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Abstract

The current peer-to-peer (P2P) information sharing
paradigm does not provide incentive and service differenti-
ation for users. Since there is no motivation to share infor-
mation or resources, this leads to the “free-riding” and the
“tragedy of the commons” problems. In this paper, we ad-
dress how one can incorporate incentive into the P2P in-
formation sharing paradigm so as to encourage users to
share information and resources. Our mechanism (or pro-
tocol) provides service differentiation to users with different
contribution values and connection types. The mecha-
nism also has some desirable properties: (1) conserva-
tion of cumulative contribution and social utility in the
P2P community, (2) maximization of social utility if all re-
questing clients have the same contribution value, and (3)
incentive-based resource distribution. The resource distri-
bution algorithm and the contribution update algorithm
are computationally efficient and can be easily imple-
mented. Experimental results illustrate the efficiency and
fairness of our algorithms.

1. Introduction

The rapid growth of decentralized and structured or un-
structured peer-to-peer (P2P) networks [16, 13, 11] holds
great potential for efficient information exchange in the In-
ternet. A P2P network may exhibit a power-law topology
[12] such that it can propagate queries quickly and, if imple-
mented efficiently [16], it can locate objects in log�n� time,
where n is the number of nodes in the network. However,
there are remaining problems in the P2P information shar-
ing paradigm which complicate its deployment. Free-riding
and the tragedy of the commons are two major problems. As
reported in [3], nearly 70% of Gnutella users do not share
any file with others in a P2P community and nearly 50% of
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all search responses come from the top 1% of content shar-
ing nodes. Therefore, nodes that share information and re-
sources are prone to congestion, leading to the tragedy of
the commons [7]. Another problem is that many users inten-
tionally misrepresent their connection speeds so as to dis-
courage others from going to their nodes for file download.
Worse yet, Gnutella-like systems give no service differenti-
ation between users who do not share any information with
or make any contribution to the P2P community.

The objective of this paper is to design and analyze a
protocol that provides incentives for users to share informa-
tion and offers preferential service to users who contribute
to the P2P community. We address the following issues:
1) How to utilize transfer bandwidth resources efficiently?
2) How to fairly serve different nodes which have different
connection types and contributions in a P2P community?
3) How to avoid problems of free-riding and the tragedy of
the commons?

Many current P2P systems use the first-come-first-served
policy in providing file transfer services [2]. This may cause
large response time or even starvation for requests queued
after other long running requests. Alternatively, round robin
scheduling can be used. However, evenly distributing the
transfer bandwidth between requesting users may not be
suitable. First, this may not be an efficient choice for the
P2P network since different nodes may have different con-
nection types (e.g., modem, LAN, ADSL) and speeds, and
they may achieve different utilities even if given the same
amount of transfer bandwidth resource. Instead, one should
consider the problem of distributing the transfer bandwidth
resource so as to maximize the aggregate utility. Second, it
may not be fair since some requesting nodes may have con-
tributed a lot more than other requesting nodes. These con-
siderations lead us to propose a scheduling policy which is
based on the aggregate utility, the connection types and con-
tribution values of individual requesting nodes. Such a pol-
icy gives a rational user incentive to share information and
contribute service to a P2P community.

The balance of the paper is organized as follows. In Sec-
tion 2, we introduce the notations and model of our incen-
tive P2P network. In Section 3, we present the algorithms
for resource distribution. In Section 4, we present an algo-
rithm for computing the contribution values of all partic-

Proceedings of the 24th International Conference on Distributed Computing Systems (ICDCS’04) 

1063-6927/04 $20.00 © 2004 IEEE 

Authorized licensed use limited to: Columbia University. Downloaded on October 26, 2008 at 14:36 from IEEE Xplore.  Restrictions apply.



ipating nodes. In Section 5, we report experimental results
to illustrate the dynamics between the contributionvalues of
participating nodes and their received bandwidth. Related
work is discussed in Section 6. Section 7 concludes.

