
Research Article
An Incremental Interesting Maximal Frequent Itemset Mining
Based on FP-Growth Algorithm

Hussein A. Alsaeedi 1 and Ahmed S. Alhegami 2

1Department of Computer Science, University of Science and Technology, Sana’a, Yemen
2Faculty of Computers and Information Technology, University of Sana’a, Sana’a, Yemen

Correspondence should be addressed to Hussein A. Alsaeedi; alhussein1977@gmail.com

Received 8 April 2022; Revised 3 June 2022; Accepted 23 June 2022; Published 26 July 2022

Academic Editor: Atila Bueno

Copyright © 2022 Hussein A. Alsaeedi and Ahmed S. Alhegami. (is is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Frequent itemset mining is the most important step of association rule mining. It plays a very important role in incremental data
environments. (e massive volume of data creates an imminent need to design incremental algorithms for the maximal frequent
itemset mining in order to handle incremental data over time. In this study, we propose an incremental maximal frequent itemset
mining algorithms that integrate subjective interestingness criterion during the process of mining. (e proposed framework is
designed to deal with incremental data, which usually come at different times. It extends FP-Max algorithm, which is based on FP-
Growth method by pushing interesting measures during maximal frequent itemset mining, and performs dynamic and early
pruning to leave uninteresting frequent itemsets in order to avoid uninteresting rule generation.(e framework was implemented
and tested on public databases, and the results found are promising.

1. Introduction

Association rule mining (ARM) [1] has been widely used as a
leading technique in data mining. It is usually utilized in
analyzing marketing baskets. ARM commonly employs two
main subtasks, namely mining of frequent itemsets to ensure
a minimum support threshold and generation of association
rules to satisfy a minimum confidence threshold. Most of the
studies have addressed the efficiency criterion of frequent
itemset mining as it normally entails more resource capacity
and computing time [2].

Frequent itemsets (FIs) can be mined from transaction
databases through one of the traditional algorithms that can
be generally grouped into two methods [3]: Apriori-based
method, which is used for generating and filtering candidate
itemsets such as Apriori algorithm [4], and tree-based
method that is normally used for building FP-tree and then
mining FIs from the FP-tree such as FP-Growth [5], TRR
[6], PrePost+ [7], FIN [8], dFIN [9], and negFIN [10] al-
gorithms. Since Apriori-based methods depend on con-
tinuous scanning of the database to generate multiple

candidate itemsets, they require high I/O. On the contrary,
tree-based methods scan the database only twice, but they
need higher memory for constructing multiple sub-trees
[2, 11].

Generally, the representation of FIs can be either closed
frequent itemsets (CFIs) or maximal frequent itemsets
(MFIs). An FI is considered a CFI if it has no superset having
the same support [12]. CFI algorithms include AprioriClose
[13], FP-Close [14], Closet+ [15], CHARM [12], and
NEclatClosed [16] algorithms. On the other hand, a given FI
is described as an MFI only if any superset of the itemset is
not frequent [17, 18]. MFI set is considerably smaller than
that of FIs [19]. (ere are many competent algorithms used
for mining MFIs such as MAFIA [20], GenMax [21], FP-
Max [22], FP-Max∗ [23], Charm-MFI [24], PADS [25],
SelPMiner [19], and CL-Max [26]. (e FP-Max [22] and FP-
Max∗ [23] algorithms use FP-Growth to build a tree as FP-
tree and mine MFIs from the tree based on a bottom-up and
divide-and-rule strategy.

In dynamic data, when adding an incremental database
to the previous databases, some previous FIs become invalid

Hindawi
Complexity
Volume 2022, Article ID 1942517, 20 pages
https://doi.org/10.1155/2022/1942517

mailto:alhussein1977@gmail.com
https://orcid.org/0000-0002-4016-6967
https://orcid.org/0000-0002-0904-0741
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1942517

and new FIs appear due to the changes in the support value
of some FIs. Generally, the traditional FI mining algorithms
are ineffective for incremental data as the entire database is
re-mined afresh [2]. Since transaction databases are un-
ceasingly and dramatically growing, incremental FI mining
algorithms are needed as useful for making decisions and
getting real-time information sought by users.

