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Abstract 

An implicit, finite-difference computer code has 
been developed to solve the incompressible Navier- 
Stokes equations in a three-dimensional, curvilinear 
coordinate system. The pressure-field solution is based 
on the pseudo compressibility approach in which 
the time derivative pressure term is introduced into 
the mass conservation equation to form a set of hy- 
perbolic equations. The solution procedure employs 
an implicit, approximate factorization scheme. The 
Reynolds stresses, that are uncoupled from the implicit 
scheme, are lagged by one time-step to facilitate im- 
plementing various !evels of the turbulence model. Test 
problems for external and internal flows are computed, 
and the results are compared with existing experimen- 
tal data. The application of this technique for general 
three-dimensional problems is then demonstrated. 

I. Introduction 

The development of new solution methodologies 
is one of the primary pacing items in computa- 
tional fluid dynamics today.' With the current rate of 
progress in this discipline, as well as with grid genera- 
tion techniques, and with the enhancements in com- 
puter capability, it i s  now practical to simulate compli- 
cated fluid dynamic phenomena associated with realis- 
tic geometries. To date, large computing times and 
memory requirements have been major difficulties in 
producing successful results from full Navier-Stokes 
codes. Even though the economic aspect should still 
be a primary concern in developing a fully three- 
dimensional production code, the time has come to 
utilize the available algorithms and high-speed com- 
puters to develop a useful tool for analysts and desig- 
ners. The present paper presents the development of a 
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three-dimensional, incompressible, Navier-Stokes sol- 
ver cast in generalized curvilinear coordinates using 
primitive variables. 

Incompressible flow phenomena are frequently 
encountered in many engineering applications, espe- 
cially, in hydrodynamics and in certain classes of 
aerodynamic problems such as dynamic stall and low- 
speed wind-tunnel test problems. For most two- 
dimensional flow simulations, computer time and 
memory requirements are not major limiting factors, 
and various numerical techniques have been imple- 
mented quite successfully. For example, a stream 
function-vorticity formulation is frequently used for 
solving lwo-dimensional, viscous, incompressible now 
problems (for example, see Refs. 2-5). The 
three-dimensional extension of this method is not 
straightforward. Various three-dimensional Navier- 
Stokes codes ha.ve been developed, mainly, for com- 
pressible flow. A few examples follow: Shang et 
al! utilbed MacCormack's explicit scheme; Hung and 
Kordulla7 developed a code based on MacCormack's 
implicit scheme; Pulliam and Steger8 implemented the 
Beam-Warming algorithm for a fully implicit code; 
and Briley and McDonald' independently developed 
a similar AD1 scheme. Implemeuting these codes for 
simulating incompressible flows is not efficient and is 
generally not recommended. Therefore, in the present 
work, an efflcient three-dimensional Wavier-Stokes sol- 
ver, using primitive variables, is developed for incom- 
pressible flow problems. 

One of the major problems to be addressed in 
solving incompressible flows that use primitive vari- 
ables is making the decision about which pressure solu- 
tion method should be used to guarantee a divergence- 
free velocity fleld. The method of solving Poisson's 
equation for pressure was developed by Harlow and 
Welch," and has been used frequently for obtaining 
the pressure field, mostly using explicit methods. The 
usual computational procedure is to choose the pres- 
sure fleld such that continuity is satisfied at the next 
time-level, so that the new flow fleld will be divergence- 
free. This procedure normally requires a relaxation 
scheme iterating on pressure until the divergence-free 
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condition is reasonably satisfled. This approach can be 
very time consuming, and thus the computing time re- 
quired for simulating three-dimensional flows has been 
prohibitively large. To accelerate the pressure-fleld 
solution and alleviate the drawback associated with 
the Poisson's equation approach, Chorin" proposed to 
use artiflcial compressibility in solving the continuity 
equation. A similar method was adopted by Steger 
and KutlerI2 using an implicit approximate factoriza- 
tion scheme by Beam and Warming.I3 To implemrnt 
the implicit time-differencing, they fabricated a hyper- 
bolic time-dependent system of equations by adding a 
time-derivative of the pressure term to the mass con- 
servation equation. These hyperbolic equations pos- 
sess characteristics that are not present in the usual 
Poisson's equation for pressure (see Ref. 14 for a 
comprehensive analysis). This approach has been a p  
plied to simulate laminar, incompressible now within 
liquid fllled  shell^'^. Presently, this procedure has been 
extended to a three-dimensional flow solber cast in 
generalized curvilinear coordinates. 

