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AN INCLUSION THEOREM FOR OVALOIDS WITH
COMPARABLE SECOND FUNDAMENTAL FORMS

JEFFREY RAUCH

The basic question we study is under what conditions on the curvature of
two ovaloids can we guarantee that one fits inside the other. The result obtained
is that if at points with equal exterior normals the second fundamental from of
one ovaloid is greater or equal to that of a second ovaloid then the first fits
inside the second.

1. Notation

A smooth closed hypersurface in Rk (k > 3) with strictly positive scalar
curvature is called an ovaloid. Hadamard's theorem asserts that an ovaloid is
the boundary of a bounded open strictly convex set. For an ovaloid M and
x e M, let n(x) be the unit outward normal at x. The Gauss map x —> n(x) is
a diίϊeomorphism of M onto S, the unit sphere in Rk. The map γ = n~ι gives
a parametrization of M by S which is important for our work. If M' is a sec-
ond ovaloid, and w e S, then γ(w) and γ'(w) are the points on M and M! whose
outward normals are equal.

D denotes the directional derivative operator. That is, if F: Θ —> Rm is a
smooth map on an open set Θ c Rk, and v = (v19 , vk) e Rk, then DυF(x)

k dF
— Σι vj—-(•*)• This still makes sense if F is defined on a submanlfold such

i dxj

that v is in the tangent space at x. We view the tangent space as the linear
subspace of Rk consisting of tangential directions. With this convention, the
tangent space Mx to M at x is the set of vectors in Rk orthogonal to n(x).

The Weingarten map Lx\ Mx —> Mx is defined by Lxv = Dvn(x). With the
scalar product on Mx inherited from Rk, Lx is a self-adjoint operator on Mx

whose eigenvalues are the principal curvatures at x. The second fundamental
form IIx is a quadratic form on Mx defined by Hx(v) = v-Lxv. With the
above conventions the tangent space to M at x is identical to the tangent space
of S at w = n(x), and L is the Jacobian n^. of the Gauss map. Since Mx = Sw,
Lx may be viewed as an operator in Sw and IIx as a quadratic form on Sw. We
abuse notation by denoting these objects by Lw and IIw. The relation γ = n~ι
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implies γ^ = (n*)" 1, so with the above conventions this shows that if w = n(x)
then Dvγiw) = (Lw)~ιv for all v e Sw.

2. Main result

Our main theorem asserts that, if we have two convex surfaces one of which
is more curved than the other, then the more curved one fits inside the less
curved. Such a result is very natural from the intuitive point of view, but there
are several pitfalls. One must choose the correct notion of curvature and the
right way to compare the curvatures of the two surfaces.

For example, there are nice surfaces in R3 with Gauss curvature and mean
curvature both bounded below by 1, which nevertheless do not fit inside a
sphere of radius one. Notice that if the Gauss curvature is larger than one, and
if the appropriate orientation is taken, then the mean curvature is automatically
larger than one. Thus the example sketched by Spruck [4] performs the desired
trick. On the other hand, Blaschke [1] has obtained positive results when one
surface is a sphere of radius R and the principal curvatures of the second
surface are always larger or smaller than 1/R. These results were extended by
Koutroufiotis [2] who also treated noncompact surfaces. For compact surfaces
our theorem contains the above results as special cases.

To guess a correct notion of curvature consider the problem locally. Suppose
we have two ovaloids M, Mf which are tangent at a point x and have the same
outward normal at x (we say M and Mf are internally tangent at x). A neces-
sary condition for M to be inside M' near x is that IIx > II x, that is, IIx(v) >
H'x(y) for all v € Mx( = Mx). This condition is equivalent to the requirement that
the osculating ellipsoid of M at x be inside the osculating ellipsoid of Mf at x.

Theorem. Suppose M and Mr are ovaloids such that IIx > IIχ/ for all
x e M, x/ € M7 with n(x) = n'{x'). If M and Mf are internally tangent at one
point, then M is contained in the closed bounded region determined by Mr.

The conclusion of this theorem asserts that M is inside M'. If we drop the
hypothesis that M and Mf are internally tangent at one point, it still follows
that M can fit inside Mr for, given any xf e Mr we may translate M so that M
is internally tangent to M' at x', and then the theorem implies that M is inside
M'.

Proof. We make essential use of the support functions of the convex sets
determined byM and M'. A similar device was used by Blaschke [1] to prove
the plane curve analogue of the theorem. For our purpose the support function
p is viewed as a function on the unit sphere S defined by p(w) = w γ(w). The
corresponding functions for M' are denoted with a prime. Thus M is inside M'
if and only if p(w) < p'(w) for all w e S.

