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Abstract

Electrical source imaging (ESI) aims at reconstructing the electrical brain activity from
measurements of the electric field on the scalp. Even though the localization of single focal
sources should be relatively straightforward, different methods provide diverse solutions due
to the different underlying assumptions. Furthermore, their input parameter(s) further affects
the solution provided by each method, making localization even more challenging. In addition,
validations and comparisons are typically performed either on synthetic data or through
post-operative outcomes, in both cases with considerable limitations.

We use an in-vivo high-density EEG dataset recorded during intracranial single pulse
electrical stimulation, in which the true sources are substantially dipolar and their locations
are known. We compare ten different ESI methods under multiple choices of input
parameters, to assess the accuracy of the best reconstruction, as well as the impact of the
parameters on the localization performance.

Best reconstructions often fall within 1 cm from the true source, with more accurate
methods outperforming less accurate ones by 1 cm, on average. Expectedly, dipolar methods
tend to outperform distributed methods. Sensitivity to input parameters varies widely
between methods. Depth weighting played no role for three out of six methods implementing
it. In terms of regularization parameters, for several distributed methods SNR=1 unexpectedly
turned out to be the best choice among the tested ones.

Our data show similar levels of accuracy of ESI techniques when applied to
“conventional” (32 channels) and dense (64, 128, 256 channels) EEG recordings.

Overall findings reinforce the importance that ESI may have in the clinical context,
especially when applied to identify the surgical target in potential candidates for epilepsy
surgery.

Keywords
ESI, EEG, inverse methods
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1. Introduction

Electrical source imaging (ESI) is a procedure that allows reconstructing the neural
activity inside the brain from recordings of the electric potential, usually obtained at the scalp.
ESI is a key element in multiple frameworks related to the analysis of EEG data, including
identification of brain regions involved in specific tasks [1,2] and estimation of connectivity in
task-related or spontaneous activity [3]. Moreover, recent evidence [4,5,6,7] suggests that it
could be considered a valuable tool in the context of pre-surgical evaluation of epileptic
patients; in this case accuracy and reliability become of paramount importance.

Despite its usefulness, the use of ESI in clinical practice is still rather complex, due to
the presence of numerous subjective choices involved: first, the choice of the ESI method
among the many available options; second, the choice of the input value(s) for the
parameter(s) the method depends on, a choice often overlooked but of great importance.

From a mathematical perspective, it is well known that reconstruction of neural
currents from EEG data is an ill-posed problem with no unique solution; uniqueness can be
restored by inserting a priori information through a so-called regularization procedure.
However, there is no general agreement about the quality and quantity of a priori information
to be inserted, and hence multiple ESI methods bloom [8, 9]. In addition, regularization
methods typically require knowledge of the SNR of the input data in the form of a
regularization parameter, and some of them try to avoid the typical bias towards superficial
sources by inserting an additional depth weighting parameter.

In practice, some of these choices may turn out to be useful as they help to overcome
notorious limitations of currently available ESI methods, by allowing the user to exploit their
prior knowledge; however, different choices eventually lead to different solutions, and it is
often not obvious what the optimal choices are. On the other hand, there is increasing
consensus that focal sources, such as those mostly involved in epilepsy, should be relatively
easy to localize. To quote a recent book [10], “MEG data are usually not ambiguous; it is mostly
obvious where the active areas are located”; and a similar concept is expressed for EEG in [9].
For this type of source, it seems appropriate to ask whether some methods are better than
others, and what parameters should be used to obtain reliable and accurate localization.