2. Incentive P2P Networks

In this section, we first present a model of the Gnutella
protocol – a common P2P network protocol – and some of
its inherent problems. Although we compare and contrast
our work with Gnutella, the proposed mechanism in this pa-
per can be used to give incentive in more recent P2P proto-
cols, such as [16]. We then present the notations in our de-
sign of an incentive-based protocol, and state some of the
protocol’s desirable properties.

2.1. The Gnutella protocol and its inherent prob-
lems

Gnutella [1], an open P2P protocol for connection man-
agement and distributed search, represents a class of decen-
tralized unstructured P2P networks. In a Gnutella-like net-
work, each node (also called a servent) plays the role of both
a client and a server. The Gnutella protocol specifies rules
for sending/answering queries and maintaining the connec-
tivity between different servents. Each servent joins a P2P
network by connecting to some existing servents in the net-
work. A servent, say i, performs file searching by sending
queries to its neighbors, which can in turn forward the query
to their own neighbors. Once the file is located in a set of
servents, say S, servent i can request a file transfer from any
servent j � S.

To formally describe the logical and physical views of
the file transfer process, we define the following notations:

N : A set of all servents in a P2P system with jN j � N .
� � ��i�j�N�N , where �i�j represents the average file transfer

request rate from servent i to servent j.
� � �u�� u�� � � � � uN �, where ui, i � N , represents the max-

imal upload bandwidth (in Mbps) of servent i.
D � �d�� d�� � � � � dN �, where di, i�N , represents the maxi-

mal download bandwidth (in Mbps) of servent i.
Rk: The set of servents which may request file download

from servent k; i.e., any servent j for which �j�k � �.

Figure 1 illustrates the logical and physical views of the file
transfer process. Figure 1(a) depicts the query/search pro-
cess. Servents �� 	� 
, and � have found that servent k has
the file that they are searching for, and they decide to re-
quest the file from servent k. Servent k has a physical down-
load bandwidth of dk and an upload bandwidth of uk (both
in Mbps). Typically, we have dk � uk. For example, for
an ADSL connection, we have dk � uk. But for other full-
duplex network technologies (e.g, Ethernet and ATM), we
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Figure 1. (a) logical and (b) physical views of
file transfers in a P2P network.

have dk � uk. Therefore, to transfer the requested files, ser-
vents �� 	� 
, and � have to share the upload bandwidth uk
of servent k. This is illustrated in Figure 1(b).

In this paper, we assume that there are N servents in the
P2P network. We define � to be an N�N matrix with �i�j
denoting the average file transfer request rate from servent i
to servent j. A servent, who shares certain contents in a P2P
community, receives different rates of request from other
servents. In general, the request rates depend on (1) the pop-
ularity of the contents offered by the target servent, and (2)
the target servent’s upload bandwidth capacity.

The Gnutella protocol specifies that the file transfer is to
be carried out over HTTP. Most Gnutella client implemen-
tations maintain multiple HTTP connections, but limit the
maximum number of such concurrent HTTP transfers at any
given time. For example, LimeWare [2] uses upload slots
to limit the number of HTTP connections. When the up-
load slots are used up, new file transfer requests are queued
and LimeWare uses the FCFS scheduling policy to process
the waiting requests. With FCFS, requests may experience
a long waiting time. For example, if the active HTTP ses-
sions are being occupied with large file transfers, requests
in the queue will have to wait for a long time before receiv-
ing service.

To reduce the waiting time, an alternative solution is to
use some form of processor-sharing discipline in scheduling
the file transfer requests. However, such an approach has its
own problems. First, the simple strategy of giving an equal
share of the transfer capacity to each requesting node can
be inefficient, because the download capacity of some of
the requesting nodes may be smaller than their allocated ca-
pacity share. Second, even if all the requesting servents can
fully utilize their bandwidth share, the equal resource allo-
cations ignore the more relevant issue of end user’s satisfac-
tion. For example, different requesting servents may have
different utility functions, which quantify the servents’ “de-
gree of happiness” when they receive different amounts of
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the transfer bandwidth resource. Lastly, an equal allocation
strategy obviously gives no incentive for servents to con-
tribute to their peers.

