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Background: Several cholesteryl ester transfer protein (CETP) poly-
morphisms affect high-density lipoprotein (HDL) cholesterol, but the
impact of CETP gene variants on incident coronary disease in the
general population is uncertain after correction for their effect on
HDL cholesterol.

Design: We determined relationships between the CETP �629C3A
promoter (n � 8141), the TaqIB (n � 8289), and the I405V (n � 8265)
polymorphisms, serum lipids, C-reactive protein, and clinical factors
with incident coronary heart disease (defined as death from or hos-
pitalization for myocardial infarction, ischemic heart disease, or cor-
onary intervention) during a median of 4.94 yr follow-up.

Subjects: A predominantly Caucasian general population was
studied.

Results: HDL cholesterol was 0.08 mmol/liter higher in �629A car-
riers than in �629CC homozygotes (P � 0.001). The unadjusted

coronary hazard was 1.26 [95% confidence interval (CI), 0.95–1.68;
P � 0.11] in A carriers compared with CC homozygotes and increased
to 1.46 (95% CI, 1.10–1.95; P � 0.01) after adjustment for HDL
cholesterol. This effect remained after additional adjustment for apo-
lipoprotein A-I, triglycerides, C-reactive protein, age, and gender.
Likewise, the HDL-cholesterol-adjusted hazard ratio was also higher
in AA than in CC homozygotes (hazard ratio, 1.72; 95% CI, 1.22–2.42;
P � 0.01). Similar findings were obtained with the TaqIB polymor-
phism. The 405V allele was weakly associated with incident coronary
heart disease after HDL cholesterol adjustment (P � 0.09).

Conclusions: A common CETP promoter polymorphism, which ben-
eficially contributes to higher HDL cholesterol, is paradoxically as-
sociated with increased incidence of coronary disease in the general
population. Thus, CETP gene variation may affect coronary risk apart
from the level of HDL cholesterol. (J Clin Endocrinol Metab 91:
3382–3388, 2006)

THE RELATIONSHIP BETWEEN plasma high-density
lipoprotein (HDL) cholesterol and the risk of coronary

artery disease is well established (1, 2). The cardioprotective
role of HDL is commonly explained by its function in the
reverse cholesterol transport (RCT) pathway, whereby ex-
cess cholesterol is transported from vascular tissue back to
the liver for metabolism and excretion in the bile (3–5). The
cholesteryl ester transfer protein (CETP) plays a pivotal role
in HDL metabolism and in RCT (6, 7). CETP enables the
transfer of cholesteryl esters from HDL particles toward
very-low-density and low-density lipoproteins (VLDL and
LDL) (4, 6, 7). As a result, HDL cholesterol is lowered by

CETP action. Because the cholesteryl ester transfer (CET)
process may stimulate RCT by providing a route for delivery
of HDL-derived cholesteryl esters to the liver via VLDL and
LDL and the hepatic LDL receptor (7, 8), it is currently de-
bated whether circulating CETP may act in an atherogenic or
even in an antiatherogenic manner (6, 9, 10).

Rare mutations causing CETP deficiency result in very
high HDL cholesterol concentrations (11, 12). Paradoxically,
an increased prevalence of coronary disease has been re-
ported in men with genetic CETP deficiency, despite their
high HDL cholesterol levels (11, 12). It has been suggested
that large HDL particles occurring in genetic CETP defi-
ciency do not have antiatherogenic properties (13), whereas
LDL particles may have less affinity for their receptor (14).
CETP gene variants such as �629C3A, TaqIB, and I405V
polymorphisms that affect HDL cholesterol are common in
the general population (15). The TaqIB variant is in almost
complete linkage disequilibrium with the �629C3A pro-
moter polymorphism (16–18), which directly modulates
CETP gene transcriptional activity in vitro (17, 19). The I405V
variant is also but to a lesser extent a determinant of circu-
lating CETP (15). Despite much study, it is still unclear
whether, how, and under which circumstances these CETP
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gene variations affect coronary risk. The associations of the
TaqIB polymorphism with coronary heart disease are incon-
sistent (20–28). A meta-analysis has suggested that cardio-
vascular risk is decreased in TaqIB B2B2 homozygotes, i.e. the
genotype that is associated with high HDL cholesterol levels
(29). With some exceptions (26, 30), cardiovascular risk was
found to be unaffected by the CETP �629C3A promoter
polymorphism (22, 28, 31, 32). Importantly, it remains un-
certain whether an association of the TaqIB polymorphism
with cardiovascular risk could be attributable to its effect on
HDL cholesterol (29). Moreover, as yet, all clinical end-point
studies with the �629C3A and the TaqIB polymorphisms
either were cross-sectional (20–23, 31, 32) or were carried out
in men (20, 22, 24–26, 31, 33, 34) or in subjects with a cardiac
history (23, 24, 27, 28, 30, 34) rather than in the general
population.