As an additional difficulty, validation and comparison of ESI methods is itself a tricky
task, as the true sources of experimental recordings are never known exactly. There are two
typical workarounds to this problem. One is to renounce the complexity of experimental data
and use synthetic data to assess the reconstruction error of ESI [11,12,13,14,15,16]; this
approach can result in reasonable comparisons between different methods but can hardly be
used to give realistic estimates of localization accuracy in experimental scenarios, as the data
generation process, particularly the forward model, is necessarily simplified. The second
possibility, used in a growing number of studies, is to evaluate the accuracy of localization
through post-surgical outcomes in epileptic patients [16,17,18,19,20]; this approach
overcomes the limitations of synthetic data but has its own drawbacks, including the fact that
resolution is limited to the size of the resected area. In this study we overcome the limitations
of both approaches by exploiting a recently published EEG dataset of scalp recordings for
which the ground truth is known. The dataset has been obtained at Niguarda Hospital in
Milan, Italy: it contains EEG recordings with 256 channels, collected during the presurgical
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evaluation of patients affected by drug resistant focal epilepsy. Specifically, High-Density Scalp
EEG data were collected during Single Pulse Electrical Stimulation (SPES), that is a clinical
procedure increasingly employed for brain mapping and for the identification of abnormal
cortical excitability in patients with epilepsy [21, 22, 23, 24]. During SPES, a brief current
pulse is injected between two adjacent leads, producing an electrical current whose location
can be accurately determined. Since this electrical current is strong enough to produce a
visible signal on scalp HD-EEG, the procedure generates experimental data of scalp potentials
originating from precisely known locations inside the brain. The resulting dataset is
characterized by a very high signal-to-noise ratio and is ideally suited to evaluate in vivo the
performance of ESI [25] in the case of focal activity.

We compare ten different ESI methods, thus possibly providing the most extensive
comparison thus far: we test dipole fitting, wMNE [26], LORETA [27], sLORETA [28], eLORETA
[29], dSPM [30], RAP- MUSIC [31], Gamma Map [32], MxNE [33] and SESAME [34].

For each method under consideration, we test several values for each input parameter,
so as to verify (i) what is the optimal reconstruction attainable by an expert user who is
capable of setting the parameter values correctly and (ii) to what extent the method is tolerant
with respect to mis-specifications of these values. We remark that, in general, it is not
straightforward what values to use in practice and in many recent studies this information is
not present . In view of recent efforts to set up best practice guidelines of describing EEG/MEG
studies [35], reporting the values of these input parameters is of fundamental importance to
ensure reproducibility and replicability of the study. At the same time, a certain degree of
tolerance with respect to the input parameter is a desirable property of ESI methods, as it
removes part of the subjectivity in the analysis.

In summary, based on a unique dataset in which the sources of the EEG activity within
the brain are known - i.e. a ground truth for the inverse solution methods is available - we
compared the performances of the most commonly used ESI methods and, for each method
we optimized the input parameters. The final aim is to provide a validation and a comparison
of ESI methods based  on a ground truth

2. Methods

2.1 Description of the data
The dataset used in this study is publicly available and has been described in [25]; in the
following subsections we briefly summarize the main relevant features.

2.1.1. Electrical Stimulation
Subjects had implanted intracranial shafts for pre-surgical evaluation of epilepsy; electrode
positions were therefore established based on clinical needs, and ranged for each subject
from superficial to deep locations: the distance from the closest sensor ranged from 28 to 64
mm. Electrical currents were delivered through platinum-iridium semi flexible multi-contact
intracerebral electrodes (diameter: 0.8 mm; contact length: 2 mm, inter-contact distance: 1.5
mm; Dixi Medical, Besancon, France). Currents lasted 0.5 ms, were repeated either every 2 s
(for 1 mA and 5 mA) or every 1 s (otherwise), and had intensities ranging between 0.1 mA and
5 mA. The number of recorded trials was either 40 (for 1 mA and 5 mA) or 60 (otherwise).
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Electrode positions were measured by co-registering the post-implant CT (O-arm 1000
system, Medtronic) to the pre-implant MRI by means of the FLIRT software [36]. The location
of every single lead was assessed using Freesurfer [37], 3D Slicer [38] and SEEG assistant [39].
When the EEG digitization MRI was different from the pre-implant MRI, transformation of the
SEEG space to the EEG space was performed using an affine transformation between MRIs
calculated with the ANTs software [40]. Normalized contacts' coordinates were estimated
through a non-linear registration between the subject's skull-stripped MRI and the
skull-stripped MNI152 template [41], using ANTs' SyN algorithm. The accuracy of the
normalization procedure was verified by visual inspection.

2.1.2. High Density EEG recordings
256 EEG channels (Geodesic Sensor Net; HydroCel CleanLeads) were recorded with an

EGI NA-400 amplifier (Electrical Geodesics, Inc; Oregon, USA) at a sampling frequency of
8,000 Hz, using a custom-made acquisition software, based on EGI's AmpServerPro SDK and
written in C++ and Matlab. No software filters were used during acquisition. The location of
EEG electrodes and anatomical fiducials were digitized with a SofTaxicOptic system (EMS s.r.l.,
Bologna, Italy), coregistered with a pre-implant MRI (Achieva 1.5 T, Philips Healthcare).

