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A B S T R A C T  

Medical-grade polyvinyl chloride was surface modified by a multistep physicochemical approach to improve bacterial adhesion prevention properties. This was 

fulfilled via surface activation by diffuse coplanar surface barrier discharge plasma followed by radical graft copolymerization of acrylic acid through surface-

initiated pathway to render a structured high density brush. Three known antibacterial agents, bronopol, benzalkonium chloride, and chlorhexidine, were then 

individually coated onto functionalized surface to induce biological properties. Various modern surface probe techniques were employed to explore the effects of the 

modification steps. In vitro bacterial adhesion and biofilm formation assay was performed. Escherichia coli strain was found to be more susceptible to modifications 

rather than Staphylococcus aureus as up to 85% reduction in adherence degree of the former was observed upon treating with above antibacterial agents, while only 

chlorhexidine could retard the adhesion of the latter by 50%. Also, plasma treated and graft copolymerized samples were remarkably effective to diminish the 

adherence of E. coli. 

1. Introduction 

Various strains of bacteria are capable of adherence and pro-

liferation on biomedical polymers leading to serious nosocomial 

contaminations [1,2]. In this situation, the implant has to be taken 

away because of the poor success of the treatment; hence, much 

emphasis has been laid on practical ways to thwart device-related 

infections via delivering anti-infective polymeric implants [3]. 

However, this can be accomplished through compounding with 

antibacterial agents, but such a conventional technology demands 

large quantities of antibacterial agents and since they are not 

immobilized on the surface, subsequent to implantation, a gradual 

release of the biocides occurs inside the human body posing health 

concerns [4]. 

Surface modification is a straightforward strategy to render anti-

adherence quality which deters the susceptibility to bacterial 

adhesion [5]. This can be achieved by deposition of thin antibac-

terial layers tethered to the surface of polymeric support already 

chemically grafted with a spacer of a brush-like pattern. This 

multistep approach has aroused great interest thanks to several 

advantages such as convenient and controllable introduction of 

biocidal species with a high surface density together with precise 

localization and long stability of the grafted layers [6,7]. In the first 

phase, a preliminary functionalization has to be achieved regarding 

an inherent lack of active entities on the pristine substrate, where 

low temperature-atmospheric pressure plasma treatment has been 

proved to be effective therein [8,9]. However, the necessity to 

shorten the treatment duration to a few seconds calling for rather 

high plasma power density remains a critical impediment to large-

scale applications of this type of plasma [10]. To resolve the 

shortcomings, an innovative discharge technology has been 

developed [11], capable of generating a homogeneous plasma layer 

under ambient pressure with a high power density in the immedi-

ate vicinity of the treated surface, namely, diffuse coplanar surface 

barrier discharge (DCSBD). It is based on surface dielectric barrier 

discharge with a high density of fine discharge streamers generated 

on a dielectric surface in parallel with the sample surface [12,13]. 

In the second step of the procedure, an end-functionalized polymer 

brush monolayer is formed onto the surface preferably via grafting-

from pathway assisting the formation of a thick layer of high 

grafting density on the surface using generation of appropriate 

initiators attached to the substrate in which monomers are able to 

easily penetrate through the already-grafted layer and contribute 

to the chain growth [14-16]. As the final step, antibacterial 



Fig. 1. Structural formulas of three employed antibacterial agents. 

species are immobilized onto this platform to convey the desired 

biological activities. To ensure immobilization, a fixative may be 

added, depending on the existing chemical functionalities of the 

antibacterial molecules to induce crosslinking [17]. 

Benzalkonium chloride is one of the safest synthetic biocides 

known as yet which is classified as a quaternary ammonium com-

pound (Fig. 1) currently used in human pharmaceuticals [18,19]. 