2.2. Incentive protocol: notations & desirable
properties

Lack of incentive for sharing leads to the undesirable sit-
uation in which a servent behaves like a client most of the
time [15]. The design of an incentive protocol for P2P net-
works is imperative. In such a protocol, the proper alloca-
tion of transfer bandwidth to requesting servents should be
based on the servents’ connection type, utility function, and
contribution to the P2P community. Before we present our
incentive protocol, we give the necessary notations:

� � ���� ��� � � � � �N �: A vector which represents the connec-
tion type (i.e., the upload and download capacities) of all
the servents in the P2P network. In particular, �i � � is
the connection type of servent i, which is a function of
i’s declared upload bandwidth ui and download band-
width di. The set � represents all the possible connec-
tion types.

Ci�t� represents the cumulative contribution of servent i at
time t, where Ci�t� � fIR�

S
�g.

xi�t� represents the bandwidth allocated to servent i when
i requests a file transfer. The bandwidth assignment is
based on our incentive protocol.

Ui��i� xi�: A non-negative function which represents the util-
ity of servent i when it declares its connection type to be
�i and receives a file transfer service rate of xi.

Each servent in the system, say i, has a cumulative con-
tribution value Ci�t� at time t. The value of Ci�t� will in-
crease if servent i provides service to the community (e.g.,
by transferring files for other requesting servents). It may
decrease if servent i requests some service from the com-
munity (e.g., requesting file transfers from other servents).

We now state some desirable properties of an incentive
protocol. In later sections, we will prove that our proposed
algorithms achieve these properties.
(1) Conservation of the cumulative contribution and so-
cial utility: The aggregate contributionof all servents at any
time t � � is equal to the aggregate cumulative utility of all
servents from time � up to time t. Formally,

NX
i��

Ci�t� �
NX
i��

Z t

�

Ui��i� xi�� ��d� �t � �� (1)

Remark: This property implies that the contribution by any
servent in a P2P network via file transfer service is trans-
lated into utilities within the P2P community.
(2) Maximization of social welfare through resource al-
location: Given a servent k and all the requesting clients in

Rk, if Ci�t� � Cj�t� for all i� j � Rk, an incentive proto-
col should allocate the transfer bandwidth resource of ser-
vent k so as to maximize the social welfare. Formally, max-
imizing the social welfare implies finding a transfer band-
width vector x�t� � �xi�t�� � � � � xN �t�� such that

x�t��argmax

�X
i�Rk

Ui��i� xi�t��

�
s.t.
X
i�Rk

xi�t��uk� (2)

Remark: This property implies that the incentive protocol
should maximize the aggregate utility (or “happiness”) of
all the requesting servents in Rk.
(3) Incentive-based resource distribution: The protocol
should provide incentive to rational users. Given a servent
k and all the requesting clients inRk, we have two cases:
� No Congestion: If the aggregate download bandwidth at
time t of all the requesting servents in Rk is less than or
equal to uk, the upload bandwidth of servent k, then all ser-
vents in Rk will receive a transfer bandwidth equal to their
respective maximal download bandwidth such that they will
achieve equal utility. Formally, if

P
i�Rk

di � uk, then

xi�t� � di

Ui��i� xi�t�� � Uj��j � xj�t�� �i� j � Rk� (3)

Remark: This property implies that whenever servent k has
sufficient resources, all the requesting servents should re-
ceive their maximal download bandwidth such that they are
“equally happy”.
� Congestion: When there is a congestion for servent k
(i.e.,

P
i�Rk

di � uk�, the transfer bandwidth allocation
should be a function of the contributionand download band-
width of all the requesting servents inRk. Formally, for any
two servents i� j � Rk, if the ratio of contribution to down-
load bandwidth of i is greater than or equal to that of j, ser-
vent k will distribute the transfer bandwidth resource such
that the utility of servent i is greater than or equal to that of
servent j. Formally,

Ci�t�

di
�

Cj�t�

dj
�� Ui��i� xi�t���Uj��j � xj�t��� (4)

Remark: This property implies that the incentive protocol
should provide higher utilities to servents who have higher
contributions per unit data request.