2.1.3. Generation of evoked responses
Raw data were high-pass filtered at 0.1 Hz (FIR filter; zero phase; Hamming window;

automatic selection of length and bandwidth); for two subjects, data were also notch filtered
at 50, 100, 150 and 200 Hz due to the presence of line noise. After rejection of bad channels
through visual inspection, epochs were generated from -300 ms to 50 ms with respect to the
electrical stimulation.

Evoked potentials were generated by averaging across all epochs produced by
stimulation of the same contact pair. This produced very clear dipolar patterns produced by a
single source, with a high Signal-to-Noise Ratio (SNR). In Figure 1 we report an example of a
butterfly plot in the time window [-0.5; 1]ms.

Overall, the dataset analyzed in this study comprises 7 subjects for a total of 61
single-source potentials.

Figure 1: An example of evoked potential
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2.2 Forward model
The forward model is a BEM model with realistic geometry. The model comprises three

compartments and was set up using the function make_bem_model with ico set to 4,

corresponding to a downsampling of the Freesurfer triangulations to 5,120 triangles;
conductivities were automatically set to 0.3, 0.006 and 0.3 S/m, for the brain, skull and scalp
compartments, respectively. The source space was built using 4,098 locations in each
hemisphere, for a total of 8,196 available sources, with an average spacing of 4.9 mm.

2.3. Montages
We test inverse methods using four different sensor montages: the full montage

contains 256 channels; then we repeatedly halve the number of channels going down to 128,
then 64, and finally 32 channels. Note that in the case of 256 channels the effective number of
channels is smaller than the nominal number, due to the removal of bad channels. On average
the number of bad channels that were removed is 46 ± 23, mainly located over the neck and
the chicks of the subjects, but, in some cases, also in the areas where the external part of
intracranial electrodes were too dense to fit the hd-EEG net over the subject’s head.

2.4 Inverse methods
Source localization was carried out using ten different inverse methods. Nine of them

are available as open source code within the MNE-Python package2 [42]: dipole fitting, dSPM
[30], eLORETA [29], Gamma Map [32], Linearly Constrained beamformer [43], Mixed Norm
Estimate [33], MNE [26], RAP-MUSIC [31], sLORETA[28]. In addition to these nine inverse
algorithms, we also used SESAME [44, 34], a Bayesian multi-dipole modeling algorithm
currently listed as a plug-in of MNE-Python. Our choice of working with MNE-Python was
motivated by the following reasons: it contains the most used ESI methods; it contains the
largest set of methods; last but not least, it is written in Python, a freely available
programming language, while many alternative tools such as Fieldtrip [45] and Brainstorm
[46] are available in Matlab. Along the paper, we will refer to each inverse method with its
short name as listed in Table 1.

In the analysis below we split the inverse methods in two classes according to a not
completely standard classification: we call distributed methods those methods that are based
on a distributed source model, and have no sparsity-encouraging penalty terms, i.e. MNE,
dSPM, LCMV, SLOR, ELOR; we call dipolar methods both the methods based on strictly dipolar
models such as DF, RAP and SSM, and also those methods based on a distributed source model
but with a sparsity-encouraging penalty term, i.e MxNE and GM. This non-standard
classification is motivated by the fact that MxNE and GM provide in output the estimated
number of sources and the source locations, like purely dipolar methods do.

All methods, except DF and SSM, need a noise covariance matrix that was estimated
from the pre-stimulus interval between -250 ms and -50 ms using the
compute_covariance function in auto mode, in which cross-validation is used [47].

2 https://mne.tools
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Method Short name

Dipole Fitting DF

dSPM DSPM

eLORETA ELOR

Gamma Map GM

Linearly Constrained beamformer LCMV

Minimum Norm Estimate MNE

Mixed Norm Estimate MXNE

RAP-MUSIC RAP

SESAME SSM

sLORETA SLOR

Table 1: Short name of inverse methods used in the study.

2.4.1. Regularization parameters
All ESI methods under analysis, except DF and RAP, require the user to choose the

value of one or more input parameters. In the following, we evaluate the performances of the
methods when different values of parameters are used. For a fair comparison across methods,
we let each parameter vary in the same interval and with the same values.

