
An Incremental Data Stream Clustering

Algorithm Based on Dense Units Detection

Jing Gao1, Jianzhong Li2, Zhaogong Zhang2, and Pang-Ning Tan1

1 Dept. of Computer Science & Engineering, Michigan State University
East Lansing, MI 48824-1226 USA

gaojing2,ptan@cse.msu.edu
2 Dept. of Computer Science & Technology, Harbin Institute of Technology

Harbin, 150001 China
lijz,zhangzhaogong@mail.banner.com.cn

Abstract. The data stream model of computation is often used for an-
alyzing huge volumes of continuously arriving data. In this paper, we
present a novel algorithm called DUCstream for clustering data streams.
Our work is motivated by the needs to develop a single-pass algorithm
that is capable of detecting evolving clusters, and yet requires little
memory and computation time. To that end, we propose an incremental
clustering method based on dense units detection. Evolving clusters are
identified on the basis of the dense units, which contain relatively large
number of points. For efficiency reasons, a bitwise dense unit representa-
tion is introduced. Our experimental results demonstrate DUCstream’s
efficiency and efficacy.

1 Introduction

In recent years, data stream model is motivated by many applications that con-
tinuously generate huge amount of data at unprecedented rate [1]. In this paper,
we will focus on the stream clustering problem, which is a central task of data
stream mining.

Recently this problem has attracted much attention. O’Callaghan et. al. [2]
study the k-median problem over data streams. Aggarwal et. al. [3] present a
framework of clustering evolving data streams, which analyzes the clusters over
different portions of the stream. However this framework can not give online re-
sponse of queries of macro clusters. Nasrouni et. al. [7] design an immune system
learning model to find evolving clusters in data streams. But this algorithm is
not space and time efficient due to the use of AIS model.

In static data environment, many clustering algorithms have been designed
[4–6]among which grid-based clustering is an efficient method. This approach
partitions the data space into many units and perform clustering on these units
[6]. Recently, Park et.al. [8] propose a statistical grid-based method which iden-
tifies evolving clusters as a group of adjacent dense units in data stream environ-
ments. But their work is focusing on partitioning dense units and maintaining
their distributions.

In this paper, we propose an efficient data stream clustering algorithm DUC-
stream. We partition the data space into units and only keep those units which
contain relatively large number of points. An incremental clustering algorithm
is presented based on these dense units. The clustering results are represented
by bits to reduce the memory requirements. Extensive experiments indicate that
our framework can obtain high-quality clustering with little time and space.

2 Problem Statement

We begin by defining the stream clustering problem in a formal way.
Suppose S is a d-dimensional numerical space. For each dimension, we parti-

tion it into non-overlapping rectangular units. The density of a unit u is defined
as the number of points that belong to it, i.e. den(u) = |vi|vi ∈ u|. The relative
density of u is defined as follows: rel den(u) = den(u)/|D|, where den(u) is the
density and D is the data set we observe. If u’s relative density is greater than
the density threshold γ, then u is referred to as a dense unit.As defined in [6], a
cluster is a maximal set of connected dense units in d-dimensions.

A data stream is a set of points from data space S that continuously ar-
rives. We assume that data arrives in chunks X1, X2, . . . , Xn, . . ., at time stamps
t1, t2, . . . , tn, Each of these chunks fits in main memory. Suppose that each
chunk contains m points, and the current time stamp is t. We use den(u) to
denote the overall density of u with respect to the t chunks that has been seen
so far. The density of u with respect to the i-th chunk is denoted as deni(u). The
relative density of a unit u is rel den(u) = den(u)/(mt). If u’s relative density is
greater than the density threshold γ, then u is referred to as a dense unit at time
t. At time t, the clustering result R is all the clusters found in the t chunks of
data visited so far. Our goal is to compute the clustering results when the data
stream continuously arrives, i.e. obtain R1, R2, . . . , Rn, . . ., where Ri represents
the result of clustering X1, X2, . . . , Xi.

3 Algorithm Description

3.1 Basic Idea

In brief, we will find the dense units and cluster these units. First, we consider
what units should be maintained thus introduce the concept of local dense units.

Suppose that each chunk contains m points, and the current time stamp is
t. If unit u begins to be maintained at time i, the local relative density of u is
loc den(u) = den(u)/(m(t− i+ 1)), where den(u) is the density of u. If u’s local
relative density is greater than the density threshold γ, then u is referred to as
a local dense unit at time t. The following proposition holds on.

