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Abstract

Advanced prostate cancer displays conspicuous chromosomal

instability and rampant copy number aberrations, yet the identity

of functional drivers resident in many amplicons remain elusive.

Here, we implemented a functional genomics approach to identify

new oncogenes involved in prostate cancer progression. Through

integrated analyses of focal amplicons in large prostate cancer

genomic and transcriptomic datasets as well as genes upregulated

in metastasis, 276 putative oncogenes were enlisted into an in vivo

gain-of-function tumorigenesis screen. Among the top positive

hits, we conducted an in-depth functional analysis on Pygopus

family PHD finger 2 (PYGO2), located in the amplicon at 1q21.3.

PYGO2 overexpression enhances primary tumor growth and local

invasion to draining lymph nodes. Conversely, PYGO2 depletion

inhibits prostate cancer cell invasion in vitro and progression of

primary tumor and metastasis in vivo. In clinical samples, PYGO2

upregulation associated with higher Gleason score and metastasis

to lymphnodes and bone. Silencing PYGO2 expression in patient-

derived xenograft models impairs tumor progression. Finally,

PYGO2 is necessary to enhance the transcriptional activation in

response to ligand-inducedWnt/b-catenin signaling. Together, our

results indicate that PYGO2 functions as a driver oncogene in the

1q21.3 amplicon and may serve as a potential prognostic bio-

marker and therapeutic target for metastatic prostate cancer.

Significance: Amplification/overexpression of PYGO2 may

serve as a biomarker for prostate cancer progression and metas-

tasis. Cancer Res; 78(14); 3823–33. �2018 AACR.

Introduction

Prostate cancer is the most commonly diagnosed noncuta-

neous malignancy and the third leading cause of cancer mor-

tality for men in the United States (1). Bone is the most

frequent site for distant metastasis of prostate cancer, which

inflicts significant morbidity and mortality (2). Genomic pro-

filing of prostate cancer (3–7) has revealed overall lower

mutation frequency compared with most solid cancer types

(8), yet advanced disease is characterized by rampant genomic

rearrangements and somatic copy number alterations (SCNA)

(3–7). SCNAs affect a larger fraction of the cancer genome than

any other type of genetic alterations in cancer (9), underscoring

the potential role of SCNAs in driving the malignant nature of

prostate cancer. Functional driver genes residing within recur-

rent amplifications include key prostate cancer oncogenes such

as EZH2 on 7q36.1, MYC on 8q23-24, NCOA2 on 8q13.3, and

AR on Xq12 (3). Gain-of-function screens of resident genes

within amplicons are a proven approach in the identification of

novel oncogenes.

In this study, our screen identifiedPYGO2as aputative driver of

prostate cancer progression. PYGO2 is an essential transcription

coactivator with b-catenin/TCF complex for the Wnt signaling

pathway inDrosophila (10). With a highly conserved plant home-

odomain (PHD) in its C-terminus, PYGO2 binds toH3K4me and

activates b-catenin–dependent transcriptional regulation (11).

Evidence suggests that PYGO2 modulates gene transcription

throughbothWnt-dependent andWnt-independentmechanisms

(11). Emerging data indicate its pivotal role in multiple cancers

including glioma (12), breast cancer (13), hepatic carcinoma

(14), and intestinal tumors (15). Recently, PYGO2 expression

was identified as a potential risk stratification marker for PSA

progression in prostate cancer following radical prostatectomy

(16). PYGO2 is recruited by PCGEM1, a long noncoding RNA, to

enhance AR-bound enhancer activity (17). Nevertheless, the

functional contribution of PYGO2 to prostate cancer progression,

particularly bone metastasis, is not known, prompting us to

explore its role in prostate cancer biology.
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Materials and Methods