Seven ESI methods (all but DF, RAP and LCMV) require as input the SNR of the data,
either directly or through the noise variance: for this parameter we test five different values
ranging from 1, which has been recently shown to be a lower limit guaranteeing good
accuracy of the reconstructions [15], to 5, that corresponds to extremely clean data. LCMV
requires to set the regularization parameter λ for regularization of the covariance matrix: here
we test five values, logarithmically spaced (see Table 2).

Finally, six methods also take in input a depth-weighting parameter, that aims to reduce
the bias towards superficial sources: for this parameter we test five linearly spaced values
between zero (no weight) and one. The different parameters we use and the corresponding
values are reported in Table 2. We remark that both DF and RAP are parameter-free methods.

Method Parameters

Depth Other

DF - -

DSPM 0, 0.2, 0.4, 0.6, 0.8, 1 SNR=1, 2, 3, 4, 5

ELOR - SNR=1, 2, 3, 4, 5

GM 0, 0.2, 0.4, 0.6, 0.8, 1 α = 1, 0.25, 0.11, 0.0625, 0.04

LCMV 0, 0.2, 0.4, 0.6, 0.8, 1 λ = 1, 0.1, 0.5, 0.01, 0:05

MNE 0, 0.2, 0.4, 0.6, 0.8, 1 SNR=1, 2, 3, 4, 5

MXNE 0, 0.2, 0.4, 0.6, 0.8, 1 α = 10, 30, 50, 70, 90

RAP - -

SSM - fs=0.07, 0.13, 0.2, 0.27, 0.33
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SLOR 0, 0.2, 0.4, 0.6, 0.8, 1 SNR=1, 2, 3, 4, 5

Table 2: Parameters used for each inverse method.

2.5. Performance evaluation
To quantify the source localization accuracy, we employ the Dipole Localization Error

(DLE), which is defined as the distance between the estimated location and the putative dipole
location, i.e. the medium point between the two electrodes in which current was fed. The
estimated location is defined differently for distributed methods (DSPM, ELOR, LCMV, MNE,
SLOR) and dipolar methods (DF, GM, MXNE, RAP, SSM). The distributed methods treat each
time point independently; when applied to a time-series, they provide a (potentially) different
intensity map/dipole location at each time step. For these methods we consider the solution
at the peak latency and use the location corresponding to the peak intensity. For DF we
consider the location of the equivalent dipole at the time point maximizing the goodness of fit
in all analyzed time window. The remaining dipolar methods work natively with time-series,
and provide one intensity map/dipole location(s) for the whole analysis window. For these
methods we use the location of the estimated dipole applying the method to the window [−2;
2] ms; in case more than one dipole is estimated, we use the location of the estimated dipole
with larger dipole moment. For all methods (except DF and RAP), we compute the DLE for the
different parameters combination. In addition, for each method, we consider the mean
solution defined as the average of the estimated dipole location over all parameters
combination; for this mean dipole we compute the corresponding DLE with the putative
dipole location.

Throughout the Results section, we will assess the differences between the
performances of each and each other method for each montage with the use of the
(non-parametric) Wilcoxon signed-rank test. We set the significance threshold at 0.05 and use
Bonferroni correction for multiple comparisons.

3. Results

We present the results obtained by applying the ten inverse methods to all 61 sessions
of the dataset. Figures 2 and 3 show an example of localization provided by the different
inverse methods applied with five different values of a given input parameter, together with
the exact location.

3.1. Localization with the best combination of input parameters
Figure 4 contains the boxplots of minimum Dipole Localization Error (DLE) (in mm)

computed for all methods and montages. For each method, for each session we consider the
best solution across parameters (for more information on parameter values see Table 2), i.e.
the one with the smallest DLE. Each method is coded by a specific color, and for each
algorithm, from left to right, we show the boxplots obtained with 32, 64, 128, and 256
channels respectively. At the bottom of each boxplot we report its corresponding mean value
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(in mm). At a first glance, SSM and MXNE perform better than all other methods in all
montages, while MNE seems the one with the worst performance.

In Figure 5, we report the results of the pairwise Wilcoxon signed-rank test assessing
the difference between the performances of each and each other method when the best
solution across parameters is considered. The results indicate that the best performances are
obtained by: LCMV, MxNE and SSM with 32 channels; SSM and MXNE with 64 channels and DF,
MxNE and SSM with 128 and 256 channels. Overall two dipolar methods, SSM and MxNE,
substantially outperform the others.