In the following, we present the operational setting of
our incentive protocol.

2.3. Operational setting of incentive P2P protocol

The general setting in which our incentive protocol op-
erates is as follows:
� Each servent declares its connection type to the P2P com-
munity, i.e., servent i has to declare its connection type of
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�i. For our incentive protocol, the connection type of ser-
vent i depends only on the upload (ui) and download band-
widths (di).
� To provide fairness and incentive for a P2P community,
the utility function, say for servent i, takes on a concave,
bounded, and normalized form. The utility function of ser-
vent i, which depends on the download bandwidth di and
the received transfer bandwidth xi, takes the form:

Ui��i� xi� � Ui�di� xi��

�
log�xi

di
� �� if xi � di

log��� if xi � di.
(5)

Remark: We take this form of utility function based on the
following reasons: (a) A log function is a general form of
concave function which can represent a large class of elas-
tic traffic [14] and this fits the file transfer service; (b) The
utility function has an upper bound of log���, which implies
that once a servent receives its maximum download band-
width, they are equally satisfied; (c) The utility function has
a value of zero if the received bandwidth xi � �; (d) The
utility function estimates the level of satisfaction given the
ratio xi

di
, the amount of allocated bandwidth to the servent’s

maximal download bandwidth.
We adopt concepts from mechanism design [10]. Under

our incentive protocol:
(1) All servents have to declare their connection types.
Hence, servent i has a strategy gi which can declare any
connection type � � �, where � is the set of all con-
nection types in our incentive P2P system. For an honest
servent, which can be induced by a protocol having the
truth revealing property, the strategy of servent i should be
gi � �i � �ui� di�. That is, servent i declares its real con-
nection type.
(2) We interpret Ci�t�, the contribution of servent i, as the
virtual credit that servent i has at time t. The proposed pro-
tocol will update the contributions of all the participating
servents in any file transfer activity. In particular, the incen-
tive protocol will increase the contribution when a servent
offers file transfer service for any requesting servent, and it
may reduce the contribution of a servent who requests a file
download. Particularly, the initial value of contribution is
assigned to be zero which implies this servent has not pro-
vided any service to others.
(3) The outcomes of the proposed protocol are (i) how much
bandwidth is to be allocated to each requesting servent, and
(ii) the contribution updates for all participating servents.

3. Incentive Protocol for Distributing the In-
stantaneous Transfer Bandwidth

In this section, we describe the incentive protocol for al-
locating the instantaneous transfer bandwidth to requesting
servents. For ease of discussion, we drop the time depen-
dent notation; i.e., we use xi instead of xi�t�. Our incen-

tive protocol can achieve efficiency for social welfare. Fur-
thermore, it provides fairness and incentive for sharing re-
sources among all requesting servents. We first illustrate
how the incentive protocol maximizes the social welfare.
Then we generalize the concept and extend the protocol to
include the contribution value of each requesting servent.

3.1. Protocol to maximize the social welfare

Consider a servent k that is willing to offer its transfer
bandwidth resource for use by a set of requesting servents
Rk. If all the servents inRk are of the same contribution (or
if we ignore the contribution factor for the time being), max-
imizing the social welfare implies finding a transfer band-
width vector y � �y�� � � � � yjRkj	 such that:

SW �uk�Rk� 
� max
X
i�Rk

Ui��i� yi�

s.t.
X
i�Rk

yi � uk � � � yi � di �i � Rk� (6)