Cell culture and patient-derived xenograft models

The LHMK cell line was a generous gift from William Hahn

(Dana-Farber Cancer Institute, Boston, MA; ref. 18). LHMK and

293T (obtained from ATCC) were maintained in DMEM, 10%

FBS. Prostate cancer cell lines PC-3, LNCaP, C4, C4-2, DU145, and

22Rv1 were obtained from ATCC and maintained in RPMI640,

10%FBS. L cells and LWnt-3A cells were obtained fromATCC and

maintained in DMEM, 10% FBS (for L Wnt-3A cells, 0.4 mg/mL

G-418 was supplemented). ATCC provides the Human STR

Profiling Cell Authentication Service to authenticate these cell

lines. All cells were routinely verified as being free of Mycoplasma

using MycoAlert Mycoplasma Detection Kit (Lonza). Patient-

derived xenograft (PDX) models were previously published and

generous gifts from N.M. Navone (19, 20). The scramble control

shRNA and PYGO2-targeting shRNA were ordered from Sigma,

with sequences listed in Supplementary Table S1.

Generation of LHMK sublines for screening

The opening reading frame (ORF) lentiviral vectors in the

Precision LentiORF collection were obtained from the Func-

tional Genomics Facility at MD Anderson Cancer Center

(Houston, TX). In 96-well plates, we packaged 288 ORF lenti-

viruses individually and infected low-passage LHMK cells.

Stable sublines were generated by blasticidin selection, with

each subline individually expanded for the in vivo screen.

In vivo ORF screen

To evaluate the tumorigenicity of the parental cell line, LHMK

cells were injected subcutaneously with 106 viable cells in a

mixture of PBS:Matrigel (BD Biosciences) in NCr nude mice

(Taconic), which did not form tumors 6 months postimplanta-

tion. Expecting a small fraction of the candidate genes to pro-

mote tumorigenesis, we designed a multisite subcutaneous inoc-

ulation method to reduce the number of mice needed for the

screen. For each LHMK-ORF subline, 106 viable cells, resus-

pended in 50 mL mixture of PBS:Matrigel, were injected subcu-

taneously into prelabeled flank positions of mice (5 sites on each

side of flank, so total 10 sites/mouse). The experiment was

designed so that each subline was evaluated in 10 different mice,

and each mouse received injections from 10 different sublines.

Mice were monitored for tumor formation via caliper measure-

ment for 8 months. We did not observe formation of more than

two subcutaneous tumors on any mice in the screen. All animal

experimental protocols were approved by the Institutional Ani-

mal Care and Use Committee at MD Anderson Cancer Center.

Grasso et al.Taylor et al. Barbieri et al. TCGA
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Figure 1.

Oncogenomics-informed in vivo ORF screen. Three sources of candidate prostate cancer genes are integrated: 394 genes located in focal amplicons (4 genomics

datasets) and expressed in correlation with copy number gain and metastasis phenotype (3/8 transcriptomic datasets); 363 genes upregulated in

metastasis (6/8 transcriptomic datasets); and 77 genes from our published cross-species prostate cancer genome analysis (36). Among the total 741 candidate

genes, 288 ORFs corresponding to 276 genes were available for screening.

Lu et al.
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Tissue specimens, histology, and Western blot analysis

A prostate cancer tissue microarray with 80 cases and Gleason

grade information was purchased (PR803b, US Biomax). Archived

prostate cancer FFPE specimensof adjacent normal, primary tumor,

and metastasis (total n ¼ 49) were requested from MD Anderson

Cancer Center Prostate Cancer SPORE program (Specialized Pro-

grams of Research Excellence) under approved IRB protocol at MD

Anderson Cancer Center. For all clinical samples, written informed

consent was obtained from the patients. The studies were conduct-

ed in accordance with recognized ethical guidelines (Declaration

of Helsinki, CIOMS, Belmont Report, U.S. Common Rule).

Hematoxylin and eosin stain, IHC, andWestern blot analysis were

performed as described previously (21). Primary antibodies used

include PYGO2 (HPA023689, Sigma, for IHC; GTX119726,

GeneTex, for Western blot analysis), KRAS (sc-30, Santa Cruz

Biotechnology), FGFR1, b-catenin, c-Myc, Met, H3K4me2,

H3K4me3, H3 (9740, 8480, 5605, 8198, 9725, 9751, and 4499,

Cell Signaling Technology), and b-actin (A2228, Sigma).