Therefore, we questioned how the �629C3A promoter
polymorphism may affect coronary heart risk in the general
population when its effect on HDL cholesterol is taken into
account. In the present study, the impact of the CETP
�629C3A promoter polymorphism on incident coronary
disease was determined in a population-based cohort. The
effects of the TaqIB and the I405V CETP gene variants were
also assessed.

Subjects and Methods
Study population

Inhabitants of the city of Groningen participating in the PREVEND
(prevention of renal and vascular end-stage disease) study were studied.
Details of the protocol have been described elsewhere (35). The
PREVEND study is designed as a prospective longitudinal follow-up
study to evaluate the impact of baseline albuminuria level on cardio-
vascular (36) and renal (37) outcome in a predominantly Caucasian
general population. The study was approved by the local medical ethics
committee. All participants gave written informed consent.

The present study is focused on the effects of the CETP �629C3A
promoter polymorphism on coronary disease in a population of 8592
subjects. Therefore, participants who were not genotyped for �629C3A
(n � 451) were excluded, resulting in data of 8141 subjects. For similar
reasons, analyses concerning the effects of the TaqIB and the I405V
polymorphisms were carried out in 8289 and in 8265 subjects,
respectively.

Definitions

All data were coded according to the International Classification of
Diseases, Ninth Revision (ICD-9-CM), classification of diseases and the
classification of interventions. The combined end-point of this study was
defined as death from myocardial infarction (MI) (ICD-9 410) and isch-
emic heart disease (ICD-9 411) and hospitalization for MI (ICD-9 410),
ischemic heart disease (ICD-9 411), percutaneous transluminal coronary
angioplasty (PTCA), and coronary artery bypass grafting (CABG). Vital
status was evaluated through the municipal register. Primary cause of
death was obtained from the death certificates coded by the Central
Bureau of Statistics (Voorburg/Heerlen, The Netherlands). Morbidity
data were registered from the national registry of hospital discharge
diagnoses (Prismant, Utrecht, The Netherlands).

The first coronary heart event of each participant was used for anal-
ysis. Event-free survival time for participants was defined as the period
from the date of the outpatient clinic baseline assessment to the date of
death, MI, PTCA, or CABG or death from any cause until December 31,
2003, or December 31, 2002, until which date information regarding
specific causes of death was available. If a person had moved to an
unknown destination, the date on which the person was dropped from
the municipal registry was used as the census date.

At baseline, information regarding the use of antihypertensive, an-

tidiabetic, and lipid-lowering drugs and smoking and alcohol consump-
tion (categorized as �1 and �1 U/d, i.e. �10 and �10 g/d) was obtained
using a check-list as described (35). Body mass index (BMI) was calcu-
lated as the ratio between weight and height squared (in kilograms per
meter2). Waist circumference was measured on bare skin between the
10th rib and the iliac crest. Hypertension was characterized as systolic
blood pressure of at least 140 mm Hg or diastolic blood pressure of at
least 90 mm Hg or the use of antihypertensive drugs. Microalbuminuria
was defined as urinary albumin excretion of 30–300 mg/24 h (35).
Diabetes mellitus was diagnosed by fasting plasma glucose of at least 7.0
mmol/liter or use of antidiabetic drugs. MI was documented if the
participant had a history of hospital admission for MI.