Suppose M is internally tangent to M' at x and w0 = n(x) ( = n'(x)). We
prove p < pf by showing that p < pf on each great circle Γ on S, which passes
through w0. Fix such a great circle Γ and parametrize Γ by the arc length θ
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measured from wQ. Functions on Γ, for example p restricted to Γ, can then be
viewed as functions of θ periodic with period 2π. We now derive a differential
equation for p on Γ. Differentiating p(w) = w>γ(w) with respect to θ yields

do

If T is the unit tangent field to Γ, then dw/dθ = T, and dγ/dθ = Dτγ(w(θ)) e
Mr(w(θ)) and so is perpendicular to w{θ). Therefore dp/dβ = T γ. Differentiating
a second time yields

dθ2 ' dθ dθ

As above dγ/dθ = Dτγ, so as computed at the end of section one dγ/dθ =
(Lw{θ)y

ιT. In addition dT/dθ = — w(0), so we have

(l) 00?) + ^

This identity is the heart of the proof. For p'(0) we have

( 2 ) ^(θ) + p'(θ) = T(θ) {Vw{9)y
ιnβ) .

Since M andM 7 are internally tangent at JC, we have x = γ(w0) = γ'(w0), so
that

( 3 ) p(0) - w

( 4 ) ^-(0) = T(w0) r(w0) = Γ(τv0) γ'(w0) = ^ ( 0 ) .
do do

Next we need an elementary result from linear analysis.
Lemma. // A and B are strictly positive bounded operators on a Hubert

space with A > B, then A'1 < Bι.
Proof of lemma. Let C(f) = [A + t(B - A)]'1. Then C(0) = A~\ and

C(l) = B\ and —C = C(A — B)C is a nonnegative operator so that C(l)

_ C(0) - ί ϊ ^ ω U > 0. q.e.d.
Jo\ at I

We apply the lemma to Lwm > L'm(e) to conclude that

( 5 ) T iLJ-Ύ < T (L'J-'Γ for all 0 .

If Δ(θ) = p'(^) - p(Λ» then (1), , (5) imply
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+ Δ = φ{θ) > 0 , Δ(0) = -^-(0) = 0
d

^ 4 + Δ φ{θ) > 0 , Δ(0) ^
do do

Therefore

( 6 ) Δ{θ) = [θφ(t)ύn(θ-t)dt ,
Jo

which implies that Δ > 0 for —π<θ<π. In addition, J is periodic with
period 2π so Δ > 0 for all #. Therefore p <p' onΓ, and the proof is complete.

3. Applications and remarks

The simplest situation where the theorem applies is when IIx > cl > IIX,,
that is, the smallest principal curvature of M at x is larger than all principal
curvatures of M at xf. This special case was obtained by Koutrouίiotis [2]. A
further specialization occurs if M (resp. M') is a sphere, in which case we need
an upper (resp. lower) bound on the principal curvatures of M' (resp. M). As
a typical application of these ideas we have the following characterization of
spheres.

Corollary. The sphere is the only ovaloid whose principal radii of curva-
ture are less than or equal to half its width at each point.

Recall that the width of an ovaloid M at a point x is the distance between
the two tangent planes to M which are orthogonal to n(x).

Proof. Let r be the largest principal radius of curvature of M, and choose
x e M so that r is a principal radius at x. Let Mf be the sphere of radius r
internally tangent to M at x. The theorem asserts that M is inside M', so the
width at x is less than or equal to 2r. To complete the proof we must show that
if equality holds, then M — Mf. If equality holds then the point opposite x on
M/ must also lie on M. If J , Γ, p, φ have the same meaning as in the proof
of the theorem, then we have Δ( — π) = Δ(π) = 0. Equation (6) then implies
that φ = 0 so Δ = 0. Therefore p = // on each Γ, so p = pf everywhere and
M must coincide with M'. q.e.d.

It is also true that an ovaloid whose principal radii of curvature are always
at least half the width must be a sphere. We prove a stronger result. For any
i ζ M the normal line at x intersects M in exactly two points. The distance
between these two points is called the diameter at x. The diameter is less than
or equal to the width.

Corollary. The sphere is the only ovaloid whose principal radii of curva-
ture are greater than or equal to half the diameter at all points.

Proof. One shows that the sphere whose radius is equal to the minimum
radius of curvature of the ovaloid and is internally tangent at a point where
the minimum is achieved lies inside M. The argument is completed exactly as
for the preceding corollary.
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