Figure 6 shows, for each montage, the boxplot of the smallest DLE computed across all
methods for each session; the blue boxplot represents the smallest DLE computed across all
montages and methods. The median value for 32 channels is close to the one for 64, but the
spread is smaller for 32 channels and the mean value is 8 mm with respect to the 9 mm of 64
sensors. In the case of 128 and 256 channels the global mean value is 8 and 9 mm respectively,
while considering the smallest DLE across all montages and methods leads to a mean value of
6 mm and for more than half of the sessions we obtain a DLE < 5mm.

In Figure 7 we report, for each method, the percentage of times the estimated location
lies within 5 mm from the best solution obtained by the method. The method with the highest
percentage is SSM, where for 256, 126 and 64 channels the smallest DLE is obtained more
than 60% of times, while by decreasing the number of channels the minimum is reached less
times (51%). The smallest DLE is reached for almost half of the sessions by LCMV (256, 128
and 32 channels), MXNE (64 and 32 channels) and DF (256 channels). ELOR and SLOR reach
the minimum more times when fewer channels are considered, MNE and DSPM with 64
channels and RAP and GM with 128 channels.

Finally, we tested pairwise each method and each montage. We obtained significantly
different values for many of the distributed methods (dSPM, ELOR, MNE, SLOR) and GM and
RAP among the dipolar methods. The significant p-values of these statistical tests are reported
in Table 3.

3.2. Localization accuracy and input parameters
To study the influence of input parameters on localization accuracy, for each montage

and method, given a session, we compute the solutions corresponding to different
combinations of parameter(s) values; we then consider the mean dipole and its DLE, as well
as the standard deviation with respect to the mean dipole as::

σ = 1/𝑁 * 𝑖=1
𝑁∑ |𝑟𝑖 − 𝑟 | 2

where N is the number of parameters combination (see Table 2), ri is the location of the dipole

estimated by the ith set of parameters and is the location of the mean dipole computed𝑟
across all N parameters combinations.
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Figure 2: Example case: exact source location (light blue diamond), intensity map and estimated source location (green
square) as obtained by the distributed methods (MNE. dSPM, SLOR, ELOR and LCMV) for five different values of the input
parameter. The plot was done using the Visbrain 3suite [48].

Figure 3: Example case: exact source location (light blue diamond) and estimated source location (cyan square) as obtained
by the dipolar methods (DF, RAP, MXNE, GM and SSM.) For MXNE, GM and SSM the best solution is shown for five different
values of the input parameter.  The plot was done using the Visbrain suite [48].

3 http://visbrain.org/
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Figure 4: For each method, boxplot of minimum Dipole Localization Errors (DLE); from left to right, we show the boxplot
obtained with 32 64, 128, and 256 channels, with (below) the mean value. ESI methods are ordered based on the overall
behaviour.
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Figure 5: Significance of pairwise Wilcoxon tests between the DLE of each and each other ESI method, for the four different
montages: 32 (first row left), 64 (first row right), 128 (second row left), and 256 channels (second row right). A red square
indicates that the method listed in the corresponding row is significantly worse than the one listed in the corresponding
column, while a blue square indicates that the method listed in the corresponding row is significantly better than the one
listed in the corresponding column. The asterisks are related to the corrected p-value: ∗ p < 0.05, ∗∗ p < 0.005, ∗ ∗ ∗ p <
0.0005

Figure 6: Minimum DLE over all methods for each montage. The blue boxplot represents the minimum of DLE across all
montages.
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Figure 7: Number of times (%) in which the minimum DLE for each montage is reached by each method by using a tolerance δ
= 5 mm .

Method Channels p-value

MNE

256 > 128 3.2 × 10−2

256 > 64 2.8 × 10−4

128 > 64 1.9 × 10−2

64 < 32 1.1 × 10−3

DSPM 256 > 128 1.0 × 10−2

SLOR 256 > 64 6.2 × 10−4

128 > 64 1.3 × 10−3

ELOR 256 > 128 1.6 × 10−2

256 > 64 7.6 × 10−3

256 > 32 8.9 × 10−7

128 > 64 1.5 × 10−2

128 > 32 1.1 × 10−5

64 > 32 2.8 × 10−3

RAP 256 > 64 6.4 × 10−3

256 > 32 4.7 × 10−3

GM 256 > 128 2.4 × 10−2

256 > 64 7.8 × 10−4

256 > 32 4.1 × 10−5

128 > 32 6.7 × 10−3

64 > 32 3.7 × 10−2
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Table 3: For each method, significance of pairwise Wilcoxon signed-rank tests between the DLE of each and each other
montage. We report the corrected p-values.