Another efficient biocide, that exhibits immediate, long term 

antibacterial effectiveness as well as marginal toxicity in clinical 

use, is bronopol (2-bromo-2-nitropropane-l,3-diol) (Fig. 1) used in 

consumer products as an effective preservative agent, as well as in 

a wide variety of industrial applications [20,21]. Chlorhexidine, 

(l,l'-hexamethylene bis[5-(4-chlorophenyl)biguanide]) (Fig. 1), is a 

clinically important biocide, disinfectant, and preservative which 

exists in oral rinses and skin cleansers, and, in small quantities, it 

is used as a preservative [22,23]. A limited number of published 

papers have been devoted hitherto to study the above antibacterial 

agents as biological coatings on polymeric supports [21,24-29]. 

Zhang et al. [21,24] immobilized bronopol entities on medical- 

grade polyethylene (PE) [21] and PVC [24] by means of plasma 

treatment and reported excellent antibacterial properties against 

Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) strains. 

They also investigated bacterial adhesion on the modified samples 

and observed a low number of active adhered bacteria. The same 

authors [25] reported that the modified PE samples coated with 

bronopol exhibited excellent bactericidal effects against E. coli and 

S. aureus when the bacteria concentration in the suspension was 

10
6
CFUmL-1. However, when the concentration exceeded 10

8
 

CFUmL-1, the samples failed to develop noticeable resistance 

towards a large number of bacteria on account of the bacterial 

biofilm formation on the surfaces. Harnet et al. [26] investigated 

the antibacterial effects obtained with chlorhexidine-functionalized 

polyelectrolyte films built on different types of suture materials 

and reported an inhibition of E. coli proliferation by 40% and 99% 

after 24 and 48 h incubation periods, respectively. Adams et al. 

[27] gave an account of the enhanced antisepsis efficacy of 2% 

(w/v) chlorhexidine in 70% (v/v) isopropyl alcohol compared to the 

equal concentration of the same material in pure water used as a 

common skin disinfectant solution. Yao et al. [28] reported a 

highly efficient antibacterial layer on PU fibrous membranes 

obtained from quaternary ammonium entities. In another study, 

Thome et al. [29] developed novel antibacterial coatings on PE 

films from various innocuous polyammonium compounds and 

reported a reduced settlement of bacteria such as Micrococcus luteus 

and E. coli by a factor of 10
5
-10

6
 after treatment. More attempts 

have yet to be made to further spotlight the issues surrounding 

the interactions of above antibacterial agents and pathogenic 

bacteria. 

The main focus of this unprecedented work is directed at 

deposition of the above described antibacterial agents onto 

medical-grade 

PVC using the multistep physicochemical approach and to assess 

and compare the subsequent anti-adherence properties against 

both gram-positive and gram-negative bacteria. Surface characteri-

zations are also implemented by means of various probe 

techniques to examine surface characteristics and the acquired 

data are discussed. The broad application window of medical-grade 

PVC as a leading biomedical polymer underlies the motivation of 

choosing this material as a target for the current work. 

2. Materials and methods 

2.1. Materials 

PVC pellets, extrusion medical-grade RB1/T3M of 1.25gem-3 

density, were obtained from ModenPlast (Italy) and used as 

received. Bronopol (2-bromo-2-nitro-l,3-propanediol) (98.0%, 

purum), acrylic acid (99.0%, anhydrous), and N-(3-dimethyl 

aminopropyl)-N'-ethyl carbodiimide hydrochloride (EDAC, 98.0%) 

were supplied by Fluka (USA). Absolute ethanol (99.8%, spec- 

tranal) was obtained from Riedel-de Haen (Germany). Benza-

lkonium chloride with the predominant chemical formula of 

CizHzsNfCHahCyHyCl, chlorhexidine (l.V-hexamethylene bis[5- (4-

chlorophenyl)biguanide], 98%), sodium metabisulfite (99.0%, 

reagentplus), glutaraldehyde (as 25.0 wt.% aq. solution), ethylene 

glycol, (99.8%, anhydrous), diiodomethane (99.0%, reagentplus), 

formamide (99.5%, molecular biology grade), and Triton X-l 00 

(laboratory grade) were all supplied by Sigma-Aldrich (USA). 