Here, yi is the allocated transfer bandwidth for servent i in
solving the above maximization problem. For our concave
and bounded utility functions, we have the following equiv-
alent optimization problem:

max
Y
i�Rk

�yi � di�

s.t.
X
i�Rk

yi � uk � � � yi � di � i � Rk� (7)

One way to solve the optimization problem is to try to dis-
tribute the resource uk such that the �yi � di�s are as even
as possible for all i � Rk. For instance, if we were with-
out constraints, the solution should satisfy:

yi � di � yj � dj �i� j � Rk� (8)

We use and enhance the progressive filling algorithm [4]
to solve the above constrained optimization problem. Our
progressive filling algorithm works as follows:

1. Treat a requesting client i � Rk as a water bucket with
a capacity equals to �di and a height equals to �di.

2. Based on the values of di, sort all buckets in ascending
order. For bucket i, the initial water level is di.

3. In addition, we have uk amount of “water” (the re-
source) to distribute to all the buckets. We distribute
the water such that the maxmin fairness property [4]
holds.

One numerical example is shown in [8].

Theorem 1 The progressive filling (PF) algorithm finds a so-
lution to the bandwidth allocation problem which maxi-
mizes the social welfare in Eq. (6).

Proof: Please refer to technical report [8].
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3.2. Incentive protocol

In the above discussion, we distribute the transfer band-
width uk among the requesting servents without consider-
ing their contribution values. We now extend the solution to
include the contribution value of each requesting servent in
order to provide incentive for contributing to the P2P com-
munity.

In maximizing the social welfare, Equation (8) implies
that for any two requesting servents i� j � Rk, we distribute
the transfer bandwidth resource such that �yi � di���yj �
dj� � �. To provide incentive, we distribute the transfer
bandwidth resource uk of servent k such that the transfer
bandwidth vector x � �x�� � � � � xjRkj� satisfies

xi � di
xj � dj

�

�
Ci

Cj

�r

�i� j � Rk (9)

where r is any nonnegative real number. Clearly this is a
generalization of the problem of maximizing the social wel-
fare. E.g., if all the requesting clients have the same contri-
bution values (i.e., Ci � Cj for i� j � Rk), the above for-
mulation is equivalent to Equation (8).

Based on the progressive filling (PF) algorithm given
above, we propose an enhanced contributiondependent pro-
gressive filling (CDPF) algorithm. In essence, the new algo-
rithm tries to satisfy Equation (9) among the requesting ser-
vents, if feasible. In doing so, the algorithm also maintains
the maxmin fairness property. The CDPF algorithm works
as follows:
(1) Treat a requesting client i � Rk as a water bucket with
a capacity equal to �di and a height equal to �di��Ci�r.
(2) Based on the value di��Ci�

r, sort all the buckets in
ascending order. For bucket i, the initial water level is
di��Ci�r.
(3) Distribute uk amount of water (the resource) to all the
buckets. To fill each unit for bucket i, we consume �Ci�r

amount of water.
One numerical example is shown in [8].

Theorem 2 For any two requesting servents i� j � Rk, the
CDPF algorithm distributes the resource such that:

�Ci�r

di
�

�Cj�r

dj
�� Ui��i� xi� � Uj��j � xj��

Proof: Please refer to technical report [8].
Remark: The significance of Theorem 2 is that our in-
centive protocol possesses the desired properties (2) & (3)
given in Section 2.2.

The CDPF can be implemented by the following code:

CDPF (r,uk, all requesting servents in Rk)
1. if (

P
i�Rk

di � uk) return x=d;/*no congestion*/

2. sort f di
�Ci�r

� �di
�Ci�r

ji � Rkg in ascending order. Store
values and node index in array S and T respectively;

3. i=1; /*initialize index variable*/

4. level=dT ���;/*initialize feasible water level*/

5. vol=C�T ����r; /*unit height volume*/

6. do f
7. i=i+1;
8. nextLevel=S[i];/*the next testing water level*/

9. if ((nextLevel�level)�vol� uk) f
/*can’t move to next level*/

10. level = level+uk/vol;
11. uk � �;
12. g
13. elsef

/*move to next feasible level*/
14. uk=uk-vol*(nextLevel-level);
15. level=nextLevel;