Laboratory methods

Blood samples were taken after 15 min rest. Plasma glucose was
measured shortly after blood sampling. Serum samples for lipid and
apolipoprotein (Apo) measurements as well as for C-reactive protein
(CRP) assay were stored at �20 C until analysis. EDTA-anticoagulated
plasma samples for CETP and CET measurement were frozen at �80 C
until assay in a subset of subjects. HDL cholesterol was measured with
a homogeneous method (direct HDL, no. 7D67, AEROSET System; Ab-
bott Laboratories, Abbott Park, IL). Serum triglycerides were measured
enzymatically. Serum total cholesterol and plasma glucose were as-
sessed using Kodak Ektachem dry chemistry (Eastman Kodak, Roch-
ester, NY). Serum Apo A-I was determined by nephelometry applying
commercially available reagents for Dade Behring nephelometer sys-
tems (BN II; Dade Behring, Marburg, Germany; Apo A-I test kit, code
no. OUED) (38, 39). CRP was also determined by nephelometry with a
threshold of 0.175 mg/liter (BNII; Dade Behring). Urinary albumin
concentration was determined by nephelometry (Dade Behring Diag-
nostic). Albuminuria is given as the mean of two 24-h urine excretions.
Plasma CETP concentration was analyzed using a double-antibody
sandwich ELISA as described (40). CET was assayed using an isotope
method (41).

Genotyping

The �629C3A promoter single-nucleotide polymorphism (SNP)
and the TaqIB polymorphism were genotyped exactly as described (42).
The CETP I405 SNP was analyzed using TaqMan-MGB probes and
primers, designed through the Assay-by-Design service of Applied Bio-
systems (Applied Biosystems, Applera Nederland, Nieuwerkerk aan de
Ijssel, The Netherlands). For the I405V SNP, the forward primer se-
quence was 5�-CTCACCATGGGCATTTGATTGG, the reversed primer
sequence 5�-CGGTGATCATTGACTGCAGGAA, and the TaqMan-MGB
probes were FAM-TCCGAGTCCGTCCAGA and VIC-CTCCGAGTC-
CATCCAGA. Assays were carried out according to the manufacturer’s
recommendations on an ABI 7900HT apparatus.

Statistical analyses

Stata SE 8, SPSS 12, and Excel were used for data analysis. Hardy-
Weinberg equilibria and linkage equilibrium were calculated using Ex-
cel (43). Data are expressed as mean � sd or median (interquartile range).
Between-group differences of means were compared with Student’s t
test, medians with Mann-Whitney U test, and frequencies with �2 anal-
ysis. �2 analysis was used to compare frequencies between groups. HDL
cholesterol is lower in �629CC than in �629CA and �629AA subjects
(17, 18, 42). For modeling, the association of the �629A allele (�629CA
� �629AA subjects combined and �629AA homozygotes alone) with
event-free coronary heart disease survival was investigated using the
CETP �629CC homozygotes as reference group. Likewise, the effects of
the TaqIB and the I405V polymorphisms on coronary risk were evalu-
ated using the B1B1 and the II homozygotes, i.e. the genotype groups
with the lowest HDL cholesterol levels, as reference group. The effects
of the CETP �629C3A promoter, CETP TaqIB, and CETP I405V poly-
morphisms on coronary events were studied with Cox regression anal-
ysis, and hazard models were fit to test differences in survival. Propor-
tional hazards assumptions were assessed by graphing the log-
log(survival) and by testing the Schoenfeld residuals against time.
Event-free survival data are plotted graphically. Our cohort consisted of
a random sample of control subjects with less than 10 mg/liter of urinary
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albumin and a selected sample of subjects with more than 10 mg/liter
of urinary albumin. Therefore, risk estimates were calculated by adding
the selection parameter as a confounder interacting with the CETP
�629C3A promoter, the TaqIB, or the I405V polymorphism in a sec-
ondary analysis. A two-sided P value � 0.05 was considered significant.

Results
Baseline population characteristics

Table 1 shows baseline characteristics of the population
according to the CETP �629C3A promoter polymorphism.
The population consisted of 95.6% Caucasians. The promoter
polymorphism was distributed in Hardy-Weinberg equilib-
rium (P � 0.99), and the �629A allele frequency was 48%. No
differences were observed in gender distribution, age, BMI,
waist, prevalence of hypertension, systolic and diastolic
blood pressure, smoking, use of alcohol and lipid-lowering
drugs, prevalence of diabetes, previous MI, prevalence of
microalbuminuria, and urinary albumin excretion between
the �629CC and the �629A carriers as well as between the
�629CC and �629AA homozygotes. HDL cholesterol and
Apo A-I were higher in �629A carriers and in �629AA
homozygotes as compared with �629CC homozygotes. Tri-
glycerides were slightly lower in �629A carriers and in
�629AA homozygotes than in �629CC subjects.