2.2. Substrates preparation 

PVC granules were moulded by hot pressing at 165 °C for 10 

min, formed into flat sheets of 1 mm thickness, and subsequently 

cut into 4 cm x 5 cm pieces after cooling. The substrates were then 

washed thoroughly by rinsing with dilute ethanol, sonicating first 

with 0.1% (v/v) aq. solution of non-ionic surfactant (Triton X-l 00), 

and then with deionized water at 30°C for 10 min. Finally, they 

were dried in an air-circulating oven at 30 °C for 24 h. 

2.3. Plasma treatment 

Plasma treatment was implemented in static conditions using 

the DCSBD technology of laboratory scale with air as the gaseous 

medium at atmospheric pressure and ambient temperature. A 

schematic representation of the plasma system is given in Fig. 2. It 

basically consists of a series of parallel metallic electrodes inlaid in 

a ceramic dielectric which are located inside a glass chamber 

which allows the carrier gases to flow. All samples were treated on 

both sides with plasma power of 200 W (1.1 A) for 15 s. 



Fig. 2. Schematic representation of DCSBD plasma system.

2.4. Graft copolymerization 

PVC substrates, upon treatment with plasma, were immersed 

into spacer solutions containing 10% (v/v) acrylic acid (AA) aq. 

solution. To ensure a radical graft copolymerization of AA onto 

PVC following the surface-initiated pathway (Fig. 3a), 0.1 wt.% 

sodium metabisulfite was added an efficient reductant to 

inhibit AA homopolymerization [30]. The reaction was permitted to 

proceed at 30 °C for 24 h. The samples were taken out of the 

solutions, washed with 0.05% (v/v) Triton X-100 aq. solution and 

also deionized water in an ultrasonic bath for 5 min at 30 °C to 

remove any unbound polyacrylic acid (PAA) species on the surface. 

Drying was carried out in an air-circulating oven under 30 °C for 

24 h. 
2.5. Antibacterial agents deposition 

PVC-grafted-polyacrylic acid samples were immersed into 0.1% 

(w/v) EDAC aq. solution at 4°C for 6 h in order to activate the car-

boxyl groups on the surface. The activation mechanism is outlined 

in Fig. 3b, where a highly active key intermediate, O-acylisourea, is 

produced having potential to react with reducing agents [31 ]. Sub-

sequent to carboxyl activation, the substrates were transferred to 

solutions containing antibacterial agents, that is, 2% (w/v) 

bronopol in absolute ethanol, 2% (w/v) benzalkonium chloride aq. 

solution, and 2% (w/v) chlorhexidine in isopropanol 70% (v/v) aq. 

solution, and kept there at 30 °C for 24 h in order to coat the 

surface with antibacterial molecules (Fig. 3a). To ensure 

immobilization of chlorhexidine, due to the presence of amine 

groups, the samples, after having been rinsed several times with 

deionized water, were dipped into 1% (w/v) glutaraldehyde aq. 

solution at 4°C overnight acting as an amine-reactive 

homobifunctional fixative 

Fig. 3. Multistep strategy for antibacterial agents deposition onto PVC substrate (a), carboxyl group activation mechanism by EDAC (b), and enamine formation following secondary amine and 

glutaraldehyde reaction (c). 

 



to immobilize chlorhexidine species onto the surface via crosslink-

ing. Crosslinking takes place by enamine formation as a result of a 

reaction between secondary amine and glutaraldehyde [32], as 

depicted in Fig. 3c. All of samples were finally washed and dried 

following the procedure described above. 

2.6. Surface wettability assessment 

The wettability of the samples was evaluated using contact 

angle analysis and water absorption test. Static contact angle 

measurements by the sessile drop method were carried out via 

Surface Energy Evaluation (See) System (Advex Instruments) 

equipped with a CCD camera using a set of standard testing 

liquids at 22 °C and 60% relative humidity. The data analysis was 

performed via the See System software. Each resulting contact 

angle was an average of 10 measured values recorded 30 s after 

reposing each drop of 5 JULL volume on the sample surface. Water 

absorption test was implemented by exposing each specimen to 

water at 22 °C for 24 h and gently padding with a filter paper to 

eliminate the unabsorbed water. The results were reported as a 

percentage of water absorption ([(wet weight-dry weight)/dry 

weight] x 100) after taking means of three replicates. 