Cell proliferation and soft agar assay

For two-dimensional (2D) proliferation, cells were seeded to

24-well plates with confluence tracked by IncuCyte (Essen

BioScience) for 3 days. For soft agar assay, DMEM with 1%

FBS, 0.6% LE Agarose (Lonza) was used as base layer while cells

were seeded in 2 � 104 cells/mL in DMEM with 1% FBS, 0.3%

SeaPlaque Agarose as top layer (Lonza). After incubation at

37�C for 3 weeks, the colonies were stained by crystal violet and

quantified.

Migration and invasion assay

Cells were first starved in DMEM with 1% FBS overnight and

then seeded in serum-free DMEM at 5 � 105 cells/200 mL to the

chamber inserts (BD Falcon) for migration or BioCoat Matrigel

Invasion Chamber (BD Falcon) for invasion. DMEM with 10%

FBS were placed at the bottom as chemoattractant. Migrated or

invaded cells on themembranewere stainedwith crystal violet for

quantification.

Quantitative RT-PCR

RNA was isolated by RNeasy Kit (Qiagen) and reverse tran-

scribed using SuperScript III cDNA Synthesis Kit (Life Technol-

ogies). Quantitative PCR was performed using SYBR-GreenER

Kit (Life Technologies). Primers are listed in Supplementary

Table S1.
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Figure 2.

In vivo ORF screen identified genes

promoting prostate tumorigenesis. A,

Procedure for lentivirus packaging, ORF

stable overexpression in LHMK and in

vivo tumorigenesis screen. B, Images of

LHMK overexpressing the control vector

RFP-IRES-turboGFPnuc. Scale bar, 50

mm. C, ORF-driven KRAS or FGFR1

overexpression in LHMK, confirmed with

Western blot analysis. D, Top hits with

20% or higher incidence rate from the

in vivo screen.

In Vivo Screen Identifies PYGO2 as a Prostate Cancer Gene
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Functional validation using animal models

Experimental bonemetastasis assayusing intracardiac injection

and noninvasive imaging was performed as reported previously

(22). PDX models were passaged in the flank of C.B-17 SCID

(Taconic) mice as reported previously (19, 20). The tumors were

measuredby caliper and treatedby intratumoral injectionof 10mg

siRNA targeting PYGO2 (Sigma-Aldrich, SASI_HS01_00059018,

or 1:1 ratio of SASI_Hs01_00059021 and SASI_Hs02_00363399)

or control siRNA (Sigma-Aldrich, SIC001) twice a week, using

MaxSuppressor In Vivo RNA-LANCEr II (Bioo Scientific) follow-

ing the manufacturer's protocol and our recent report (23).

Luciferase reporter assay

TCF/LEF reporter plasmids, M50 Super 8x TOPFlash and M51

Super 8x FOPFlash (TOPFlash mutant), were gifts from Randall

Moon (University of Washington, Seattle, WA; Addgene plasmid

# 12456, 12457; ref. 24). Activation of Wnt/b-catenin signaling

was achieved by using conditioned medium from Wnt3A-secret-

ing L cells and control L cells (25). PC3 sublines were transfected

with Lipofectamine LTX Reagent (Life Technologies) following

the manufacturer's protocol, and the reporter assay was per-

formed as described previously (26).

Statistical analysis

Unless otherwise indicated, data represent mean � SD, with

Student t test assuming two-tailed distributions used to calculate

statistical significance between groups. P < 0.05 was considered

statistically significant (annotation: �, P < 0.05; ��, P < 0.01;

���, P < 0.001; #, P > 0.05). To display PYGO2 expression from

four Oncomine transcriptomic datasets containing primary

and metastatic prostate cancer samples (3, 4, 27, 28), log2
median-centered ratio of PYGO2 probe data was drawn as a

box plot with whiskers displaying 10–90 percentile using

GraphPad Prism.