Incident coronary disease and hazard models on �629C3A
promoter polymorphism

During a median follow-up of 4.94 yr (range, 1 d to 6.3 yr)
and a total observation of 43,440 person-years, 276 subjects
(3.4%) suffered a coronary event. Table 2 summarizes the first
coronary events according to the CETP �629C3A geno-
types. As shown in model 1 (Table 3), the hazard ratio (HR)
for coronary disease was 26% higher in �629A allele carriers
than in �629CC homozygotes (P � 0.11). When the Cox
survival function was adjusted for HDL cholesterol levels,

�629A carriers had a significantly 46% higher HR than
�629CC subjects (model 2, Table 3, and Fig. 1). These in-
creased HRs for the �629A allele remained significant when
confounders, Apo A-I and triglycerides (model 3), and sub-
sequently age, gender, and CRP (model 4) were included.
Additional adjustment for use of alcohol, smoking, use of
lipid-lowering drugs, presence of diabetes mellitus, or his-
tory of MI did not change the model. These parameters did
not interact with the CETP genotype on coronary heart dis-
ease. When the models were repeated to obtain proportional
hazards of AA vs. CC homozygotes, similar results were
obtained for model 2 [HR, 1.72; 95% confidence interval (CI),
1.22–2.42; P � 0.01] and model 4 (HR, 1.53; 95% CI, 1.06–2.20;
P � 0.02). The design of the study concerning enrichment of
subjects with microalbuminuria did not alter the results.
Moreover, no interaction of the sampling of the study pop-
ulation with the genotype on coronary risk was found (data
not shown).

CETP TaqIB polymorphism was also in Hardy-Weinberg
equilibrium (P � 0.99) and in almost complete linkage dis-
equilibrium with the �629C3A polymorphism (D� � 0.942;
P � 0.001). The univariate HR of CETP TaqIB B2 allele on
incident coronary disease was 1.31 (95% CI, 1.01–1.72; P �
0.04), as compared with B1B1 homozygotes. The HDL-
cholesterol-adjusted HR of the B2 allele was 1.51 (95% CI,
1.16–1.98; P � 0.01). The HR was 1.62 (95% CI, 1.22–2.15; P �
0.01) after additional adjustment for Apo A-I and triglycerides
and 1.48 (95% CI, 1.12–1.97; P � 0.01) after subsequent age,
gender, and CRP adjustment. Results were similar when the
models were repeated to obtain proportional hazards of B2B2
vs. B1B1 homozygotes (model 2: HR, 1.75; 95% CI, 1.24–2.47;
P � 0.001) (model 4: HR, 1.58; 95% CI, 1.10–2.27; P � 0.01). The
sampling of the database did not alter the analyses with respect
to the TaqIB polymorphism (data not shown).

TABLE 1. Baseline population characteristics (n � 8141)

CETP �629C3A promoter polymorphism

CC CA AA CA � AA

n (%) 2148 (26.4) 4122 (50.6) 1871 (23.0) 5993 (73.6)
Male gender (%) 49.7 51.3 49.9 50.9
Age (yr) 49.1 � 12.5 49.4 � 12.7 49.6 � 12.8 49.5 � 12.8
BMI (kg/m2) 26.1 � 4.2 26.1 � 4.2 26.1 � 4.4 26.1 � 4.3
Waist (cm) 88.2 � 12.8 88.8 � 12.9 88.7 � 13.4 88.8 � 13.1
Hypertension (%) 31.3 32.7 31.8 32.4
Systolic blood pressure (mm Hg) 129 � 20 129 � 20 129 � 20 129 � 20
Diastolic blood pressure (mm Hg) 74 � 10 74 � 10 74 � 10 74 � 10
Cigarette smokers (%) 36.5 38.4 37.5 38.1
Alcohol users, �1 U/d (%) 59.3 59.0 59.3 59.1
Use of lipid-lowering drugs (%) 5.3a 4.8 4.0 4.5
Diabetes (%) 3.4 4.0 4.0 4.0
History of MI (%) 3.0 3.8 2.7 3.4
Microalbuminuria (%) 14.0 13.4 14.4 13.7
Urinary albumin excretion (�g/min) 9.4 (6.4–18.4) 9.4 (6.3–16.9) 9.4 (6.2–18.4) 9.4 (6.3–17.3)
CRP (mg/liter) 1.31 (0.55–2.98) 1.26 (0.55–3.06) 1.31 (0.57–2.90) 1.27 (0.56–2.98)
HDL cholesterol (mmol/liter) 1.26 � 0.37 1.32 � 0.39 1.39 � 0.42c 1.34 � 0.40e