2.7. Surface morphology examination 

Scanning electron microscopy (SEM) was carried out on VEGA 

IILMU (TESCAN) operating in the high vacuum/secondary electron 

imaging mode at an accelerating voltage of 5-20 kV. The samples 

were sputter coated with a thin layer of palladium/gold alloy and 

tilted 30° to reach enhanced resolution and observation of the sur-

face topography. The images were taken at 30 000 x magnification. 

2.8. Surface chemistry examination 

ATR-FTIR spectra were collected at a spectral resolution of 

2 cm
-1

 via Avatar 320 FT-IR spectrometer (Nicolet) equipped with 

ZnSe crystal at an incident angle of 45°. Each spectrum represents 

64 co-added scans rationed against a reference spectrum obtained 

by recording 64 co-added scans of an empty ATR cell. The acquired 

spectra were analyzed using OMNIC Software Suite. X-ray Photo-

electron Spectroscopy (XPS) was conducted using TFA XPS 

Physical Electronics. The base pressure in the XPS analysis 

chamber was «6 x 10~
8
 Pa. The samples were excited by X-rays 

over a 400-(xm diameter spot area with a monochromatic Al Kai,2 

radiation at 1486.6 eV. The emitted photoelectrons were detected 

by a hemispherical analyzer positioned at a take-off angle of 45°. 

Survey-scan spectra were obtained at a pass energy of 187.85 and 

0.4 eV step resolution. An electron gun was employed for surface 

neutralization. The elemental concentration analysis was 

performed over three different positions by MultiPak v7.3.1 

software. 