Results

In vivoORF screen identified putative genes involved in prostate

cancer progression

To enlist genes with putative function in promoting prostate

cancer progression, we performed an integrated oncogenomic

analysis to enrich for cancer-relevant genes and cull passenger

genes. First, genes with focal copy number gains were identified

using GISTIC2 (29) from 4 prostate cancer genomic datasets:

Taylor et al., Grasso et al., Barbieri et al., and The Cancer Genome

Atlas (TCGA; Fig. 1; refs. 3–6). This analysis resulted in 6,909

genes, which were further selected based on two filters: genes with

copy number correlated expression in at least 1 of the 4 datasets

(P < 0.01) and genes with higher expression in metastasis com-

pared with primary tumor (P < 0.05) in at least 3 of 8 Oncomine

transcriptomic datasets (3, 4, 27, 30–34). The gene expression

data for these 8 datasets were directly queried from Oncomine

(35). After applying the filters, 394 genes remained (Fig. 1).

Second, to enrich for genes potentially contributing tometastasis,

363 genes upregulated in metastasis compared with primary

tumor were identified in at least 6 of 8 Oncomine datasets. Third,

Figure 3.

Candidate prostate cancer genes promote soft agar colony formation, migration, and invasion. A, Normalized confluence curves on 2D culture for selected top hit

genes showing modest change of cell proliferation. B, Significant increase of colony formation on soft agar by selected top hit genes compared with RFP

control. C, Significant increase of cell migration by selected top hit genes comparedwith RFP control.D, Significant increase of cell invasion by selected top hit genes

compared with RFP control. Representative images of invaded cells are shown.

Lu et al.
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77 amplified genes were identified from integrated analysis of our

previous telomerase reactivation prostate cancer mouse model

and human prostate cancer genomics (36). From these diverse

datasets and experimental systems, a total of 741 putative metas-

tasis-promoting genes were identified (Supplementary Table S2),

among which 288 ORFs (corresponding to 276 unique genes)

were available at the time of experimentation from the Precision

LentiORFCollection for lentiviral overexpression andORF screen-

ing (Supplementary Table S3).

We employed LHMK cells for the in vivo screen, which were

derived fromprimaryhumanprostate epithelial cells after immor-

talization with SV40 LT and hTERT followed by transformation

with MYC and PI3K (18). LHMK cells exhibit very limited tumor-

igenic capability when inoculated orthotopically or subcutane-

ously in nude mice (18), providing a suitable system to identify

putative oncogenes through a gain-of-function approach. ORF-

encoded lentivirus was packaged in 96-well plates and used to

transduce LHMK cells, followed by blasticidin selection, to estab-

lish 288 individual ORF-expressing sublines (Fig. 2A). Overex-

pression of red fluorescent protein (RFP) in the same LentiORF

backbone was used as the negative control (Fig. 2B). ORFs

encoding KRAS and FGFR1 were used as positive controls (Fig.

2C), the choice of which was justified given the prostate cancer–

promoting role of RAS/MAPK (3, 37) or FGF/FGFR1 signaling,

respectively (38). ORF-driven overexpression was validated for a

number of randomly selected genes using quantitative RT-PCR

C

A

Intensity-0 Intensity-1

Intensity-2 Intensity-3

B

Grasso et al. 

P = 1.05E–10

Taylor et al. 

P = 0.006

Tamura et al. 

P = 0.008

Lapointe et al. 

P = 0.018

D

E

***, P < 0.0001 (χ2 test)

*, P = 0.0146 (Log-rank test) **, P    = 0.0040 (Log-rank test)

**, P    = 0.0094 (χ2 test)

F

PYGO2 Gain or amplification
PYGO2 Diploid

Gleason score  3+3  3+4  4+3  ≥8

N    65   102   78    88

TCGA Dataset

(treatment-naïve, 

primary tumors)

***, P = 0.0004  (χ2 test)

Diploid
Gain or amplification
Shallow deletion

-1

0

1

2

L
o

g
2
 r

a
ti
o

L
o

g
2
 r

a
ti
o

L
o

g
2
 r

a
ti
o

L
o

g
2
 r

a
ti
o

0

1

2

0

1

2

3

0

1

2

Primary Metastasis
0

20

40

60

80

100

2.7% (74, Taylor et al.)