In Figure 8 we report the DLE (top) and the standard deviation (bottom) computed
with respect to the mean dipole. By visually comparing the results in Figure 4 and 8(a), we
observe that most of the methods behave in a similar way, and the difference between the DLE
of the global mean and that of the best solution ranges between 2 and 7 mm. We remark that
DF and RAP do not depend on parameters, thus the corresponding boxplots are the same as in
Fig. 4. The only notable difference is for LCMV that performs worse, probably due to the great
variability of the estimated dipoles for the different combination of the parameters. This
behaviour emerges from Figure 8(b) that gives us information on the variability of the
location of the estimated dipole across all parameters combinations. Among distributed
methods, DSPM has a very low standard deviation, while among the dipolar methods, SSM is
the one with less spread around the mean dipole. Conversely, LCMV for all the montages
except 32 channels presents a very high variability of the solutions for the different input
parameters.
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Figure 8: From left to right for each method we show results with 32, 64, 128, and 256 channels. (a) Dipole Localization Error
(DLE) computed by using the mean dipole over all parameter combinations; below, the mean value. (b) Standard deviation of
the DLE across all parameter combinations.

Figure 9 reports the results of the statistical tests of each and each other method for
each montage with the use of the (nonparametric) Wilcoxon signed-rank test. By comparing
the results obtained with the mean dipole and the ones of Fig. 5, we can see that the statistical
difference between different inverse methods is more significant when the mean dipole is
used, mainly for a high number of channels: with 256, 128 and 64 channels we have similar

16

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 11, 2021. ; https://doi.org/10.1101/2021.09.10.459782doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.10.459782
http://creativecommons.org/licenses/by-nc-nd/4.0/


patterns with the best performance obtained by DF, MxNE, RAP and SSM; with 32 channels
MNE performs worse than all other methods.

Figure 10 gives an insight into the influence of parameters on the solution of the
different inverse methods. For each method we report, for each combination of input
parameter values, the percentage of times the estimated location lies within 5 mm from the
best solution obtained by the method across all parameter combinations. Among distributed
methods, MNE and MxNE appear to be the most sensitive to the depth parameter, while other
distributed methods seem to be only influenced by the SNR parameter; for LCMV it seems
there is only a negative trend when no depth weighting is performed (i.e. depth=0). For MXNE
a value of alpha between 30 and 70 together with a value for depth equal to 1 gives the best
result. For GM as for the distributed methods the most important parameter is the noise
variance while SSM shows better performances for smaller values of the parameter,
corresponding to higher SNR.
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Figure 9: Significance of pairwise Wilcoxon tests between the DLE of the mean dipole of each and each other inverse method,
for the four different montages: 32 (first row left), 64 (first row right), 128 (second row left), and 256 channels (second row
right). A red square indicates that the method on row is significantly worse than the corresponding method on column, while
a blue square indicates that the method on row is significantly better than the corresponding one on column. The asterisks
are related to the p-value: ∗ p < 0.05, ∗∗ p < 0.005, ∗ ∗ ∗ p < 0.0005
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Figure 10: Percentage of times (%) a specific combination of parameter values reaches within 5 mm from the best solution
obtained by the method across all parameter combinations.

4. Discussion

The aim of this work was to evaluate and compare in vivo the localization accuracy of a
relatively large set of ESI methods, under the hypothesis that the neural generators are focal
sources and substantially dipolar.

4.1. Localization with the best combination of input parameters

When using the best combination of input parameters the results are encouraging: the
best solution across methods is within 1 cm from the true source with very high probability,
and several methods provide average reconstruction errors around 1 cm, with about 75% of
cases falling within 2 cm. It is important to remark that in this study the source reconstruction
procedure was completely automated: after application of the ESI method, only the stronger
source was retained, leading sometimes to large errors. While in routine analysis it may be
difficult to select the optimal combination of parameters, the user may leverage on prior
knowledge and sometimes exclude some of the reconstructed sources, thus effectively
reducing the localization error estimated in our study.