/*adjust the unit for filling operation*/
16. if (S[i] is a lower bound of T[i]) vol=vol+�CT �i��

r;
17. else vol=vol-�CT �i��

r ;
18. g
19. g while (uk � �);
20. for (each i � Rk)
21. if (level� di

�Ci�r
) xi=[level- di

�Ci�r
]*�Ci�r;

22. return x;

Our algorithm will assign the bandwidth xi as equal to
di, which is the maximal download bandwidth of servent
i, for all the requesting servents if the aggregate maxi-
mal download bandwidth is less than or equal to the up-
load bandwidth resource (i.e.,

P
i�Rk

di � uk). Otherwise,
our algorithm sorts all the lower bounds f di

�Ci�r
g and upper

bounds f �di
�Ci�r

g in ascending order. Then it tests whether
the amount of resource uk can fill the buckets for reach-
ing these bounds. We initialize the starting water level to
be the minimum value of the sorted bounds. The initial
marginal amount of water for filling a higher water level is
�C�T �����r, where T ��� is the index of the servent which has
the minimum lower bound. Within each iteration of the do-
while loop, we test whether the bound for the next bucket
in S can be reached. If it can be reached, we first reduce the
remaining resource in uk, then we adjust �C�i��r if servent
i’s bound can be reached, and we assign the transfer band-
width to all the eligible requesting servents. If the bound
cannot be reached, the algorithm terminates and we have
found the transfer bandwidth distribution.

Theorem 3 The CDPF algorithm has computational complex-
ity O�n log�n��, where n is the number of requesting ser-
vents in Rk.

Proof: Please refer to technical report [8].
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4. Contribution Update

After each file transfer activity, we need to update the
contribution values of all the participating servents. We give
the physical meaning of contribution values and discuss
how they should be updated. We will then present our con-
tribution update algorithm and give its complexity analysis.
Security issues for the contribution update will be discussed
in a later section.

4.1. Social gain and social payment

In P2P networks, many factors can influence the con-
tribution value of a given servent – e.g., shared storage or
shared bandwidth. It is difficult to rank the importance of
these factors. Furthermore, it is the shared contents, rather
than the resources being shared, that attract download re-
quests. Hence, the same amount of bandwidth or storage
offered for sharing by two servents does not imply the same
amount of contribution by these servents. Rather, we de-
fine a servent’s contribution as the utility it can provide to
the whole P2P community. When a servent, say k, trans-
fers files for other servents, it gives utilities to the commu-
nity. Therefore, we increase the contribution value of k by
the social gain SGk�uk�, which is defined as:

SGk�uk� � SW �uk�Rk� � max
X
i�Rk

Ui��i� yi�� (10)

On the other hand, when a servent i � Rk receives transfer
bandwidth of xi based on the CDPF algorithm, the xi value
may not be equal to yi, which is the solution of the PF algo-
rithm for maximizing the social welfare. Therefore, we de-
fine SP i�xi� as the social payment for servent i when it re-
ceives a transfer bandwidth of xi :

SP i�xi� � SW �uk�Rk��

�Ui��i� xi� � SW �uk�xi�Rk�fig�� (11)

The physical meaning of SPi�xi� is the difference be-
tween the maximum aggregate utility under social welfare
resource distribution (as solved by the PF algorithm) and
the maximum aggregate utility under contribution depen-
dent resource distribution (as solved by the CDPF algo-
rithm). In other words, if xi bandwidth is assigned to ser-
vent i based on the CDPF algorithm, the P2P community
will not receive maximum social welfare. Hence, servent i
should pay for this difference, and we deduct the payment
amount from servent i’s contribution value.