In Sec. II of this paper, the governing equa- 
tions and turbulence model are presented. The finite- 
difference algorithm is described in Sec. KI, and iu 
See. IV, results are presented for internal and external 
flow test problems that verify the accuracy of the code. 
Additional examples of a more practical nature are in- 
cluded to show the versatility of the current soher. 

lI. Governing Equations and Turbulence Model 

Governing Equations 

Unsteady, three-dimensional, incompressible 
flow with constant density is governed by the follow- 
ing Navier-Stokes equations, written in Cartesian coor- 
dinates: 

To implemeaL an implicit, approximate fac- d 
torization schemeI3 to the above set of equations, 
the continuity equaion is modifled according to the 
procedures of Refs. 11 and 12 as follows: 

( 1 4  ap au 8. aw ap* 
at an - + B(, + - + = 

Here, t is time; x, y\ and z are Cartesian coordinates; 
u,v, and w are corresponding Cartesian velocity com- 
ponents; p is the pressure; and ~,j is the viscous stress 
tensor. The parameter 1/,9 is the pseudo compres- 
sibility, and p' is the value of p at the previous itera- 
tion. The p and p' terms, and the numerical algorithm 
are chosen to satisfy the continuity equation (la); they 
will be discussed in more detail later. 

The equations are written in dimensionless form 
with 

. u - v - w  
u=- , v = -  , w=-,  

_ Z " # . Z  2'- , &I=-, z = -  

t = -  , 

UV.1 G.1 U?tJ 

Z,.J 27.1 2r.J' - tU,.f - P-P Ie l  - (14 

Y - B  
; = R e - ' = -  , B = -  

p =  -,r;j = 7ii 
G*I pu:., P U L I  ' 

z 7 c l U r e l  

The subscript ref denotes reference quantities and for 
convenience the tildes ( - )  are dropped from the equa- 
tions. 

i/ 

The viscous stress tensor can he written in the 
following form: 

Here, R,; is the Reynolds stress, and L/ is the coeflcient 
of viscosity. Combining Eqs. (Ib) and (Id), the govern- 
ing equations are written as 

where 
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Coord inate Transformation For orthogonal coordinates, Eq. (7) can be further 
simplified to read 

To accommodate fully three-dimensional geometries, 
the following eneralized independent variables are in- v 2  2 fJD 
troduced whic 'h transform the physical coordtnates into k. = ;.(& T Cs r C s 2 J I m ~  -r ( & . . . ~ ~ r ~ ~ . s j  
general curvilinear coordinates: 

LJ 
T = t  

(3) 
F = t(z3 Y, 2, t) 

11 = 11(% Y, 2, 0 
f = f b >  Y, 2, t) 

Applying this transformation to Eq (2a), the following 
form of the governing equations is obtained 

aD a(&-&..) a ( P - P d +  a(&-&) -+ aT 
+ an (4) 

1 a p .  
= - ( - - ,O,O,O)~ 

J ST 

where 
J = Jacobian of the transJormation, 

D = D I J ,  

Here, the contravariant velocities, U, V, and W withdut 
metric normalization, are deiined as 

u = ( I  + tdJ + l u v  + Czw 

y = rlt + n.u+llvv+ 11.w 

w = f t  + f.U + <uv + c z w  

(6) 

The viscous terms are 

+ (R., ... terms) 

where 

0 1 0 0  8D 
I ,  ==I 1, I,,,-= -,etc (8) 

0 0 1 0  BE BC 

&bulence Model 

Various levels of modeling are available (see Ref. 
16 for a review), most of which require considerable 
experimental inputs. In the present code, however, 
the turbulence model is conhed  to  an algebraic model 
to maximize the cost effectiveness of the flow solver. 
Even though the accuracy of the result could be limited 
by the algebraic model, economy is still an overriding 
factor in many engineering applications. 

In the present code, turbulence is simulated by 
an al ebraic eddy viscosity model, uslng a constitutive 
e uat ei on involving a "mixing length" that is a measure 
o?the turbulence length scale. A generalization of this 
approach is given by the following equation: 

1 
3 (10) Rij -Rkk6ij - 2utSij 

Here, is the turbulent eddy viscosity, and Rkk is the 
noma1 component of the Reynolds stress. The strain 
rate tensor is de6ned by 

1 sui auj 
2 8 X j  

sij = 4- + z) 

By including the normal stress, R k k ,  in the pres- 
sure, u can be replaced by (u + ut). For the turbulent 
Viscosity, the algebraic model of Baldwin and Lomax17 
is implemented in the present code. Following their 
formulation, the turbulent viscosity for incompressible 
flow can be written as 

(12) 
y 1 =  (V1) .nnrr ,  Y<Yc 

(ut).atrr, Y > Yc 
where y is the normal distance from the wall, and ye is 
the smallest value of y a t  which values from the inner 
and outer formula are equal. 