Interestingly, we observed substantial and significant variability between methods,
with MNE being the least accurate and SSM the most accurate. As expected, dipolar methods
provided better results than distributed methods. In this respect, it may be worth to observe
that there is an important difference between the distributed and the dipolar methods
considered here: indeed SSM, RAP, GM and MxNE make use of the whole time series, while
MNE, SLOR, ELOR, dSPM and LCMV work on a single time point and might be more affected by
noise; on the other hand, the SNR of the data is quite high. We also notice that, pleasantly,
newer methods tend to outperform older ones, confirming that there is progress in the field.

We reckon the residual error we observe is most likely due to the combined effect of
bias introduced by the ESI method, and forward modeling error. In this respect, we recall that
the single pulse stimulation is a squared wave lasting 1 millisecond, and therefore contains
very high frequency components: future studies might be devoted to investigating whether
the quasi-static approximation is still valid under these circumstances.

4.2. Sensitivity to input parameters

In general, input parameters do impact localization accuracy of ESI methods quite
substantially. However the actual impact of the input parameter is larger for some methods
and smaller for others. We quantified this variability by computing the standard deviation of
the DLE across parameter combinations. Notice that, a priori, one would expect that methods
with high variability provide a better best result, because more variability implies more
chances of getting closer to the true solution at least once. Indeed, by comparing Figure 8 and
4 we see that this holds true for MxNE and LCMV, that score quite well in terms of best
solution and relatively high in terms of variability. There are also exceptions to this rule: SSM
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has one of the lower standard deviations while being the most accurate with the best solution;
MNE, on the other hand, has high variability but also high localization error. Hence, some
methods are more robust against a mis-specification of the input parameters, and some are
less.

We also observed two unexpected results. First, for distributed methods we observed
the best performances in correspondence of SNR=1, i.e. the smallest value of the SNR
parameter: even though the reconstructions become more widespread, the peak gets closer to
the true source. This result is puzzling because SNR=1 corresponds in principle to very noisy
signals, while the input data are quite clean; on the other hand, it finds partial confirmation in
[49] where authors use SNR=3 for MEG data and SNR=1 for EEG data. We speculate this fact
might be due to forward modeling errors, related to the volume conduction problem, that
reduce the effective SNR of otherwise clean EEG data; in any case, more investigations are
needed to clarify this point. Second, despite the presence of both deep and superficial sources
in the dataset, the depth weighting parameter appears to have little or no impact for half of
the tested methods, namely dSPM, SLOR and GM; in MNE and MxNE, on the other hand, the
largest tested value provided the best results, while LCMV seems to prefer intermediate
values.

As a side note, it is interesting to compare the low standard deviation of dSPM with the
high standard deviation of MNE. Indeed, we recall that the dSPM solution is obtained from the
MNE solution through a ``noise normalization’’ procedure. Apparently, such noise
normalization contributes a little to reducing localization error but mostly to reduce the
dependence on the input parameters.

Overall, our results clearly point out that objective and reliable criteria for choosing the
parameters are needed.

4.3. Impact of the montage

In our study, the best localization accuracy was often obtained with 32 channels, and
we observed no major differences when using denser montages; in fact, for some methods we
found significant differences in the DLE obtained with different montages, and the lower DLE
was almost systematically associated to the lower density montage. While this result is
certainly unexpected, there are few considerations that can help to make it less counter
intuitive than it appears at first.

Indeed, there are two specific features of the analyzed data set that make 32 channels
an enough number of channels: (i) the dipolar nature of the source we are looking for and (ii)
the high SNR of the data. Indeed, localizing a single current dipole amounts to estimating 6
parameters: 32 channels, corresponding to 32 equations or constraints, are more than enough
provided that their data are good enough [50]. And the data are good enough, because the
spatial distribution of the 32 channels covers the whole head, and because the SNR of the data
is very high. Therefore, under our experimental conditions, we do not expect a substantial
gain in localization accuracy when adding more channels. This result is in agreement with
literature on the topic [51, 52].

From a mathematical perspective, denser montages correspond to taller leadfield
matrices featuring larger condition numbers, i.e. the problem becomes more ill-conditioned
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and more regularization might be required. As a partial confirmation, significant differences
between montages were observed almost exclusively for distributed methods, that are
expected to suffer more from an ill-conditioned leadfield; the best DLE of SSM, DF, MxNE and
LCMV showed no significant dependence on the montage.

Finally, we notice that several methods show reduced variability with respect to the
input parameter when denser montages are used: in this respect, denser montages do provide
better results in terms of increased stability.