4.2. Instantaneous contribution update

When a servent, say k, provides its transfer bandwidth
for use by the P2P community, its contribution value is in-
creased by SW �uk �Rk�. This increase is equal to the max-

imum social welfare. On the other hand, the aggregate util-
ity received by the requesting servents in Rk is not equal
to SW �uk �Rk�. The reason for the difference is that some
requesting servents may receive more transfer bandwidth
under the CDPF algorithm, as compared with the PF algo-
rithm. Such a servent needs to make a social payment equal
to the extra bandwidth received.

In our contribution update mechanism, we compare the
resource allocation, xi, under CDPF with the resource allo-
cation, yi, under PF for servent i. We choose a servent who
obtains the largest amount of extra bandwidthxi�yi and re-
duce that servent’s contribution by SP i�xi�. The process is
repeated until the solution of the CDPF algorithm equals the
solution of the PF algorithm.

An example for contribution update is shown in [8].

Theorem 4 The cumulative contribution is conserved to be
equal to the total social utility at all time. That is,

NX
i��

Ci�t� �
NX
i��

Z t

�

Ui��i� xi�� ��d� �t � ��

Proof: Please refer to technical report [8]. Our contribu-
tion update mechanism is based on a fluid model. In im-
plementation, we divide time into quanta denoted as �t. At
the beginning of each time quantum, we assign the transfer
bandwidth using the CDPF algorithm. At the end of each
time quantum, we update the contribution values of servent
k and the servents inRk. The pseudo-code for the contribu-
tion update is:

Contribution Update (r,uk,all requesting servents in Rk)
1. x = CDPF(r,uk,all requesting servents in Rk);

/* x is the solution of CDPF algorithm */
2. y = PF(uk,all requesting servents in Rk);

/* y is the solution of PF algorithm */
3. Ck � Ck � �

P
i�Rk

log�yi
di

� ��� ��t;
/* the resource owner k increases its

contribution by the social gain */
4. do f
5. q = arg max fxi � yig;

/* q is the servent who will reduce its

contribution in this iteration */
6. if (xq � yq � �) f
7. SP �

P
i�Rk

log�yi
di

� ��;
8. Rk � Rk � fqg;
9. uk � uk � xq;
10. y = PF(uk,all requesting servents in Rk);
11. SP � SP � �log�xi

di
� �� �

P
i�Rk

log�yi
di
� ���;

/* servent q reduces its contribution by its

social payment */
12. Cq � Cq � SP ��t;
13. g
14. g while (xq � yq � �);
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In line 3, the algorithm increases the contribution of the re-
source owner by the social gain SG. The contributions of
the requesting servents are reduced in the do-while loop. In
line 5, we choose the servent q who gains the most extra re-
source xi � yi. From lines 7 to 11, we compute the social
payment for servent q and adjust the remaining amount of
resource for the remaining requesting servents. In line 12,
we decrease the contribution of q by its social payment.

Theorem 5 The contribution update algorithm has computa-
tional complexity O�n� log�n��, where n is the number of
requesting servents.

Proof: Please refer to technical report [8].

5. Experimental Results

In here, we present simulation results showing that our
mechanism can fairly distribute transfer bandwidth among
the requesting servents and can provide higher aggregate
utility than other scheduling disciplines like FCFS and
processor-sharing.
Experiment A: servents with similar connection type
but different contribution values: Four servents make re-
quests to servent k, which has a transfer resource of uk �
���. The contribution values of these requesting servents at
time t� are �C�� C�� C�� C�� � ��� ���� 	�	���. The connec-
tion types of all the requesting servents are the same and
their maximal download bandwidth are d� � d� � d� �
d� � ���. Each simulation lasts ��� units of time in the
interval of �t� � t � t� 
 ����. Figure 2 illustrates the
bandwidth assignment xi�t� and their respective contribu-
tion values Ci�t� during the simulation period.
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Figure 2. (a) Instantaneous bandwidth as-
signment and (b) instantaneous contribution
values for competing servents.