Many attempts have been made for processing incre-
mental data without re-mining the entire updated databases
such as FUP [27], FUFP-tree [28], FUFP-tree maintenance
[29], FCFPIM [30], FPISC-tree [31], FIUFP-Growth [2], pre-
large [32], pre-FUFP [33], and FPMSIM [11] algorithms. It is
noteworthy that these algorithms were used for mining
incremental FIs. IM_WMFI [17] and IMU2P-Miner [18]
have been proposed to deal with incremental MFIs. (e
drawbacks of these algorithms are that they do not regard the
factors of size and time of data entry and, therefore, require
re-mining of the updated database. Since new data arrive
over time, researchers have been motivated to propose
techniques that update the entire model of previously dis-
covered knowledge (PDK), instead of running the algo-
rithms from a scratch, thus presenting a new incremental
model such as [34–36], and our proposed framework [37].

For association rules, two measures have been used:
objective and subjective measures. Objective measures are
statistical values, such as support, confidence, all confidence,
and left [38]. (ese measures were used during mining, such
as support in the first task and confidence in the second task
of ARM. On the other hand, subjective measures, such as
unexpectedness [39], actionability [40], and novelty
[34, 36, 37], were used to capture the user’s belief about the
domain. However, these subjective measures were used at
post-mining.

Our proposed approach is motivated by the increasing
need for an efficient MFI algorithm that deals with larger
data entry over time. As an extended form of FP-Growth and
FP-Max algorithms for mining incremental interesting
MFIs, our method uses novelty metrics (NM) as a subjective
measure during the process of the mining stage. A major
contribution of this proposed framework is handling the
time-changing data and user-domain knowledge. (is is
useful whenmany databases arrive at various times or from a
distributed environment. Certainly, it is desirable to update
the discovered frequent itemsets each time new data arrives.
Moreover, the incremental nature of the proposed frame-
work makes it valuable to mine interesting frequent items at
the current time concerning the previously discovered
frequent items more willingly than wholly mining all fre-
quent items. So, dynamic pruning for these frequently
discovered itemsets is performed in real time. (e objective
of dynamic pruning is to save time and reduce search
complexity.

(is study introduces an algorithm, based on a tree
structure, for mining interesting MFIs. (e major contri-
butions of our work are as follows: (1) extending the FP-Max
algorithm for incremental MFI mining; (2) integrating
subjective interestingness criterion (novelty measure) dur-
ing the process of mining for reducing the count of dis-
covered interesting MFIs and subsequently reducing search

complexity; and (3) introducing a structure that handles all
the items (frequent or infrequent) with related information
along with previous discovered IMFIs for use next time to
speed up the construction and size of the tree.

(is study is structured as follows. Section 2 reviews the
related work. Section 3 introduces the design issues of our
approach. Section 4 discusses the experimental settings and
results. Section 5 concludes the study.

2. Related Work

(e concept of association rule mining was introduced by
Agrawal et al. in 1993 [1], and the Apriori algorithm was
proposed a year later [4] for mining FIs and generating
association rules. (e algorithm was used to generate and
filter candidate itemsets in a level-by-level manner. How-
ever, a disadvantage of this method is that it generates
several candidate itemsets, which need multiple database
scans, thus consuming much time and high I/O. FP-Growth
algorithm [5] was presented, using compact data structure as
FP-tree to compact all transactions of the database inside the
tree. (is algorithm scans a database twice only, firstly for
finding support for each item and secondly for building the
FP-tree. (en, the algorithm recursively builds sub-trees to
mine all FIs. A limitation of this algorithm, however, is its
need to create multiple sub-trees to mine FIs, which, in turn,
require considerable resources and processing time.