In conclusion, our results suggest that 32 channels are enough to reconstruct a focal
source from high-SNR data; this might include single time points with one strong source, but
also single topographies obtained by ICA, or specific frequencies. More complex
configurations (or more noisy data sets), on the other hand, are likely to benefit from
additional sensors.

4.4. Comparison with previous works

Several comparisons between ESI methods have been performed in recent years.
First of all, the same dataset used here was used in [25], where an exemplar analysis

with three ESI methods (MNE, ELOR and DSPM) was performed. Here, we considerably
extended the comparison to include also more recent methods: noteworthy, we observed that
recent methods such as SSM and MxNE do outperform older ones, hereby confirming recent
results [19, 15]. In addition, we studied the impact of regularization and depth weighting
parameters more in detail, highlighting similarities and differences between different
methods.

Another study that relates quite directly to our current study is that in [19], where the
authors compared retrospectively SSM, RAP and wMNE with the results of an ECD analysis on
epileptic subjects; indeed, also in this case the reference source is a point source, even though
in this case it is the product of a former analysis and not a true source; anyway, the authors
find MNE to be the least accurate and SSM the most accurate.

There is also an increasing number of studies that find different methods have
substantially similar, good performances. In [53] the authors compare 5 ESI methods on ictal
EEG data, and find a general agreement between methods, with MNE being the least accurate;
although this result is not statistically significant, it is a partial confirmation of our result. In
[20] the authors compared DSPM, MNE, SLOR and cMEM [54] (not tested here) in a clinical
scenario, and found excellent performances for all of them. Their results show sLOR was
slightly but significantly better than dSPM, while in our findings SLOR was at times better than
MNE but never better than dSPM. In [55] the authors study the accuracy of dipolar methods
(ECD, MUSIC), imaging methods (MNE, sLORETA, SWARM) and different implementation of
SAM beamformer as compared to intracranial EEG (iEEG) and the resection areas in a large
cohort of pediatric patients with intractable epilepsy. The accuracy of all these methods is
relatively similar when compared to the ground truth. The concordance or discordance of
MUSIC with iEEG was the best predictor of long-term seizure outcome. In [56] the authors
recently compared interictal MEG spikes using MUSIC, SAM(g2), and sLORETA to interictal
discharges recorded with iEEG. It was reported that these three MEG methods showed similar
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concordance with iEEG but differed depending on the brain region in which the spike was
located.

In other comparisons, the authors use dataset where more widespread activations are
present. In [17] the authors study what are the best conditions for locating the epileptogenic
zone with High Resolution EEG and compare five different methods; their results highlight
that distributed methods are more appropriate to localize a widespread epileptogenic zone
than a focal one, and that ictal spikes with focal scalp electric field are better localized by
dipolar methods (ECD and MUSIC). This last finding is in line with our results. In [57] the
authors used MNE, eLOR and LCMV for source reconstruction and connectivity estimation
from resting state data, and found relative agreement in source localizations, more than in
connectivity estimation.

Most of these studies feature three important differences with respect to the one
reported here. First of all, the definition of true source was necessarily more vague and less
accurate than here. Second, the data were analyzed by expert users who almost certainly had
expectations, and could tune each method to provide a coherent picture; here, instead, each
method was applied independently, and in an automated fashion. Third, none of these studies
makes explicit reference to the setting of the input parameters.

5. Conclusions

In this study we investigated in vivo the spatial accuracy of ESI methods, and its
dependence on the input parameter(s), when the generators are focal. Our data show good
levels of accuracy of ESI techniques, with the best solution across parameters and across
methods within 1 cm from the true source. This is true also when ESI is applied to
“conventional” (32 channels) rather than dense (64, 128, 256 channels) EEG recordings.
While all tested methods provided reasonable performances with the optimal parameter
value(s), we did observe substantial differences between methods: recent dipolar methods,
particularly SSM, provide significantly better results than older distributed methods such as
MNE, both in terms of a higher accuracy with the optimal parameter choice, and a lower
sensitivity to the value of the input parameter. We also observed negligible impact of depth
weighting for SLOR, dSPM and GM, and a general preference for lower values of the SNR in all
distributed methods, a result that finds partial support in the literature.

Overall findings reinforce the importance that ESI may have in the clinical context,
especially when applied to identify the surgical target in potential candidates for epilepsy
surgery.
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