Proposition 1 For any dense unit u at time t, it must be recorded as a local
dense unit at time i(1 ≤ i ≤ t).

Proof. Suppose that a dense unit u is not recorded as a local dense unit at time
1, 2, . . . , t and each chunk contains m points. We recall that the number of points
that belong to u in the i-th chunk is deni(u). Then deni(u) < γm. Therefore at
time t, den(u) =

∑t
i=1 deni(u) < γmt. so u is not a dense unit at current time,

contrary to the hypothesis. The conclusion is accordingly established.

In other words, local dense units are candidate dense units, which may become
dense in the future. Therefore we maintain all the local dense units and pick
up dense units among them to do clustering. We call this process dense units
detection. The following proposition analyzes the error of our algorithm.

Proposition 2 Assume that a certain unit u’s density gradually increases so
that its density with respect to the i-th chunk is ipm where m is the number of
points belonging to each chunk, p is a constant from 0 to 1 that indicates the
amount of increase. At the time from (1 +

√
1 + 8γ/p)/2 to γ/p, this unit can

not be successfully detected as a dense unit.

Proof. According to the definition of local dense units, we will not keep unit
u as long as ipm < γm, i.e., i < γ/p. However, when its density reaches γm,
u becomes a dense unit at that time. Suppose at time k, u’s density is equal
to γm. Then

∑k
i=1 ipm = γm,i.e.,k(k−1)

2 p = γ. It can be derived that k =
(1 +

√
1 + 8γ/p)/2. Therefore the time range when error occurs is as stated.

Another issue is how to get the right results with little time and memory.
To lighten the computational and storage burden, we propose to represent the
clustering results in bits. Suppose that the dense units are sorted by their density
and each of them is assigned a unique id. The Clustering Bits (CB) of a cluster
r is a 0 − 1 bit string an, . . . , a1, where ai is a bit and n is the number of dense
units. ai = 1 if and only if the i-th dense unit is in cluster r, otherwise ai = 0.
We can benefit from the use of Clustering Bits in both the time and space usage.

3.2 Stream Clustering Framework

Based on the above two points, we summarize our stream clustering algorithm in
Figure (1). We refer to this algorithm as DUCstream (Dense Units Clustering
for data stream). The data structures used in the algorithm include: L, the
local dense units table; Qa, the added dense units id list; Qd, the deleted dense
units id list; Ri, the clustering result {c1, . . . , cs} at time stamp i.

The important components in this framework entail:
1. map and maintain(Xi, L): This procedure maps each data point in Xi

into the corresponding unit. For one of these units u, if it is in L, update the
corresponding item, otherwise if u is a local dense unit, insert it into L. After
that, scan L once and decide Qa and Qd.

2. create clusters(Q): We use a depth-first search algorithm to create clusters
as described in [6]. They identify the clusters as the connected components of
the graph whose vertices represent dense units and whose edges correspond to
the common faces between two vertices.

DUCstream Algorithm:
Input: Data chunks X1, X2, . . . , Xn, . . .
Output: Clustering results R1, R2, . . . , Rn, . . .
Method:
1. Create a new empty table L;
2. (L, Qa, Qd)=map and maintain(X1, L);
3. R1=create clusters(Qa);
4. i=2;
5.Repeat until the end of the data stream
5.1 (L, Qa, Qd)=map and maintain(Xi, L);
5.2 Ri=update clusters(Ri−1, Qa, Qd);
5.3 i = i + 1;

Fig. 1. SemiSOD algorithm framework

3. update clusters(Ri−1, Qa, Qd): We get the clustering result Ri in an incre-
mental manner stated as follows.

For each added dense unit u, one of following occurs: Creation: If u has no
common face with any old dense units, a new cluster is created containing u;
Absorption: There exits one old dense unit u′ such that u has common face
with u′, then absorb u into the cluster u′ is in; Mergence: There exist multiple
old dense units w1, w2, . . . , wk(k > 1) that have common faces with u, then
merge the clusters these dense units belong to. Absorb u into the new cluster.

For each deleted dense unit u, suppose it is contained in cluster c, we can
distinguish the following cases: Removal: If there are no other dense units
in c, i.e. the cluster becomes empty after deleting u, we remove this cluster;
Reduction: All other dense units in c are connected to each other, then simply
delete u from c; Split: All other dense units in c are not connected to each other,
this leads to the split of cluster c.