2.9. In vitro bacterial adhesion test 

Bacterial adhesion and biofilm experiments were performed 

using gram-positive (S. aureus 3953) and gram-negative (£. coli 

3954) bacteria. The circular shape specimens (d « 8 mm) were cut 

from the pristine and modified PVC samples before further inves-

tigation. The bacterial adhesion was performed as follows, the test 

tubes with lOmL of sterile water solution of nutrient broth 

(Envitech, Czech Republic) were inoculated with given bacterial 

strain to reach ^10
8
CFUmL

_1
 and left at room temperature for 30 

min. Then, the specimens were inserted into the test tubes. After 

24 h incubation at 37 °C under continuous shaking at 100 rpm, 

the test tubes were opened and the specimens were carefully 

removed from the medium, rinsed with sterile distilled water to 

remove 

loosely adhered bacteria and placed into other test tubes 

containing 2 mL of sterile deionized water. The bacteria adhered on 

the surface of the specimens were removed by vigorous shaking of 

the test tube at 2000 rpm for 30 s and quantified by serial 

dilutions and spread plate technique. A 1 mL aliquot of the 

suspension was diluted decimally and from each dilution, 0.1 mL 

was transferred to a nutrient agar plate and the surviving bacteria 

were counted after 24 h of cultivation at 37 °C reported as CFU 

cm-2. Each experiment was repeated in triplicate. 
3. Results and discussion 

3.1. Surface wettability analysis 

The contact angle values of deionized water (0W) on different 

specimens are provided in Table 1. For convenience, each sample 

has been assigned a number from 1 to 6 whose notation is given in 

the table title. Based on the acquired data, sample 1 shows a 

hydrophobic surface where upon treating with DCSBD plasma 

(sample 2), an obvious change in 0W occurs and the hydrophilicity 

increases expectedly. This trend sustains concerning sample 3 on 

which PAA chains are grafted as a stronger hydrophilic tendency is 

exhibited regarding 0W. The hydrophilicity decreases as antibac-

terial agents are coated onto the surface (samples 4-6), yet, it is 

well above than that of sample 1. The induced hydrophilicity upon 

multistep modifications is surmised to stem from the formation of 

hydrophilic groups on the surface in particular in the case of 

sample 3 [33-35]. To delve further into the surface physicochemical 

variations of the samples, a widely used theory, Lifshitz-van der 

Waals/acid-base (LW/AB) [36], has been employed to estimate free 

surface energy values whose outputs based on diiodomethane, 

ethylene glycol, and deionized water as wetting agents are given in 

Table 1. As suggested by the data, sample 1 shows a basic nature 

(Y~ > X+). however acidity or basicity of neat PVC has been a matter 

of dispute [ 1,36,37]. Upon treating with plasma (sample 2), the 

total surface free energy (ytot) increases concerning an evident 

change in contact angle values. This increase is mainly contributed 

by the polar (acid-base) component (yAB), rather than by the 

dispersion one (yLW), implying an introduction of polar oxygen-

containing entities to the surface owing to the plasma treatment. A 

drastic rise in ytot and yAB values is evident for sample 3, compared 

to the samples 1 and 2, signifying the presence of polar carboxyl-

containing units on the surface. A sharp decrease is observed in 

yAB and y^ot values of samples 4-6 compared to the sample 3, 

however, ytot of the former goes beyond that of sample 1. It is worth 

noting that the lowest 0E is observed for sample 5 giving the 

impression that the surface is most likely covered with species 

containing alcoholic functionality which in fact points to bronopol. 

Also, sample 4 shows the maximum yAB compared to the samples 5 

and 6 as it is deduced from ionic structure of benzalkonium 

chloride. Sample 6 exhibits the minimum hydrophilicity and ytot 

compared to samples 4 and 5. To draw a parallel between LW/AB 

theory and equation of state models, the predictions for surface 

free energy values of samples 1-6 based on three equation of state 

models [36] (Kwok-Neumann, Li-Neumann, and Wu) using four 

wetting agents are reported in Table 1. Although they yield lower 

outputs compared to LW/AB approach, the variation trend 

indicated from samples 1 to 6 is maintained. The Wu equation of 

state, on account of its fundamental assumptions, gives closer 

values to those from LW/AB approach. 

The results obtained from contact angle measurements are sub-

stantiated by the information obtained from water absorption test 

given as histograms in Fig. 4. It is perceived from the data that 

the capacity for water absorption may be aided by an improve-

ment in the surface tension as confirmed by several researchers 

[3,38-40]. Indeed, the hydrophilic modification is verified by the 

capacity for water absorption. The modified samples (samples 2-

6) 



Table 1 

Contact angle analysis results of samples 1-6 using deionized water (w), ethylene glycol (E), diiodomethane (D), and formamide (F) as wetting agents. Sample 1: control/pristine; sample 2: 

plasma treated; sample 3: PAA grafted; sample 4: benzalkonium chloride coated; sample 5: bronopol coated; sample 6: Chlorhexidine coated (mean¿standard deviation). 

a Surface free energy value according to Wu equation of state [36]. b Surface 

free energy value according to Kwok-Neumann model [36]. c Surface free energy 

value according to Li-Neumann model [36]. 

upon incubation in water for 24 h are found to be more 

hygroscopic compared to the pristine sample which shows a 

minimal uptake. Sample 5 shows a remarkably high water uptake 

after 24 h probably corresponding to distinctive surface attributes 

to be further discussed later. The corresponding surface densities 

of the absorbed water (mass of water/surface area) after 

subtraction from the control sample are displayed as an inset in 

Fig. 4 which correlate with the surface wettability. It may be 

utilized to provide some insight into the level of surface 

modifications. 

3.2. Surface morphology analysis 

Micrographs of the examined samples before and after mul-

tistep modifications are presented in Fig. 5. A relatively smooth, 

uniform morphology is observed for sample 1 which undergoes a 

significant alteration as a result of the DCSBD plasma treatment 

(sample 2) showing an etched character with an irregular shaped 

texture. This new morphology is advantageous for following cou-

pling processes due to an increased surface area and roughness 

[5]. In fact, the generated pattern on the sample 2 surface is a con-

sequence of competition between functionalization and ablation 

phenomena both leading to surface restructuring [8]. The occur-

rence of ablation is ascertained via gravimetric means where a 

weight loss of ^4fjugcm
-2

 has been observed due to the plasma 

treatment for 15 s implying an etching rate of ~2 nm/s taking into 

account the density of the PVC grade used. According to the micro-

graph of sample 3 after chemical grafting, PAA chains form their 

Fig. 4. Percentage of water absorption after 24 h for samples 1-6. The inset shows the 

corresponding surface density of absorbed water (the error bars depict standard deviations). 