MFI mining concept was later introduced as in MAFIA
[20], FP-Max [22], FP-Max∗ [23], PADS [25], SelPMiner
[19], and CL-Max [26]. MAFIA is an MFI method, which
uses a bitmap representation to check itemsets’ support
information without any database scan. A major disad-
vantage of this algorithm is that it is inefficient with respect
to sparse databases [20]. FP-Max was then proposed to mine
all MFIs, and it used FP-tree structure and MFI-tree
structure [22]. FP-Max∗ is an FP-tree-based algorithm used
for mining MFIs utilizing its own two-dimensional array
structure, called FP array to improvemining performance by
reducing the number of tree scans [23]. A drawback of these
algorithms, however, is that in a dense database, the FP-trees
become more compact and thus more memory usage and
slower execution time. PADS is another FP-tree-based
method that defines and uses a pattern-aware dynamic
search order to pre-prune unnecessary operations [25]. It is
praised for guaranteeing higher speed compared with the
previous approaches. However, it is memory-consuming due
to its storing conditional databases and time-consuming due
to longer search space [25]. CL-Max is an algorithm, which
uses k-means concept for MFI mining [26]. SelPMiner was
introduced to utilize the optimizations of the search space
pruning through itemset-count tree format [19].

Remarkably, all the abovementioned algorithms have to
do with static data. Consequently, new methods have been
introduced to work on incremental data without re-mining
the entire updated databases such as FUP [27], FUFP-tree
[28], FUFP-tree maintenance [29], pre-large [32], and pre-
FUFP [33] algorithms.

Based on the concept of Apriori method, Cheung et al.
introduced the FUP algorithm [27] to handle the new

2 Complexity

database and update FIs efficiently. (is algorithm reduces
the scans of the database. Based on previously found fre-
quent or infrequent itemsets of the previous databases, the
algorithm partitions discovered itemsets from the incre-
mental database into four cases: Case 1: frequent in previous
and incremental databases, so frequent in the updated da-
tabase; Case 2: frequent in the previous database but in-
frequent in the incremental database, so frequent or
infrequent in the updated database; Case 3: infrequent in the
previous database but frequent in the incremental database,
so frequent or infrequent in the updated database. Only if
infrequent, rescanning of previous databases is needed; and
Case 4: infrequent in previous and incremental databases, so
infrequent in the updated database.

However, many researchers preferred to use FP-Growth-
based algorithms for better management of frequent itemset
search in a dynamic database such as FUFP-tree algorithm,
which was introduced as a developed algorithm to effectively
deal with new transactions and improve the efficiency of the
updated FP-tree structure, by reducing the number of
rescans of the previous databases after adding an incre-
mental database [28]. (is FUFP-tree was characterized by
double action of node insertion and deletion from the tree.
(e FUFP-tree algorithm [28] handles the itemsets based on
the four principles of the FUP algorithm [27]: Case 1: fre-
quent in previous and incremental databases, so support
item is updated in header table and FUFP-tree; Case 2:
frequent in the previous database but infrequent in incre-
mental database, maybe frequent or infrequent. If frequent,
support item is updated in header table and FUFP-tree, else
the item from header table and all nodes from FUFP-tree are
deleted; Case 3: infrequent in previous databases but fre-
quent in incremental databases, maybe frequent or infre-
quent. If frequent, the item is placed at the end of the header
table and its nodes to the leaf node of a path in the FUFP-tree
are added, else nothing is done; and Case 4: infrequent in
previous and incremental databases, so nothing is done. Like
the FUP algorithm, the FUFP-tree maintenance algorithm
improves the FUFP-tree structure after the addition of a new
database [29]. An improvement was made to FUFP-tree
structure so that when deleting transactions from the da-
tabases, the mining performance of incremental association
rules was efficiently improved and the execution time was
reduced. After updating tree, the algorithm continued to
mine all FIs from the updated tree [29]. Pre-FUFP main-
tenance algorithm was proposed as a modified FUFP-tree
algorithm. (is algorithm was based on the “pre-large”
concept that identified upper and lower support thresholds
[33]. Accordingly, the previous databases need not be
rescanned if the incremental transactions count is less than
the safety number f of new transactions.(e f number can be
obtained according to the following equation:

f �
Su − Sl(d

1 − Su

, (1)

where Su is the upper support threshold, Sl is the lower
support threshold, and d is the count of transactions in
previous databases [33]. (e problem with these algorithms

is that they were based on a modified FP-tree structure,
working on rescanning the whole database and updating and
deleting items in the tree for mining incremental FIs from
the updated tree [2]. Other algorithms used upper bound as
an improved method for the traditional Phi correlation for
mining item pairs from static databases based on the Apriori
method such as the one proposed by Li et al. [41].