After processing all the units in Qa, Qd, we can obtain the new clustering
result Ri.

4 Empirical Results

The data set is KDD’99 Intrusion Detection Data, which is partitioned into
chunks each consisting of 1K points. We first examine the time complexity of
DUCstream compared with the baseline methods STREAM [2] and CluStream
[3]. To make the comparison fair, we make the number of clusters all five in these
algorithms.Figure (2) shows that DUCstream is about four to six times faster
than STREAM and CluStream. This is attributed to our use of dense units
detection, Clustering Bits and good design of incremental update algorithm.

DUCstream maintains the local dense units and current clustering results in
main memory. Since the clustering results, represented by Clustering Bits, cost
very little space, we only keep track of the number of local dense units to monitor
the memory usage. Figure (3) demonstrates that after a certain time, a steady
state is reached as for the number of local dense units. In general, the algorithm

10 20 30 40 50 60 70
0

2

4

6

8

10

12

14

16

18

Number of visited chunks

Ru
nn

ing
 tim

e(
s)

STREAM
CluStream
DUCstream

Fig. 2. Running time

only requires a negligible amount of memory even when the data stream size
becomes sufficiently large.

10 20 30 40 50 60 70
150

200

250

300

350

400

Number of visited chunks

Nu
m

be
r o

f lo
ca

l d
en

se
 u

nit
s

Fig. 3. Memory usage

We then compare DUCstream with STREAM and CluStream using the mea-
surement SSQ, the sum of square distance. Figure (4) shows that the clustering
quality of DUCstream is always better than that of STREAM because we capture
the characteristics of clusters more precisely using the dense units compared with
only maintaining k centers. For CluStream, it performs better when the horizon
is small but the accuracy tends to be lower when the horizon becomes larger.

5 Conclusion

In this paper, we propose an efficient data stream clustering algorithm based on
dense units detection. This is an incremental, one-pass density-based algorithm,
which finds high-quality clusters with considerably little time and memory in
the data stream environment. It discards noisy and obsolete units through dense
units detection. The clustering result is updated using the changed dense units.
We also introduce a bitwise clustering representation to update and store away
the clustering results efficiently. Empirical results prove that this algorithm has

20 40 60
1.00e+09

1.00e+11

1.00e+13

1.00e+15

Number of visited chunks

SS
Q

STREAM
CluStream
DUCstream

Fig. 4. Memory usage

good quality while cost surprisingly little time. The problem of finding arbitrary-
shaped clusters is an interesting future work.

6 Acknowledgment

The work was partially supported by IRGP grant #71-4823 from the Michigan
State University.

References

1. B. Babcock, S. Babu, M. Datar, R. Motwani and J. Widom. Models and issues in
data stream systems. In Proceedings of the 21st ACM Symposium on Principles of
Database Systems, pages 1–16, 2002.

2. L. O’Callaghan, A. Meyerson, R. Motwani, N. Mishra and S. Guha. Streaming-
data algorithms for high-quality clustering. In Proceedings of IEEE International
Conference on Data Engineering, pages 685–696, 2002.

3. C. Aggarwal, J. Han, J. Wang and P. S. Yu. A framework for clustering evolving
data streams. In Proceedings of the International Conference on Very Large Data
Bases, pages 81–92, 2003.

4. M. Ester, H.P. Kriegel, J. Sander and X. Xu. A density-based algorithm for dis-
covering clusters in large spatial databases with noise. In Proceedings of the ACM
SIGKDD international conference on Knowledge discovery and data mining, pages
226–231, 1996.

5. M. Ester, H.P. Kriegel, J. Sander, M. Wimmer and X. Xu. Incremental clustering
for mining in a data warehousing environment. In Proceedings of the International
Conference on Very Large Data Bases, pages 323–333, 1998.

6. R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clus-
tering for high dimensional data for data mining applications. In Proceedings of the
ACM International Conference on Management of Data, pages 94–105, 1998.

7. O. Nasraoui, C. Cardona, C. Rojas and F. Gonzlez. TECNO-STREAMS: Tracking
evolving clusters in noisy data streams with a scalable immune system learning model.
In Proceedings of the IEEE International Conference on Data Mining, pages 235–242,
2003.

8. N.H. Park and W.S. Lee. Statistical grid-based clustering over data streams. ACM
SIGMOD Record, 33(1):32–37, 2003.