In the inner region, 

(ut)inncr = PlwI  (13) 

where (w(  is the magnitude of local vorticity. The tur- 
bulence length scale 1 and the nondimensional distance 
from wall y+ are deflned as 

v L o o o 1 - I  

3 



In the outer region, 

(vt)orier = KGpF,.r.Fdy) (15) 

where 

Fw.+ = minimum[(ym..Fm~.), ( C , r ~ ~ ~ ~ U ~ d i l / F r n ~ ~ ]  

Here, F,,, is the first peak value in a profile given by 

+ +  F ( d  = y lwl [ l -  e w - y  / A  11 
and ymoz is the value of y at that point. The Klcbauofl 
intermittency factor is written as 

F.br.b(y) = (1 + 5 . 5 ( C h r . b y / 3 1 n ~ ~ ) ~ l - '  (16) 

and 

Udi, = ( J U Z  + Y Z  + wz)rn.,z - ( J U Z  + Y Z  + w")m,n 
(17) 

In wakes, the exponential term in F(y)  and the second 
term in Eq. (17) are set equal to zero. 

The constants appearing in the model were deter- 
mined by requiring agreement with the Cebeci formula- 
tion for constant-pressure boundary layers18. These 
values are 

A = 26, Ccp = 1.6, Cxlpb = 0.3, Cwx = 0.25, 

k = 0.4, K = 0.0168 

m. Numerical Algorithm 

Time Advancing 

The numerical algorithm used to advance Eq. 
(4) in time is an implicit, approximately factored, 
flnitedifference scheme by Beam and Warming13. By 
combining trapezoidal-rule time-differencing and the 
difference form of Eq. (4), the following governing 
equation in delta-form is obtained: 

+ 6,(? - r,)] (D"+' - D") I 

where 

1La LlW 4 
Q = Lo + LIU + LZV f LSW 

Lo = ((i)t, L1 = (ti)., L2 = ( t i ) U ,  La = ( t i ) Z  

t i= e,?, ot $ Jot A,B,  or C, respecttvely 

6< = Jinite diJJerence form of - etc. 
8 
at '  

(lab) 
The superscript n denotes nth time step, and the vis- 
cous terms are given from Eq. (9) as 

rl - cVc(V(ilmGc,) + (R,, ... terms) 

r - uvtp(V(irms,,) + (Ru, ... terms) 

rS - -Vc+'(,rm6,,) + (R,, ... terms) 

J 

(18c) l -7  
U 
J 

Approximate Factorization 

'The full viscous terms &, kv and 6, in Eq. (7)  
produce non-tridiagonal elements in the left-hand side 
of Eq. (18a). Therefore, to implement an approximate 
factorization scheme, only orthogonal terms are kept 
on the left-hand side. For steady-state solutions, this 
em be done since the left-hand side approaches zero as 
a steady state is approached. For a time-accurate solu- 
tion, this approximation procedure needs to be further 
lnvesti ated when a nonorthogonal grid is used. For d 
the ri %t-hand side, the full viscous terms may be in- 
cludefj. In the present version, a nearly orthogonal grid 
is used, and the viscous terms in Eq. (7)  are simplified 
to 

E* = -j(VcV<,)imS,D = rJrn6cD 

kv = -(Vq.Vq,)Im6,D = 7d,,,S,D 

6 - -(V<.V<,)Im6,D = 7slm6,D 

After adding smoothing terms to stabilize the com- 
putation, the approximate-factored form of the govern- 
ing equation becomes 

v 

U 
(19) J 

U 

" - J  

h 
2 
h 

h 

[If - J " + ' & ( y  - 712-8~) + c.V<A<]. 

[ I +  2J"+16,(b" - 721-6,) f e,V,,A,]. 