5.5% (55, Baca et al.)

7.7% (13, Grasso et al.)

8.7% (333, TCGA)

53.6% (28, Beltran et al.)

76.9% (13, Kumar et al.)

33.3% (15, Taylor et al.)

35.4% (48, Grasso et al.)

45.9% (148, Robinson  et al.)

54.4% (79, Beltran et al.)

67.6% (136, Kumar et al.)P
Y

G
O

2
 G

a
in

/a
m

p
 %

P
a

ti
e

n
t 
c
a

s
e

s

P
a

ti
e

n
t 
c
a

s
e

s

15

12

9

6

3

0

10

8

6

4

2

0

6 and 7 8 and 9 10

Gleason score sum

PYGO2 (0)
PYGO2 (0) PYGO2 (1)

PYGO2 (3)PYGO2 (2)PYGO2 (1)
PYGO2 (3)PYGO2 (2)

N
or

m
al

Prim
ar

y

LN
 m

et

Bon
e 

m
et

100

50

0

100

50

0
0     50   100  150  200 0      1,000   2,000

Time (months) Time (days)

P
e

rc
e

n
t 
d

is
e

a
s
e

fr
e

e
 s

u
rv

iv
a

l

P
e

rc
e

n
t 
b

io
c
h

e
m

ic
a

l

re
c
u

rr
e

n
c
e

 f
re

e
 s

u
rv

iv
a

l

Figure 4.

PYGO2 is amplified in prostate cancer and correlates with higher Gleason score and metastasis. A, Frequency of PYGO2 copy number gain and amplification in a

variety of prostate cancer genomics datasets categorized by disease site and treatment. B, Fraction of PYGO2 copy number status in different Gleason score

categories in the TCGA dataset. C, Correlation of PYGO2 copy number status with disease-free survival (n¼ 329) or biochemical recurrence (n ¼ 281) in the TCGA

dataset. D, PYGO2 mRNA expression level in primary tumor and metastasis in four prostate cancer studies with data compiled from Oncomine. E, In the TMA,

PYGO2 expression as measured by IHC and plotted against Gleason grade categories. F, In an archived prostate cancer clinical cohort from MD Anderson Cancer

Center, PYGO2 expression was plotted against categories as normal prostate, primary prostate tumor, lymph node (LN) metastases, and bone metastases.
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(Supplementary Fig. S1A), which all showed various levels of

overexpression of the putative targets. In the screen, the 288

sublines and RFP control subline were inoculated into mice

subcutaneously (n ¼ 10 for each ORF). Mice were monitored for

tumor development for 8 months. Although no tumor growth

was detected for the RFP control (total 30 sites were tested), the

positive controls KRAS and FGFR1 generated 100% and 30%

incidence of tumors, respectively (Supplementary Table S4).

Importantly, 38 genes were identified as positive hits based on

a 10% to 50% tumor incidence rate (Supplementary Table S4),

among which 10 genes produced more than 2 tumors out of the

10 tested sites (Fig. 2D; Supplementary Fig. S1B). The top 10 hits

include EZH2, known to be frequently upregulated in advanced

prostate cancer and to promote metastasis, and CCNE2, which is

overexpressed in metastatic prostate cancer and critical for cell-

cycle G1–S transition (39). Notably, the presence of known

prostate cancer–promoting genes among the top hits suggests

the possibility that the other genes may represent bona fide

oncogenes involved in prostate cancer progression. To rule out

the possibility that the negative hits were merely due to failure of

LentiORF-driven gene overexpression, we randomly selected 26

negative hits from the lenti-ORF infected cells and showed that 23

of 26 genes were upregulated more than 2-fold (Supplementary

Fig. S1C).

