

http://www.ddg-pharmfac.net/
http://scratch.proteomics.ics.uci.edu
http://ddg-pharmfac.net/AllergenFP/
http://ddg-pharmfac.net/AllergenFP/
https://www.ddg-pharmfac.net/AllerTOP/
http://scratch.proteomics.ics.uci.edu
http://scratch.proteomics.ics.uci.edu
https://protein-sol.manchester.ac.uk
http://crdd.osdd.net/raghava/toxinpred/
https://web.expasy.org/protparam/
http://bioinf.cs.ucl.ac.uk/psipred/
http://raptorx.uchicago.edu/StructurePropertyPred/predict/
http://raptorx.uchicago.edu/ContactMap
http://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE
https://prosa.services.came.sbg.ac.at/prosa.php
https://urldefense.com/v3/
http://www.jcat.de/LIr3w8kk_Xxm!7wRJ08pRiYapODc_l0a3Lu91JwL-k63K5zWwthwiCfq_ctg6SmoWSkB2JxUzyRA
http://www.jcat.de/LIr3w8kk_Xxm!7wRJ08pRiYapODc_l0a3Lu91JwL-k63K5zWwthwiCfq_ctg6SmoWSkB2JxUzyRA
https://www.snapgene.com
https://cluspro.bu.edu
http://imods.chaconlab.org
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such modes and generates feasible transition pathways between two homologous  structures74. �e iMOD server 
evaluates the protein stability by computing its internal coordinates through normal mode analysis (NMA). �e 
stability of the protein is represented in terms of its main-chain deformability plot, B-factor values, eigenvalue, 
covariance matrix and elastic network model.

Data availability
We obtained the genome sequence and the spike protein sequence of SARS-CoV-2 from NCBI database (https 
://www.ncbi.nlm. nih.gov) with accession number MN908947 and protein ID QHD43416.1. �e protein data 
we collected and processed to train the DeepVacPred is available on github.com (https ://githu b.com/zikun yang/
DCVST ).

Code availability
�e code used for data generation and/or analysis in the study are available on github.com (https ://githu b.com/
zikun yang/DCVST ).
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