Non-HDL cholesterol (mmol/liter) 4.34 � 1.21 4.36 � 1.21 4.26 � 1.20a 4.33 � 1.21
Triglycerides (mmol/liter) 1.21 (0.86–1.75) 1.16 (0.85–1.67) 1.12b (0.83–1.64) 1.15d (0.85–1.66)
Apo A-I (g/liter) 1.36 � 0.29 1.38 � 0.29 1.41 � 0.31c 1.39 � 0.30e

To convert cholesterol from mmol/liter to mg/dl, multiply by 38.7. To convert triglycerides from mmol/liter to mg/dl, multiply by 88.6. One
unit of alcohol per day � 10 g alcohol/d.

a P � 0.05; b P � 0.01; c P � 0.001 for difference between AA and CC.
d P � 0.05; e P � 0.001 for difference between CA � AA and CC.
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Hazard models on I405V polymorphism

CETP I405V polymorphism was also in Hardy-Weinberg
equilibrium (P � 0.99). The 405V allele frequency was 31.7%.
Unlike the TaqIB, the I405V polymorphism was relatively
weakly linked with the �629C3A polymorphism (D� �
0.554; P � 0.001). HDL cholesterol levels in 405VV homozy-
gotes (1.39 � 0.42 mmol/liter) and in 405V allele carriers
(1.34 � 0.41 mmol/liter) were higher than in 405II homozy-
gotes (1.30 � 0.39 mmol/liter; P � 0.001 for both). The uni-
variate HR of CETP 405V allele on incident coronary disease
was 1.16 (95% CI, 0.91–1.47; P � 0.24), whereas the HDL-
adjusted HR was 1.23 (95% CI, 0.97–1.57; P � 0.09). After
additional adjustment for Apo A-I and triglycerides and after
subsequently adjusting for age, gender, and CRP as well, the
HR of the 405V allele was 1.24 (95% CI, 0.97–1.60; P � 0.09).
The procedure of enrichment of the population with mi-
croalbuminuria again did not alter the analyses.

CETP mass and CET

In 226 men, plasma CETP mass and CET was measured.
As expected, CETP mass decreased over the �629CC (2.95 �
0.95 mg/liter), -CA (2.27 � 0.67 mg/liter), and -AA (2.15 �
0.71 mg/liter) as well as over the TaqIB B1B1 (2.72 � 0.98
mg/liter), -B1B2 (2.28 � 0.62 mg/liter), and -B2B2 (2.09 �
0.74 mg/liter) genotypes (P � 0.001 for both). In I405V V
allele carriers, CETP mass was modestly lower than in II
homozygotes (2.52 � 0.90 mg/liter vs. 2.27 � 0.73 mg/liter;
P � 0.02). In parallel, plasma CET was higher in �629CC
homozygotes [12.00 (8.71–17.35) nmol/liter�h] than in
�629AA homozygotes [9.07 (6.13–12.56) nmol/liter�h] with
intermediate values in �629CA subjects [9.72 (6.58–13.72)
nmol/liter�h] (P � 0.01).

Discussion

This prospective population-based study in 8141 mostly
Caucasians demonstrates that the �629A as well as the TaqIB
B2 and the I405VV alleles of the CETP gene are not associated
with a decreased risk for coronary disease, despite the HDL-
cholesterol-raising effect of these common CETP polymor-
phisms. On the contrary, the unadjusted hazard for coronary
events tended to be higher in �629A carriers than in �629CC
homozygotes and was significantly higher in B2 carriers than
in B1B1 homozygotes. As expected (1, 2), incident coronary
disease was inversely related to baseline HDL cholesterol.
Nevertheless, the association of the �629A allele with higher
coronary risk became significant and the hazard associated
with the B2 allele was greater after HDL cholesterol adjust-
ment. Moreover, HDL-cholesterol-adjusted coronary haz-
ards were also significantly higher in �629AA than in
�629CC and in B2B2 than in B1B1 homozygotes. We con-
sider our findings robust, because this relation remained
after additional adjustment for Apo A-I and triglycerides, as
well as for age, gender, CRP, smoking, alcohol use, use of
lipid-lowering drugs, presence of diabetes mellitus, and his-
tory of MI, and because comparable results were obtained
with respect to the CETP I405V genotype, which is rather
weakly linked with the promoter polymorphism. Thus, our
study supports the notion that there are other mechanisms
than an effect on the HDL cholesterol level through which
coronary risk is associated with these CETP polymorphisms
in the general population.