[r + 2 ~ " + 1 6 , ( Z  - 7arms,) + ~ . V , A J ( D " + ~  - D") 

E IRHS (1841 - cG[(VcAC)'+ (V,A,)*+ (V7,A,)21Dn 
(20) 

where e ,  and c e  are implicit and explicit smoolhing 
terms (which are explained in the next section), and 
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h = AT = time- step,  

V c D  = Dj - Dj-1, A q D  = DK+I - Dk, 

6cD (DI+I - D I - I ) / ( ~ A ~ )  

6 , 7 8 4  = I(7*+1 + 7k)(Dk+l- D I )  

v - ( 7 k  f 'Yk--1)(Dk - DI-I )] / [~(AV) ' I  

Analogous terms in the q and { directions are deflned 
similarly. 

Higher Order Smoothing Terms 

It has been found that a higher-order smoothing 
term is required to  make the present algorithm stable 
(see Refs. 12 and 13). In this section, smoothing 
terms used in the code are described in relation to the 
usual upwinding scheme as well as their behavior near 
computational boundaries. 

sidered: 
For simplicity, the following equation is con- 

(21) 
au au -+c-=o at a x  

The usual upwind differencing of the convective term 
results in 

C ~ ~ U  = c(3uj - 4Uj-1 + uj-z)/(2Az),  c > 0 
c < 0 ( 2 2 4  

~ ( - 3 ~ j  f 4 u j + i  - ~ j + 2 ) / ( 2 A z ) ,  

where 6, is a difference lorm of BulBz.  This equation 
can be writlen, for all c, as 

C c8,u = -[(3uj - 4uj-1 + uj-2) + 
4Az  

W IC1 (-3Uj + 4Uj+l - Uj+z)l  + -[(3Uj - 4Uj--1 + U j - 2 )  

- (-3Uj f 4Uj+l- U j + z ) ]  
4Ax  

Replacing the flrst [ ] term of the above by the usual 
central difference formula results in 

C c6,u = -(u 2ax ,+I - U j - 4  

IC1 + -(Uj-z - ~ U J - I  + 6 ~ 2  - ~ U J + I +  U J + Z )  
4Ax 

(22b) 
Therefore, a flnite-difference form of Eq. (21) with a 
fourth order explicit smoothing term can be written as 

,;+I - .; u?+-l - u?+l 
= 1+1 j-1 

At -kc 2Az  
f*kI @3a) 

--(uj-p - 4Uj--1 + 6uj - 4 ~ j + 1 +  uJ+z),  
4Ax 

0 < f,<l 

and, in delta form, it can be written as 

cht cA t 
2Ax 

felt At 
4Ax 

AU + -(Au~+I - Au,--1) = --( 2Ax UJ+I - ui)" 

- _L(uj-,  - 4uj--1 + 6uj - 4uj+1 + uj+z)" 

(23b) 

where 

A u  = u"+' - un 

E. = explicit smoothing coeJJicient 

In a similar manner, the implicit second-order 
smoothing term can be obtained by starting from 

C I4 C ~ = U  -(u,+, 2Ax - u t - , )  - -(u,+, 2A2 - 2u, + u,--1) 
124al 
\- --, 

This can be put into a numerical scheme, in delta form, 
as 

cAt 
2Ax AIL + -(Auj+i - Auj- I )  

( U j - 2  - ~ U J - I  + 6uj - 4 U j + i  + U J + ~ ) "  
r.lclAt 
~ A X  

-- 
124b) 

where 

f ,  = implicit smoothing coe j j ic ien t  

f ,  = explicit smoothing coe// icient 
It is interesting to observe how a small perturbation, u', 
propagates under various smoothing terms. Following 
the fluid, the second-order smoothing acting on the 
perturbed quantity is 

aut a v  
f-  = 0 _- 

at 8% 

then 
u I -  - e -coat (ae'*' + be-'"') 

For the fourth-order smoothing term, 

BU' 3%' - + r - = o  
at aaX 

( 2 5 4  

then 
ul = e-<"4t(aeid" + be-'"") 

On the boundary, the flow variables are often ex- 
trapolated to maintain the same order of differencing. 
However, a lower order of differencing could be used 
by backward or forward differencing. And it should 
be noted that the sign changes when a lower-order 
smoothing is incorporated. In the present work, the 
second-order smoothing behaves well on inflow and 
outflow boundaries, and the fourth-order extrapolated 
rmoothing term is better on solid boundaries. 