own submicron domains and ripple-like features are discernible on 

the surface. A factor contributing to the surface microstructure is 

the mechanism of the grafting, which is initiated by radicals gen-

erated on the surface. Some of the radicals may also be present 

below the top layer and initiate the grafting reaction. This brings 

about an apparently swelled grafted top layer following the dif-

fusion of monomers and participation in chain propagation [41]. 

Indeed, the roughest morphology is observed for sample 3 com-

pared to the others showing a brush-like pattern which forms an 

active support for subsequent modifications. Similar finding was 

reported on AA-grafted polyurethane [42]. Quantitatively, based on 

the gravimetric data, the average graft density of PAA, assuming 

uniform distribution, is estimated to be «185 |jigcm-2, which is 

higher than the average values attained in similar works devoted 

to surface grafting of PAA [41,43,44]. Interestingly, the estimated 

graft density is on the order of the surface absorbed water density 

of sample 3 assessed in the former section. Regarding the 

approximate PAA homopolymer density, 1.1 gem
-3

 [41], the grafted 

brush dry thickness should be on the order of 1.5 |xm. As 

presented in Fig. 5, an almost smooth and uniform morphology is 

found for samples 4 and 5. As for sample 6, a rough morphology is 

observed likely due to artifacts induced by electron irradiation. 

3.3. Surface chemistry analysis 

On the basis of the literature [45], the average sampling depth 

of ATR-FTIR probe equipped with ZnSe crystal for a polymer 

having a refractive index of «1.5, like PVC, is «4|jim which exceeds 

the normal thickness of modified layers on a substrate. 

Nonetheless, ATR-FTIR is still widely used to provide 

semiquantitative information on the chemistry of the near-surface 

region. The infrared spectra of samples 1-6 split over three 

different wavenumber ranges for the sake of clarity are illustrated 

in Fig. 6. The major characteristic bands of ester, and carbonyl-

containing groups are observed in the spectrum of sample 1 in 

addition to pure PVC characteristic signals which is indicative of 

several additives existing in the current medical-grade PVC. Upon 

exposure to DCSBD plasma, no significant change is detected 

regarding the sample 2 spectrum, compared to sample 1. This is 

not only because of signals overlapping, but also due to the plasma 

modification depth being limited to solely top layers of the surface 

and cannot be well evidenced by ATR-FTIR. However a new peak of 

weak intensity appears around 1630 cm
-1

 assigned to C=C 

stretching mode as a consequence of the ablation 

(dehydrochlorination) process [46]. Based on the sample 3 

spectrum, a very broad but weak peak appears in the range of 

3000-3400 cm
-1

 corresponding to H-bonded -OH stretching mode 

in carboxylic acids. C-H stretching bands within 2800-3000 cm
-1

 

gain height. The characteristic C=0 stretching band around 1720 

cm
-1

 is raised in magnitude. The peaks appearing within 1400-

1500 cm
-1

 assigned to CH2 vibra 



 

 

tion, CH3 deformation, and -OH bending modes slightly increase in 

intensity, so do the signals within 1100-1300 cm
-1

 corresponding 

to C-0 stretching vibration in carboxylic compounds as well as 

CH2 bending. The peaks within 600-700 cm
-1

 associated with C-Cl 

bond stretching attenuate. The stated alterations lend support to 

the coupling of PAA units onto the surface. No significant changes 

emerge as benzalkonium chloride is coated on the surface (sample 

4). The intensity and breadth of 1720 cm
-1

 band due to C=0 

stretch reduces and slightly shifts down to a lower wavenum- ber. 