A paradoxically higher coronary risk associated with the
�629A and the B2 allele, which results in lower CETP con-
centration and higher HDL cholesterol (16–18, 20, 21, 30, 31,
33, 34) (present study), is in agreement with subgroup anal-

TABLE 2. Incidence of coronary heart disease per 1000 person-years, according to deaths or hospital admission for MI, ischemic heart
disease, coronary PTCA, and CABG

CETP �629C3A promoter polymorphism

CC CA AA CA � AA

n (%) 2148 (26.4) 4122 (50.6) 1871 (23.0) 5993 (73.6)
Total of person-years of follow-up 11,451 22,011 9978 31,988
Coronary disease (n) 61 142 73 215
Coronary disease (n/1000 yr) 5.3 (4.1–6.8) 6.5 (5.5–7.6) 7.3 (5.8–9.2) 6.7 (5.9–7.7)
Subgroups of events

Death from MI or ischemic heart disease (n/1000 yr) 0.3 (0.1–0.9) 0.3 (0.1–0.6) 0.6 (0.3–1.3) 0.4 (0.2–0.7)
MI (n/1000 yr) 1.6 (1.0–2.5) 2.9 (2.2–3.7) 2.8 (1.9–4.1) 2.8 (2.3–3.5)
Ischemic heart disease (n/1000 yr) 1.8 (1.2–2.8) 1.7 (1.3–2.4) 2.6 (1.8–3.8) 2.0 (1.6–2.6)

CABG (n/1000 yr) 0.4 (0.2–1.0) 0.5 (0.3–0.9) 0.7 (0.3–1.5) 0.6 (0.4–0.9)
PTCA (n/1000 yr) 1.1 (0.7–2.0) 1.1 (0.7–1.6) 0.6 (0.3–1.3) 0.9 (0.7–1.3)

Data of first events are shown. The 95% CI are shown in parentheses.

TABLE 3. Variation in CETP �629C3A promoter polymorphism (�629CA�AA vs. �629CC) and other determinants of coronary heart
disease evaluated by Cox proportional hazards analyses

Model variable
Model 1 Model 2 Model 3 Model 4

HR 95% CI P HR 95% CI P HR 95% CI P HR 95% CI P

�629CA�AA vs. �629CC 1.26 0.95–1.68 0.11 1.46 1.10–1.95 0.01 1.53 1.13–2.08 �0.01 1.40 1.03–1.90 0.03
HDL cholesterol (mmol/liter) 0.18 0.12–0.26 �0.001 0.40 0.23–0.71 �0.01 0.79 0.44–1.40 0.42
Apo A-I (g/liter) 0.59 0.33–1.10 0.09 0.45 0.25–0.81 0.01
Triglycerides (ln, mmol/liter) 1.77 1.37–2.27 �0.001 1.58 1.21–2.07 0.001
Age (yr) 1.07 1.06–1.08 �0.001
Male gender 1.91 1.42–2.58 �0.001
CRP (ln, mg/liter) 1.33 1.19–1.50 �0.001
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yses in hypertriglyceridemia men of Japanese ancestry and
in Danish women who did not receive hormonal replacement
therapy (44, 45). In these reports, the CETP I405V genotype
leading to a higher HDL cholesterol was associated with an
increased cardiovascular risk (44, 45). In apparent contra-
diction with our study, a meta-analysis that included three
case-control studies and four prospective reports has docu-
mented a lower cardiovascular risk in B2B2 compared with
B1B1 homozygotes (29). The magnitude of the effects of the
CETP gene variations on circulating CETP and on HDL cho-
lesterol in the currently studied cohort (42) is similar com-
pared with that reported previously (16). This makes it un-
likely that the discrepancy can be explained by differences in
CETP gene effects on CETP and on HDL cholesterol across
various populations. Furthermore, the �629A allele fre-
quency was 48% in our study, being very similar to a fre-
quency of 49% in other European populations (17, 22, 26, 32).
As opposed to other prospective studies (24–28, 30, 33, 34),
the present findings are based on a single cohort retrieved
from the general population. Consequently, coronary risk
was much lower than that of the studies included in the
meta-analysis (29). Of note, high circulating CETP levels may
increase cardiovascular risk in hypertriglyceridemic subjects
(46). In agreement, intima media thickness is positively cor-
related with the rate of plasma CET, which is determined by
both plasma triglycerides and CETP (47). The median tri-
glyceride concentration was clearly lower in our cohort (1.16
mmol/liter) compared with the previous survey (1.7 mmol/
liter) (46) and to several other studies included in the meta-
analysis (29). These differences in triglyceride levels may
contribute to the apparent discrepancy between effects of
variation in the CETP gene and of the circulating CETP level
per se on cardiovascular risk. Finally, of potential clinical