Other algorithms used list structure on a dynamic da-
tabase to mine erasable patterns and high-utility patterns
such as IWEL [42], LINE [43], IMSEM [44], VME [45], PRE-
HAUIMI [46], and HUI-list-INS [47] algorithms. Some
other algorithms were based on the Apriori or tree method
[48]. (e point of convergence between these studies and
this study is that they are incremental, working on frequent
pattern mining, using some additional measures of inter-
estingness. However, these studies were concerned with
erasable and high-utility patterns using list structure with
weighted or pre-large concepts. (e main purpose of this
study was to develop an FP-Max tree-based algorithm by
utilizing subjective and objective measures for mining MFIs
from a dynamic database. List structure can be more ef-
fective for mining, especially high-utility and erasable pat-
terns, with regard to quantities or profit value conditions and
other criteria, which are beyond our research.

(ere was a growing need for more comprehensive
methods that can operate on both maximal and incremental
frequent itemsets, and several incremental MFI algorithms
were proposed [17, 18, 49]. IM_WMFI algorithm [17] used a
tree structure to mine WMFIs from incremental databases
using weighted criteria of representative patterns and item
importance. It scans the entire incremental database only once
and extracts fewer number of MFIs. IMU2P-Miner algorithm
[18] was introduced for mining MFIs from univariate un-
certain dada.(is algorithmused a tree structure local array to
keep the updates without the need for tree reconstruction as it
allows only one path to be updated or added.

Interestingness is another feature that has received little
attention in the field of incremental MFImining. Briefly, two
interestingness measures are considered: objective and
subjective measures. (e most considered objective mea-
sures that reflect the statistical strength of a pattern are
support, confidence, all confidence, and left [38]. (ey are
significantly used to discover only strong rules and, hence,
filter out the number of uninteresting patterns. Since these
measures failed to reflect user’s knowledge, subjective
measures were called to ensure the reduction in the number
of the discovered interesting rules only [36]. Novelty
measure (NM), as a subjective measure, was presented in
[34–36] according to the following equation:

NM �
S1

 + S2

 − 2∗K +

k
i− 1 δ C

i
1, C

i
2

S1

 + S2

, (2)

where S1 and S2 are two conjunct sets with cardinalities |S1|
and |S2|, respectively. K is the pairs of compatible conjuncts
between S1 and S2. δ(Ci

1.C
i
2) is the ith pair of compatible

conjuncts. Interested readers may refer to [34–37].
To the best of our knowledge, SelPMiner and CL-Max

are the recent state-of-the art algorithms used for mining

Complexity 3

MFIs from static databases. IM_WMFI and IMU2P-Miner
algorithms are the only recent algorithms that use the tree
method for mining MFIs from incremental database. �ese
algorithms used additional objective measures in mining
process.

In our proposed approach, an integrated algorithm was
used. �e basic FP-Growth algorithm was adopted to mine
FIs from the tree as FP-tree without adjusting the tree

structure, and FP-Max algorithm was used for mining all
MFIs based on MFI-tree structure. �erefore, there is no
need to rescan the previous databases and reconstruct the
FP-tree. Added to the incremental nature of our method,
NM is used to ensure the reduction in the number of MFIs
and, consequently, the number of the discovered interesting
rules. Table 1 shows the characteristics of the major reviewed
algorithms.

Table 1: Characteristics of the major algorithms reviewed.