Reasoning that in vitro assays could complement the in vivo

result to illuminate biological effects, we performed proliferation,

migration, and invasion assays for the sublines of the top hits.

Although meager differences were observed in the 2D growth

curve assay (Fig. 3A), soft-agar assay showed that sublines over-

expressing genes like KRAS, PYGO2, MOS, CCNE2, and MTBP

could form significantlymore colonies than RFP control (Fig. 3B).

The gain of colony formation potential by genes such as PYGO2,

MOS, and MTBP (with functions in prostate cancer uncharacter-

ized) was accompanied by their effect on increasedmigration and

invasion (Fig. 3C and D). Together, the robustness of PYGO2 in

the in vivoORF screen coupled with strong effect in the 3D colony

assay (second only to KRAS; Fig. 3B) prompted further functional

investigation of this putative prostate cancer–promoting gene.

Overexpression ofBOP1 (block of proliferation 1) led to strongest

enhancement ofmigration and invasion (Fig. 3C andD). Located

at 8q24.3, BOP1 is close toMYC at 8q24.21. These two genes tend

to be coamplified in the broad amplification peak at 8q24

(Supplementary Fig. S1D), which is commonly attributed to the

oncogenic function of MYC. Therefore, we reasoned that the

amplification of BOP1might be, at least partly, a passenger effect

fromMYC amplification,whichwouldmake a study onBOP1 less

significant in terms of finding independent biomarker and/or

therapeutic target for prostate cancer. TOMM40L overexpression

led to higher tumor incidence rate and shorter onset day than

PYGO2 (Fig. 2D). The function of TOMM40L was not studied

before. The commercially available reagents for TOMM40L are

limited, making it difficult to perform clinical characterization of

its expression and related functional studies.

PYGO2 expression is correlated with higher Gleason score and

bone metastasis

PYGO2 resides on cytoband 1q21.3, a region amplified in

advanced prostate cancer (3, 40, 41) but containing no known

definitive prostate cancer oncogenes. When surveyed through

prostate cancer databases in cBioPortal, the status of PYGO2 copy

number was retrieved from 7 studies (3, 4, 6, 7, 42–44) and

showed higher gain or amplification in primary castration-resis-

tant prostate cancer (CRPC; 53.6%–76.9%) or metastatic CRPC

(33.3–67.7%) compared with treatment-na€�ve primary prostate

cancer (2.7%–8.7%; Fig. 4A). In the TCGA dataset, PYGO2 gain/

amplification is associated with higher Gleason score in
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PYGO2 overexpression promotes prostate cancer tumor growth and invasion to draining lymph nodes. A, PYGO2 overexpression in LHMK cells significantly

increased subcutaneous tumor growth in mice (n ¼ 4). B, PYGO2 overexpression in LNCaP significantly increased subcutaneous tumor growth in mice (n ¼ 10).
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treatment-na€�ve primary prostate cancer (Fig. 4B), as well as

shorter disease-free survival and shorter biochemical recurrence-

free survival (Fig. 4C). Copy number–correlated expression of

PYGO2 is evident across several datasets (Supplementary

Fig. S2A). Regarding metastasis, PYGO2 is significantly upregu-

lated at the transcriptional level in metastatic prostate cancer

compared with primary tumors (Fig. 4D). At the protein level,

tissue microarray (TMA) analysis showed that, although PYGO2

expression was not detectable in normal prostate, stronger

PYGO2 expression was correlated with higher Gleason score

(Fig. 4E). Furthermore, from an archived clinical prostate cancer

sample cohort at MD Anderson Cancer Center, which includes

normal, primary tumors, lymph node metastases, and bone

metastases, IHC analysis showed that PYGO2 expression was

highly upregulated inmetastases (Fig. 4F). The clinical expression

analysis, in addition to the in vivo functional screen and in vitro

functional validation, strongly supports a direct role of PYGO2 in

promoting prostate cancer progression.