Weak peaks within 1515-1565 cm
-1

 associated with C=0-0~ in 

carboxylic salts disappear. The peak at 1480 cm
-1

 assigned to 

CH2 vibration in aliphatic compounds abates, so does the signal at 

1190 cm
-1

 corresponding to C-0 stretching vibration in carboxylic 

compounds. Also, the peaks within 550-580 cm
-1

 assigned to C-

C=0 bending mode attenuate. As for sample 5 which is coated with 

bronopol, a very broad peak emerges over 3200-3600 cm
-1

 ascribed 

to -OH stretching vibration in alcohols. The absorption bands 

within 2800-3000 cm
-1

 corresponding to C-H bond stretching mode 

of aliphatic compounds decreases in strength. The major peak of 

C=0 group at 1720 cm
-1

 abates. The intensity of peaks of 1580 and 

1600 cm
-1

 assigned to C=0-0~ anion stretching vibration in 

carboxylic salts decreases. A new weak sig 

 



Fig. 6. ATR-FTIR spectra of samples 1-6 split over three wavenumber ranges. 

nal comes into view at 1520 cm
-1

 associated with N02 stretching 

mode. The intensity of peaks over 1400-1480 cm
-1

 corresponding to 

-OH bending in carboxylic acids and CH2 vibration in aliphatic 

compounds diminishes. A signal at 1380 cm
-1

 related to CH3 in 

aliphatic compounds as well as C=0-0~ anion stretching vibration 

loses strength while the peak near 1340 cm
-1

 intensifies which is 

characteristic of NO2 stretching deformation. A new peak arises at 

1090 cm
-1

 assigned to C-0 stretching absorption in alcohols. Three 

peaks at 1040,1070, and 1150 cm
-1

 corresponding to C-O-C 

stretching mode in esters abate in strength, so do the bands over 

1220-1320 cm-1. A new absorption at 870 cm
-1

 appears which may 

be related to C-N stretching mode in nitro compounds. The signals 

within 700-800 cm
-1

 assigned to C-Cl stretching mode of PVC and -

CH deformation in substituted benzenes weaken in intensity. A 

sharp peak around 540 cm
-1

 corresponding to C-Br stretch band 

emerges. Regarding the spectrum of sample 6 (coated with 

chlorhexidine) a new broad peak at 3330 cm
-1

 arises corresponding 

to N-H stretching mode in secondary amines. The intensity of 



Fig. 7. XPS survey-scan spectra of samples 1-6.

signals over 2800-3000 cm
-1

 corresponding to C-H bond stretching 

mode of aliphatic compounds reduces. The major C=0 signal 

intensity at 1720 cm
-1

 decreases. New broad peaks at 1640 cm
-1

corresponding to C=N vibration and 1530 cm
-1

 due to aromatic ring 

stretching appear. The intensity of peak around 1480 cm
-1

 cor-

responding to -OH bending in carboxylic acids and CH2 vibration in 

aliphatic compounds diminishes. Three peaks at 1040,1070, and 

1150 cm
-1

 corresponding to C-O-C stretching mode in esters abate 

in strength, so do the bands over 1220-1320 cm-1. The intensity of 

a peak around 600 cm
-1

 corresponding to C-Cl bond absorption in 

aromatic compounds increases. The aforesaid alterations in IR 

spectra of samples 4-6 give credence to the presence of the 

antibacterial agents on the surface. 

To further examine the impact of multistep surface modifi-

cations, XPS is employed to gain a quantitative insight into the 

elemental composition of the surface with a probe depth on the 

order of 5 nm [47]. The acquired survey spectra and the 

corresponding surface atomic compositions and ratios of samples 1

-6 are given in Fig. 7 and Table 2, respectively. The preliminary 

analysis of sample 1 indicates the presence of carbon (C), oxygen 

(O), chlorine (Cl), 

 



Table 2 
Surface elemental compositions and ratios of samples 1-6 obtained from XPS analysis (mean ± standard deviation). 