Algorithm Year Tree-based Incremental Type of FIs Use subj. measure No. ref.
Apriori 1994 No No FIs No [4]
FP-Growth 2000 Yes No FIs No [5]
FP-Max∗ 2005 Yes No MFIs No [23]
PADS 2009 Yes No MFIs No [25]
SelPMiner 2019 Yes No MFIs No [19]
CL-Max 2021 No No MFIs No [26]
FUP 1996 No Yes FIs No [27]
FUFP-tree 2008 Yes Yes FIs No [28]
FUFP-tree maintenance 2009 Yes Yes FIs No [29]
Pre-large 2001 No Yes FIs No [32]
Pre-FUFP 2009 Yes Yes FIs No [33]
IM_WMFI 2016 Yes Yes MFIs No [17]
IMU2P-Miner 2018 Yes Yes MFIs No [18]
Our proposed — Yes Yes MFIs Yes —

New Di+1

Di+1 First Scan
for Di+1

FList as Pi+1 Tree MFIs
Build Tree as FP-tree by
add IMFIs in Pi+1 and
transactions Di+1 to the
Tree using FP-Growth
algorithm

Extract MFIs
from Tree by

FP-Max
algorithm

MinNM (MFIs) ≥ minNovlty

G
eneration Rules

Upd
ate

dIM
FI

s

Ad
d

IM
FI

s t
o

Tr
ee

Add new item
 with our_Sup O

r

update the iner_Sup and

iner_M
insup

1-Itemset IMFIs

PD_IMIFIs Pi+1

Time Ti+1

Interesting Rules

Figure 1: General architecture of the proposed framework.

4 Complexity

3. The Proposed Approach

�e proposed approach is designed to discover incremental
IMFIs, named as IIMFIs, from dynamic database, as shown
in Figure 1. �e proposed approach contains several com-
ponents to which three functions are added: (1) keeping all
items, frequent or infrequent, with their related information;
(2) constructing a tree from the discovered IMFIs and
current database; and (3) dynamic pruning of uninteresting
MFIs. Symbols and notation used in this study are shown in
Table 2.

�e approach acts incrementally �rstly by adding any new
item to the item list and updating the support and threshold
support of each item and, secondly, by adding IMFIs to the list
of IMFIs in PD_IMFIs. PD_IMFI structure will be explained
in Section 3.1. �e framework architecture contains �ve
phases: the �rst phase scans all transactions inDi + 1 to add any
new itemas 1-Itemsetwith its cur_Sup or update the incr_Sup
and incr_Minsup for each item in Pi + 1. �e second phase
builds up the tree from previous IMFIs and transactions in

Di+1, utilizing FP-Growth algorithm similar to FP-tree
structure. As for IMFIs (with its corresponding support), only
the associated item with incr_Sup≥ incr_Minsup or items
with cur_Sup≥ cur_Minsup are added. For each transaction
in Di+1, only items in transaction are added to the tree where
the item incr_Sup≥ incr_Minsup, or cur_Sup≥ cur_Minsup.
In the third phase, FP-Max algorithm is used to extract MFIs
from the tree using MFI-tree structure. In the fourth phase,
dynamic pruning is performed using NM to compare each
newMFIwith all IMFIs of IMFI list in Pi+1. AnewMFIs canbe
added to the list of IMFIs only if it is interesting; otherwise, it is
discarded. In the �fth phase, association rules are generated
from IMFIs. �e output of this framework is incremental
IMFIs and interesting rules. �e detailed description of the
proposed algorithm will be given in Section 3.5.

3.1. PD-IMFI Structure. �e objective of PD_IMFIs is to
speed up the construction of the tree by adding the previous
IMFIs to tree nodes with a counter equal to the support value

Table 2: Notation and meaning.