In experiment A, we observe that although all the ser-
vents have the same connection type, CDPF algorithm as-
signs higher bandwidth to the servents which have larger
contribution values. At the same time, our mechanism de-
creases the contribution values of these servents (since they

are getting more social resources). Finally, all servents tend
to have equal contribution values and equal bandwidths,
which maximize the aggregate utility among all servents.
Experiment B: servents with different connection types
and contribution values: The connection types of the re-
questing servents are different and they are d� � ���� d� �
���� d� � 	��� d� � 	��, respectively. All the other set-
tings are the same as in Experiment A. For time t� �

t � t� 
 ���, we illustrate the bandwidth assignment xi�t�
and contribution Ci�t� in Figure 3. In experiment B, we
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Figure 3. a) Instantaneous bandwidth assign-
ment and (b) instantaneous contribution val-
ues for competing servents.

observe that our instantaneous bandwidth assignment also
converges to the solution of the PF algorithm, which pro-
vides maximized aggregate utility for the P2P network. Ini-
tially, servent � gains less bandwidth than the solution of the
PF algorithm. Therefore, the CDPF algorithm does not de-
crease the contribution of servent �. For servent 	, �, and
�, they gain a larger bandwidth than by the PF algorithm
at the beginning. Afterwards, their contribution values con-
verge to the same value. So, their instantaneous bandwidth
converges to the solution of the PF algorithm.
Experiment C: achieved utility under different resource
distribution algorithms: We compare the efficiency of our
incentive mechanism with that of the FCFS and processor-
sharing disciplines. The average file transfer request rate
matrix, �, is randomly generated in 10,000 experiments.
There are fifty servents and they can make requests to each
other. There are five different connection types and each
servent has an equal probability of being any of the con-
nection type. The file request rate and the file service rate
are Poisson. Under the FCFS discipline, there are at most
five servents receiving service at the same time. Any fur-
ther requests are queued and served in FCFS order. Un-
der the processor sharing discipline, each requesting ser-
vent gets an equal share of the available bandwidth from the
provider servent. The distribution for the incentive mecha-
nism is as described above. The probabilitydensity function
for the aggregate utility under these three resource distribu-
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Figure 4. Probability density function for ag-
gregate utility under FCFS, process-sharing
and incentive mechanism.

tion algorithms are illustrated in Figure 4. The x-axis is the
value of the aggregate utility and the y-axis is the frequency
achieving the value of aggregate utility. The proposed in-
centive mechanism always gives a higher aggregate utility
than the other algorithms.

6. Related Work

In [6], the authors address one possible mechanism for
Napster-liked P2P network. Our work is different from
theirs in the sense that our mechanism uses “virtual credit”
so that it will not reduce the willingness of users to partic-
ipate in a P2P network. In [5], the authors discuss the eco-
nomic behavior of P2P storage networks. In [17], the au-
thors model P2P networks as a Cournot Oligopoly game and
give elegant control-theoretical solution focusing on global
storage system. Our work focuses on the file-transfer and
bandwidth allocation of a P2P system and we use the mech-
anism design approach in designing a competitive game
in a P2P system. Lastly, algorithmic mechanism design
[9, 10, 15] provides a theoretical framework for designing
incentive mechanisms.

7. Conclusion

We have presented an incentive mechanism for P2P net-
works. Our mechanism distributes resources among ser-
vents based on each servent’s utility function, connection
type, and contribution. Our mechanism achieves both higher
aggregate utility and fairness for a P2P network. Under our
mechanism, the contribution value of a servent will be in-
creased if it provides service to the P2P community. A
servent who has a larger contribution value will receive a
higher utility when it competes with other servents for file
download services. Therefore, servents in the community
have incentive to share information, thereby resolving the

free-riding problem. Furthermore, our mechanism may de-
crease the contribution values of servents who access a con-
gested resource. Therefore, it also provides incentive for
servents to access information from non-congested servents
and resolves the tragedy of the commons problem.
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