PYGO2 overexpression promotes prostate tumor growth and

invasion to lymph nodes

To determine whether PYGO2 upregulation enhances pro-

state cancer progression, we first retested the LHMK sublines

expressing RFP or PYGO2 by subcutaneous inoculation in

NSG mice. The LHMK-PYGO2 subline formed significantly

larger tumors as compared with RFP controls (Fig. 5A; Sup-

plementary Fig. S2B). To test the protumor function of PYGO2

in a different prostate cancer cell line, we overexpressed

PYGO2 in LNCaP, which also has a low endogenous level of

PYGO2 (Fig. 5B). Compared with GFP control, PYGO2 over-

expression led to significant increase of subcutaneous tumor

weight (Fig. 5B). Based on the IRES-GFP cassette in the over-

expression vector, we identified GFPþ tumor cells in draining

lymph nodes in 3 of 10 mice inoculated with LNCaP-PYGO2

cells (Fig. 5C; Supplementary Fig. S2C). Thus, PYGO2 over-

expression promotes both primary tumor growth and regional

lymph node invasion.

PYGO2 depletion inhibits prostate cancer metastasis and PDX

tumor growth

To determine whether PYGO2 is required for prostate cancer

progression, we used two independent PYGO2 shRNA vectors to

deplete PYGO2 levels in the aggressive prostate cancer cell line

PC3 (Fig. 6A; ref. 45). PYGO2 knockdown resulted in a modest

decrease in cell proliferation in vitro (Supplementary Fig. S3A) but

significant reduction of cell invasion (Supplementary Fig. S3B).

When inoculated subcutaneously in mice, PYGO2 knockdown

cells showed reduced tumorigenic potential (Fig. 6B). To evaluate

whether PYGO2 knockdown affects spontaneous metastasis of

PC3 to lung, we removed the subcutaneous tumors at day 50
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PYGO2 silencing reduces primary tumorigenicity and metastatic potential of PC3 cells. A, PYGO2 knockdown by two independent shRNA clones in PC3 shown by

Western blot analysis. B, Significant decrease of subcutaneous tumor size by PYGO2 knockdown in PC3 (n ¼ 25 for each group). Data represent mean

� SEM. C, Incidence of spontaneous lung metastasis from subcutaneous tumors formed by PC3 sublines (n ¼ 15 for each group). � , P < 0.05; �� , P < 0.01, Fisher
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to day 0) and representative images (E, n ¼ 7 for each group). Data, mean � SEM. F, Osteolysis in the long bones induced by PC3-TR sublines, shown by X-ray
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postinoculation and assessed metastasis formation in the lung 2

months later by gross inspection and histology. Although 60% of

mice previously inoculated with the PC3-shControl subline

developed spontaneous lung metastasis nodules, less than 20%

of mice inoculated with the shPYGO sublines of PC3 developed

lung metastasis nodules (Fig. 6C; Supplementary Fig. S3C).

Expression of PYGO2 in PC3 cells remains pronounced in lung

metastasis (Supplementary Fig. S3D).

As bone is the most frequent site of distant metastasis of

prostate cancer, we performed intracardiac injection to compare

the bone colonization capability of shControl and shPYGO2

sublines of PC3 after labeling PC3 with a triple reporter (TR)

containing firefly luciferase, GFP, and thymidine kinase (46).

Noninvasive bioluminescence imaging revealed that PYGO2

knockdown impaired the ability of PC3-TR cells to colonize the

bone and form osteolytic lesions (Fig. 6D–F). PYGO2 is also
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expressed by a few other prostate cancer cell lines, including

22Rv1, C4, and C4-2 (Supplementary Fig. S3E).

As PDX models more closely resemble the clinical disease, we

examined the effect of targeting PYGO2 in two PDX models:

MDA-PCa-180 (derived from primary CRPC; ref. 19) and MDA-

PCa-118b (derived from bone metastatic CRPC; ref. 20). We

first performed IHC for PYGO2 and detected high PYGO2

expression in both models (Fig. 7A). Through intratumoral

infusion of siRNA (either scramble control or PYGO2-target-

ing), we were able to significantly attenuate PYGO2 protein

level (Fig. 7B). In both models, PYGO2-targeting siRNA treat-

ment inhibited subcutaneous PDX tumor growth (Fig. 7C). For

MDA-PCa-180, we also demonstrated the antitumor effect by

an independent siRNA mixture (Supplementary Fig. S3F).