Pseudo Compressibility and the Pressure Field 
Solution 

In solving the incompressible Navier-Stokes 
equations, exact mass conservation is of crucial im- 
portance in order to obtain a stable solution. In the 

5 



present study, the continuity equation is modified to 
a hyperbolic- type [Eq. (Id)], thus, introducing pres- 
sure waves of flnite speed; the wave speed is inEnity for 
truly incompressible flow. Wave propagation depends 
on the magnitude of the compressibility parameter, P,  
which, if chosen to be too large, would at  the Fame 
time contaminate the accuracy of the approximate fac- 
torization. Therefore, a correct specification of ,I? is of 
prime importance to the success of this approach. For 
inslance, a certain value of lhe pseudo comyressibdily 
suitable for a particular problem can be totally inade- 
quate for other geometries and flow speeds, and can 
even cause instability. 

In Ref. 14, wave-propagation characteristics are 
analyzed using a one-dimensional form of the govern- 
ing equations. By compwing the velocity cf prpssure- 
wave propagation and fhr_ rate of vorticity spryading, 
the following criterion for the artificial compressibility 
was derived: 

where 26 and ZL are the characteristic lengths that 
the vorticity and the pressure waves have to propagat,e 
during a given time span. During a duct-flow simula- 
tion, XL is equal to the total length of the duct, and z6 
is half the distance between the two walls of the duct. 
The computational experiments showed this depen- 
dency of the pseudo compressibility on the Reyi~olds 
number, as well as on the characteristic lengths of the 
geometry. 

For the near-field in external flows where pres- 
sure waves propagate out to inEnity the choice of B is 
less restrictive. The pressure buildup in the near-field 
region is only temporary, even if p is not optimum. 
However, for internal flows, local pressure buildup can 
be serious when ,!? is not properly chosen (see Rrf.  14 
for details). 

Boundary Condition 

Once the numerical algorithm has been developed 
the next most important aspect of solving a Ruid 
dynamics problem is the proper implementation of the 
boundary conditions. There are several different types 
of boundaries encountered in numerical simulations: 
1) solid surface, 2) far-field, 3) in-fiow and 
out-flow, and 4) symmetric or reflective boun- 
daries. All of these are required in the present 
code. 

On a solid surface, the ususal no-slip condit,ion is 
applied. By taking advantage of the viscous sublayer 
assumption where the pressure is constant normal to 
the surface, one obtains 

P" = o  (27) 

The boundary condition can be implemented cither 
explicitly or implicitly. The latter enhances stability 

of the code. For this discussion, a $ = const surface 
is considered next. On this surface, Eq. (37) can be 
written as 

Expanding this, 
V f  .vp = 0 (283) 

+f.(E.PC + 7sPn + I r P c )  = 0 (28L) 
Since a nearly orthogonal grid is assumed near the 
surface, this can be further simplified to 

This condition is implemented in the c-directional 
sweep. From Eq. (20), the matrix equation on a solid 
surface (at L=l )  is written as follows: 

where AD = D"+' - D". To implement Eq. (28c) 
explicitly, one simply sets 

then the pressure is updated at  the end of each step. 
The same procedure is used for fixed boundaries such 
as a free stream boundary. Equation (ZSc) is applied 
in an implicit manner by setting 

j = [ o i , h = l  0 1 0 0  J,q0 0 0 0 0  I, 
0 0 1 0  0 0 0  

0 0 0 1  0 0 0 0  

IV. Computed Results 

The flow solver was verified by solving a few 
simple test problems. To test the code on an ester- 
nal flow simulation, flow over a circular cylinder was 
computed. To test this program for internal Bows, a 
channel-flow problem was computed. Various compli- 
cated three-dimensional flows were then computed; a 
couple of examples are described here to demonstrate 
the capability of the present code. 

Flow over a .Circular Cylinder 

Flow over a circular cylinder has been a rich 
source of various fluid dynamic phenomena (see Ref. 
19). The Bow over an impulsively started circular 
cylinder at a Reynolds number of 40 based on the 
diameter of the cylinder is chosen as a verification 
case. The three-dimensional coordinate system chosen 
is shown in Figs. l a  and lb. Figs. 2a and 2b show J 

the steady-state velocity vectors and stream function 



contours. The steady-state pressure eoefflcient on the 
cylinder surface is then compared in Figs. 3a with that 
of Mehta (private communication), who used a stream 
function and vorticity formulation in two dimensions. 
Various experimental and computztional studies on 
this bench-mark case have been reported. The quan- 
tities, that are presently used to verify the physical 
phenomena are the wake length, L,uvobe; the separation 
angle, BSep (see Fig. 2b); pressure drag, Cdp, and the 
pressure coefflcients a t  the forward and rear stagnation 
points, C p ~  and C,,, respectively. The Row field com- 
puted by the present code INS3D compares quite well 
with those reported in the literature (see Table 1). For 
this computation, a nondimensional-time step of 0 1 
was used, and the steady state was reached in 300 itera- 
tions, To simulate the impulsive start, the number of 
pressure iterations was increased to 6ve at each time- 
step; the pressure-drag history is compared in Fig. 3b 
with the time-accurate computation of blehta Even 
though the present algorithm is geared for a steady- 
state solution, this example demonstrates the potential 
for an efflcient time accurate procedure. 