relevance, amelioration of the lipid profile and cardiovas-
cular risk by statin treatment may be diminished in TaqIB B2
and in �629A carriers (18, 30). In view of the present find-
ings, a pharmacogenomic approach with assessment of CETP
gene variation could, therefore, be helpful to identify subjects
requiring more stringent lipid-lowering treatment.

Because we performed a genetic association study, mech-
anisms responsible for the increased HDL-cholesterol-
adjusted incidence of coronary heart disease associated with
CETP genotypes that result in lower CETP and higher HDL
cholesterol remain putative. A decreased CETP could con-
tribute to a diminished transfer of cholesteryl esters from
HDL toward VLDL and LDL (3, 7–9), which are subsequently
metabolized by the liver. Hence, genetically determined
lower CETP levels may impede RCT (6, 9, 11). Indeed, our
study demonstrates for the first time that plasma CET from
HDL toward Apo-B-containing lipoproteins is lower, in par-
allel with lower CETP mass levels, in �629A allele and -B2
allele carriers. Furthermore, it is tempting to hypothesize that
CETP gene variability may also affect atherosclerosis devel-
opment via other processes involved in RCT. First, CETP
contributes to the generation of small lipid-poor pre-�-HDL
particles (48) that stimulate cellular cholesterol efflux via
ATP-binding cassette transporter A-1 expressed on macro-
phages and fibroblasts (49). Thus, lower circulating CETP
levels may diminish the ability of plasma to promote cellular
cholesterol removal (our unpublished data). Second, it is
likely that CETP affects cholesterol trafficking at the cellular
level, thereby stimulating RCT. Macrophages present in hu-
man atherosclerotic lesions produce CETP, where it is able to
stimulate cellular cholesterol efflux (50). Third, CETP ex-
pressed in hepatocytes may promote selective hepatic uptake
of HDL-derived cholesteryl esters (51). Hence, it is possible
that if cellular CETP production is subject to regulation by
CETP gene variation, CETP polymorphisms that lower CETP
may impede peripheral cell cholesterol efflux and/or hepatic
cholesterol removal.

A potential limitation of our study is that the participants
were recruited from a restricted geographical area, i.e. the
city of Groningen in the northern part of The Netherlands.
Moreover, even though the study cohort was enriched with
subjects with microalbuminuria, cardiovascular risk was rel-
atively low. However, in our opinion, the present findings
can be extrapolated to the general population. First, statistical
evaluation showed that the enrichment procedure had no
effect on the models. Second, there was no association of
CETP gene variations with the degree of urinary albumin
excretion or with the prevalence of microalbuminuria. Third,
the �629A allele frequency was similar compared with other
European populations, making it very unlikely that mi-
croalbuminuria enrichment affected �629 CETP C3A allele
distribution.

In conclusion, the CETP �629C3A and the TaqIB geno-
types, which beneficially contribute to higher HDL choles-
terol levels, are paradoxically associated with higher inci-
dence of coronary disease in the general population when
their effects on HDL cholesterol are taken into account. Thus,
CETP gene variation may also affect coronary risk by other
mechanisms than the HDL cholesterol level per se.

FIG. 1. Association of HDL cholesterol-adjusted incident coronary
disease with CETP �629C3A promoter polymorphism by Cox pro-
portional hazards regression analysis (cf. Table 3, model 2). Numbers
of subjects are given next to genotypes.
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