and silicon (Si) elements whose composition and elemental ratios 

are presented in Table 2. Based on the data, the C12p atomic 

content is significantly lower than expected for a standard PVC 

containing no additives originating from the presence of several 

additives and also X-ray degradation [48]. Due to the same reason, 

a considerable amount of Ols is detected on the sample 1 surface 

which is not a typical element found in standard PVC. This verifies 

the ATR-FTIR results. Finally, XPS discerns traces of silicon on the 

sample 1 surface, which most likely appear because of the 

production/moulding process as a contaminant. Apparent 

alterations in Cls, Ols, and C12p core-level signals intensity arise 

for sample 2 quantitatively indicated in Table 2. The C12p content 

decreases and Ols content considerably increases. Thus, ablation 

leads to introduction of oxygen-containing entities and also 

dehydrochlorination. Furthermore, nitrogen element (Nls) is 

detected on the surface as a consequence of the air plasma 

treatment. It shows that the DCSBD plasma treatment for 15 s 

markedly influences the surface elemental composition. The 

modification is also reflected in O/C and Cl/C ratios when 

compared to those of sample 1. The former rises while the latter 

diminishes appreciably. Surprisingly, the amount of Si2p on the 

surface increases which may come from plasma parts as a 

contaminant. Upon PAA grafting, the 01 s quantity compared to the 

plasma treated decreases, however, when compared to sample 1, it 

increases. Although, an Ols content higher than plasma treated 

was expected for sample 3 since a pure PAA surface would yield an 

oxygen atomic concentration of ^40%, according to the literature 

[41 ]. This suggests that the PAA chains may be distributed not 

only on the surface but also in the subsurface layers extending well 

beneath the XPS probe depth. The C12p content shows no change 

upon PAA grafting. Besides, nitrogen is no longer detectable on the 

sample 3 surface. However, the Si2p signal abates due to the sur-

face coverage. All atomic content ratios decrease for sample 3, 

when compared to sample 2. Nitrogen band (Nls) emerges in the 

spectra as three nitrogen-containing antibacterial agents are 

coated onto the surface (samples 4-6), among which the maximum 

belongs to chlorhexidine as expected. The C12p content increases 

as bronopol and chlorhexidine are coated onto the surface. Also, 

bromine is detected as Br3d in the case of sample 5 which ensures 

the immobilization of bronopol. Sample 5 shows a high content of 

Ols which seems to be the reason behind unusual hygroscopic 

behavior examined in an earlier section. The maximum atomic 

ratios of O/C and Cl/C are exhibited by the bronopol coated 

sample. The Si2p content decreases in samples 4-6. The XPS 

analysis manifestly supports the presence of three antibacterial 

agents on the surface, however, this is more substantial for 

chlorhexidine and bronopol than benzalkonium chloride. The role 

of glutaraldehyde as a fixative for chlorhexidine immobilization 

cannot be disregarded. 

3.4. Bacterial adhesion and biofilm assay 

Bacterial adhesion, the pivotal stage of biofilm formation, is an 

elaborate topic whose many aspects to date have not been well 

understood in which numerous physicochemical factors are 

involved [49]. The bacterial adhesion degree for samples 1-6 after 

24 h incubation is presented as histograms in Fig. 8. However, the 

bacterial adhesion phenomenon is reportedly a dynamic process, 

but the results are evaluated herein after 24 h incubation for a 

better assessment of the biofilm formation. Regarding the 

adherence degree of S. aureus onto the samples, no decrease is 

observed in the number of viable colonies adhered onto the surface 

of samples 2-5 compared to the sample 1 implying the inefficiency 

of the modifications in reducing the adherence of S. aureus onto the 

surface. However, a 50% inhibition is observed for sample 6 

suggesting the capability of chlorhexidine in hampering adhesion 

of gram-positive strain. Two capital factors seem determining in 

the observed adhesion degree trend, viz., wettability and surface 

topography. The adhesion degree is found to correlate with the 

hydrophilicity and roughness of the samples. For samples 1-3, an 

increase in hydrophilicity and roughness was remarked as pre-

viously proved and then a decrease was observed in the case of 

Fig. 8. Histograms of bacterial adhesion degree for samples 1-6 after 24 h incubation 

against two microorganisms (the error bars depict standard deviations). 
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