Spontaneous metastasis to lung or bone from the PDX tumors

was not detected based on histologic evaluation, and metastasis

was not reported to occur in these two models previously (19,

20). These results support PYGO2 as a therapeutic target for

prostate cancer.

To explore the function of PYGO2 as a coactivator of the

Wnt/b-catenin pathway in the context of prostate cancer, we

compared the ability of PC3-shControl and PC3-shPYGO2

sublines to activate the Wnt/b-catenin reporter TOPFlash

(24) under conditioned medium from L Wnt-3A cells (25). As

control, FOPFlash and conditioned medium from L cells were

used. Interestingly, PYGO2 knockdown significantly reduced

the Wnt-3A–induced TOPFlash activity (Fig. 7D). At the protein

level, PYGO2 knockdown moderately decreased the expression

of b-catenin and Wnt/b-catenin targets c-Myc and Met (Fig. 7E).

PYGO2 knockdown has little effect on H3K4me2 and

H3K4me3 levels (Fig. 7E). Our results on the connection of

PYGO2 with Wnt signaling were supported by the gene set

enrichment analysis (GSEA) showing that Wnt pathway is

enriched in both localized prostate cancer and CRPC samples

with high PYGO2 expression phenotype (Fig. 7F).

Discussion

In summary, through functional screen and analysis of

recurrently amplified genes in prostate cancer, we identified

PYGO2 as a prostate cancer–promoting gene capable of driving

disease progression and metastasis. Another candidate prostate

cancer gene located on 1q21.3, CREB3L4 (a.k.a. AIbZIP, an

androgen-regulated gene), has been reported as highly

expressed in prostate cancer (47). However, CREB3L4 is distinct

in that its expression is neither correlated with copy number

gain (3) nor upregulated in metastatic prostate cancer when we

surveyed the 8 Oncomine datasets (P > 0.5 for all datasets). In

fact, CREB3L4 was not among the 60 of 178 genes located in

1q21.2-q22 with transcript levels correlated with copy number

gain (3). From the 60 genes in 1q21.2-q22, 13 genes passed our

gene selection filters and 6 genes (ENSA, LYSMD1, RPRD2,

FLAD1, KRTCAP2, and PYGO2) were screened with available

lentiviral ORFs. Only PYGO2 emerged as a functional hit in our

tumor models. Our results indicate that PYGO2 promotes

primary tumor growth, lymph node invasion, and bone metas-

tasis. Together, we conclude that PYGO2 is a key driver gene of

1q21.3 that is targeted for increased expression via copy num-

ber gain in prostate cancer.

Hyperactivated Wnt signaling pathway has been increasingly

identified to play important roles in promoting advanced prostate

cancer, including the metastatic process and development of

CRPC (48). Therefore, the implication of PYGO2 inWnt pathway

has significant clinical relevance. Future studies to investigate the

molecular mechanism of PYGO2 in prostate cancer progression

will provide newopportunities to target lethal prostate cancer.We

envision at least two potential approaches to target PYGO2. First,

the PHD finger in PYGO2 is responsible for binding to di- and

trimethylated lysine 4 of histone H3 (H3K4me2/3). Therefore,

small-molecule inhibitors blocking the PHD finger (49) may

serve as useful agents for PYGO2-overexpressed lethal prostate

cancer. Second, siRNAs that effectively downregulate PYGO2 in

vivomay provide another avenue. siRNA or shRNA as therapeutics

is being actively developed, although challenges remain in the

delivery of these agents. That said, recent progress using exosomes

to deliver siRNA or shRNA in vivo (50) marks a new direction for

moving this idea forward.
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