v 

Channel Flow 

Just as the circular cylinder problem is the 
simplest representation for external flows, channel flow 
is perhaps the simplest representation for internal 
flows. However, the chanuel-fiow problem still provides 
the essential features for testing the present algorithm. 
Figures l a  and 4b show the developing laminar chan- 
nel 60w. To reduce the channel length for obtaining 
fully developed flow, a partially developed boundary 
layer pro6le is used as an inflow condition. 7Jsing a 
nondimensional time-step of 0.1, fully developed flow 
is obtained after about 100 steps for a Reynolds num- 
ber of 1,000, based on channel width. The Baldwin- 
Lomax turbulence model is tested by incrensing the 
Reynolds number to  100,000. The velocity vectors for 
this case are shown in Fig. 5a. The mean velority 
defect is compared, in Fig. 5b, with Prandtl's universal 
law, Comte-Bellot's experiment for channel flow,2o and 
Klebanoffs well-known boundary layer profile. The 
convergence histories for both laminar and turbulent 
cases are shown in Fig. 6. 

" 

Three-Dimensional Flow Examples 

One of the prime objectives in developing the 
present code is t o  analyze and verify the Bow field in 
the Space Shuttle Main Engine (SSME) power head. 
The examples shown in Figs. 7, 8 and 9 exhibit typical 
flow characteristics locally encountered in the SSME 
simulation. 

The rectangular duct shown in Fig. 7a is similar 
t o  part of the new 80 x 120 low-speed wind tunnel at 
Ames Research Center (guide vanes are not shown). 
The flow, in the form of velocity vectors, is shown at 

one station in Fig. 7b. This clean-duct sirnulation 
shows the nature and magnitude of the secondary Bow, 
separated region, and substantial variation in mean 
velocity vectors (Figs. 8a and 8b) from top  or bottom 
wall to the center of the duct. 

Figures 9a and 9b show the geometry of an 
annular duct with a 18Cf' bend. This configuration 
represents the turn-around duct in the hot-gas 
manifold of the Shuttle engine. The laminar-flow 
(Re=1,000) solution in Fig. 9c shows a considerable 
nonuniformity after the 180' bend. In this case, an 
adverse pressure gradient is developed after the bend, 
and subsequently a large area of separation is formed 
along the inner wall. Further numerical simulation of 
the SSME will be used to redesign and to optimize the 
hot-gas manifold. For this computation, a 50 x 21 x 
16 mesh was used with a non-dimensional time-step 
of 0.1. A converged solution was obtained after 300 
time-steps, starting from a uniform velocity Geld. The 
computing time for each time-step was 1.443-04 sec 
per mesh point on the Cray I S  computer a t  Ames. 
Because of the axisymmetric nature of the present 
configuration, only 16 mesh points were used in the 
circumferential direction, However, for nonsymmetric 
flows, more mesh points and proper local elustcring 
of grid lines will be required. The three-dimensional 
computation of the hoegas manifold of the SShIE has 
been performed using the present code. Details of this 
numerical simulation, as well as comparison with ex- 
perimental results, will be presented in a future paper. 

V. Concluding Remarks 

This paper presents the development of an 
efflcient and, robust computer code for incompressible 
Navier-Stokes Rows (WS3D). In this work, the basic 
formulation and the algorithm are described. mS3D 
has been applied to various geometrically complex 
flows. Other aspects, such as a multiple-zone computa- 
tions, implementation of smoothing terms near inter- 
sections of solid walls, symmetry boundary conditions, 
and analysis of differencing errors, will be presented 
in a future paper. The algebraic turbulence model 
implemented in the present version of the code needs 
more development for solving the flow with massively 
separated regions, as in the case of the SSME power 
head simulation. Higher-level turbulence models are 
being investigated in an efIort to achieve better es- 
timates of the turbulence length scales. 
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