Notation Meaning
Ti + 1 �e new time (current time)
Di + 1 Current database at Ti + 1
n �e total count of transactions in Di+ 1
Du Di + 1 and all previous databases
Min_Sup Minimum support threshold, set by user where ≥0 and ≤1
cur_Sup �e count of transactions that contains item in Di + 1
cur_Minsup �e value integer of Min_Sup in Di + 1
incr_Sup �e count of transactions that contains item in DU
incr_Minsup �e sum of value integer minSup in DU
1-Itemset 1-Itemset containing name item (key) with cur_Sup, incr_Sup, and incr_Minsup
MFIsnew A new maximal frequent itemsets
NM Value of novelty measure
minNM �e least value within the NM values
minNovlty Minimum novelty threshold, set by user where ≥0 and ≤1
IMFIs A new interesting maximal frequent itemsets
PD_IMFIs Previous discovered interesting MFIs
Pi + 1 PD_IMFIs at Ti + 1 containing 1-Items and IMFI list
S1 Any IMFIs within IMFI list
S2 A new MFIs
|S1| Length (size) of S1
|S2| Length (size) of S2
K Count of similar itemsets of S1 and S2
Conf �e value of con�dence for any rule
minConf Minimum con�dence threshold, set by user where ≥0 and ≤1

1-Items list part

Items_Name cur_Sup incr_Sup incr_Minsup list_IMFIs

List IMFIs

IMFIs Support

...

Figure 2: PD_IMFI structure.

Complexity 5

of IMFIs instead of rescanning previous transactions, thus
reducing the size of the constructed tree, through keeping all
the items (frequent or infrequent) with related information
such as updated support, incremental threshold support,
and the list of IMFI, for use next time, and so on.

As shown in Figure 2, PD_IMFI structure consists of two
main parts: 1-Items list and IMFI list. 1-Items list part
contains four fields: item_Name, cur_Sup, incr_Sup, and
incr_Minsup. item_Name is a key and identifier for each
item in PD_IMFIs. cur_Sup is the count of transactions,
which contains the item in Di+1. incr_Sup is the sum support
of each item in DU. incr_Minsup is the sum minimum
threshold support of each item in DU. It is worth noting that
cur_Minsup is a temporal condition in Di+1 used to update
incr_Minsup. cur_Minsup is calculated according to the
following equation [50]:

cur Min sup � min Sup∗ n. (3)

As an example, let the count of transactions in Di+1 = 10,
and Min_Sup = 0.5, so cur_Minsup = 0.5∗10 = 5.

Each item in 1-Items list part has an IMFI list, whichmay
be null or have one/more IMFIs. IMFI list part contains two
fields: IMFI, referring to an array of associated itemsets as
IMFIs, and support, indicating the frequency value of IMFIs
in DU.

3.2. IncrementalMFIMining. (e incremental nature of the
proposed approach self-adjusts the minimum support
(incr_Minsup) due to the change in the support value
(incr_Sup) of each item in 1-Items list as a result of the Di + 1
scan in the first phase, algorithms 1-2. (e construction of
the tree is based on previously discovered IMFIs in Pi (IMFI
list) and transactions in Di + 1, tree starting is null, and
fetching is only of IMIFs in Pi that associated item in Pi + 1, if
cur_Sup≥ cur_Minsup, or incr_Sup≥ incr_Minsup. In the
second scan of Di + 1, for each transaction, any item is
removed, if item in 1-Items list of Pi + 1 has the value of
cur_Sup< cur_Minsup and incr_Sup< incr_Minsup, and
items are re-sorted in descending order based on the value of
incr_Sup of an item in 1-Items list of Pi + 1. Support in the
header table and the counter node can be updated only if it is
less than incr_Sup of each item in the 1-Items list part of
Pi + 1, as in the second phase, Algorithm 3. As a result, the
counter values of nodes are updated. In the third phase,
incremental MFIs with updated support are extracted from
this tree. Consequently, the Conf value may change as it is
related to support.

3.3. Incremental Dynamic Pruning ofMFIs. One of the main
advantages of our approach is its ability to handle dynamic
pruning based on NM.(e goal is to reduce the count of the
MFIs. (e framework computes NM according to equation
(2). In fact, we do not need to calculate δ(Ci

1, Ci
2) in case of

association rules, because it is always equal to zero, and it is
used in the case of classification. So, equation (2) can be
modified as follows:

NM �
S1

 + S2

 − 2∗K

S1

 + S2

. (4)

NM value of new MFIs determines whether it is novel or
not.(e NM value of these newMFIs is calculated against all
the IMFIs in the IMFI list part of PD_IMFIs as follows:

NM
IMFIslist inPi+1
MFIsnew �

S1

 + S2

 − 2∗K

S1

 + S2

. (5)

As a result of using equation (5) that represents the
relationship between S1 and S2, four cases are observed. Case
1: S1 is equal to S2, S1 � S2 and K� |S1|� |S2|. Case 2: S2 is a
subset of S1, S2 ∈ S1, K> 0, and K� |S2|. Case 3: S1 is a subset
of S2, S1 ∈ S2, K> 0, and K� |S1|. Case 4: S1 is not equal to S2,
S1≠ S2, K≥ 0, K< |S1|, and K< |S2|. Cases 1 and 2 are not
used in our approach since FP-Max algorithm cancels out
any recurrence of FIs in the MFI-tree. Case 3 is not ap-
plicable to our approach since the tree-building process
removes any IMFIs from IMFI list part when any cur_-
Sup≥ cur_Minsup, or incr_Sup≥ incr_Minsup of items
associated with IMFIs in Pi + 1. Only Case 4 is utilized in our
approach to calculate the value of NM depending on the
value of K, as in the fourth phase, Algorithm 4. After the
computation of the NM of each IMFI in Pi + 1, the dynamic
pruning is performed by eliminating those new MFIs with
NM less than minNovlty as shown in Algorithm 1. For
example, let minNovlty� 0.5, a new MFIs� {a,s}, and the
three IMFIs in IMFI list, i.e., {{r,m,s}, {r,b,m}, {m,t}}. (e
NM between a new MFIs is S2 � {a, s} and |S2|� 2 and each
IMFI can be calculated and illustrated as in Table 3. Note
here that minNM� 0.6. So, minNM>minNovlty, and then,
the new MFIs {a, s} are interesting; subsequently, it is added
to IMFI list. Suppose later comes a new MFIs� {u,s,m}. (e
NM between the newMFIs is S2{u,s,m} and |S2|� 3 and each
IMFI in IMFI list can be calculated as shown in Table 4. Note
here that minNM� 0.2. So, minNM<minNovlty, and then,
the new MFIs {u,s,m} are uninteresting; subsequently, it is
pruned.

3.4. Generation of Interesting Rules. NM is used in this
approach as a determining measure during the pruning
process to discover MFIs that are only interesting. As such,
NM becomes a crucial constraint within the algorithm to
reduce the number of MFIs and subsequently the count of
discovered rules. (erefore, only those rules interesting to
the user can be generated. Interestingly, the incremental
nature of the proposed approach makes it significantly
flexible to cope with time-changing data and user-changing
beliefs.(is enforces its computing functionality with two or
more databases arriving at different courses of time with
different volumes and from different locations. Hence, in-
cremental updating of the discovered knowledge is a striking
feature of the proposed algorithm. However, a keyword for
generating the association rules is to identify the measure of
Conf. (is can be calculated according to the following
equation:

6 Complexity

conf �
support(A⟶ B)

suport(A)
, (6)

where support (A⟶B) is the number of transactions
containing itemsets A and B together, and support (A) is the
count of transactions composing itemset A [50].

3.5. Proposed Framework Algorithms. As stated earlier, five
phases have been proposed by our approach framework
representing algorithms 1–4. Algorithm 1 (IIMFI algorithm)
includes these phases, which call other algorithms.

Phase 1. First scan of Di + 1. Lines 1–4 in Algorithm 1
explain Phase 1. (is phase consists of two tasks.

First Task: a new PD_IMFIs are created as Pi + 1. (is is
the integration between the previous PD_IMFI Pi and Di + 1.
Algorithm 2 (created PD_IMFI algorithm) describes these
tasks.

Second Task: the integer value of cur_Minsup is cal-
culated for Di + 1 as to equation (3), and incr_Minsup is
updated by increasing its value with cur_Minsup for each
item in Pi + 1.

Phase 2. Create a new tree as FP-tree structure. Lines 5–6 in
Algorithm 1 explain Phase 2, which calls Algorithm 3
(created tree algorithm), describing Phase 2. (is phase
consists of three tasks.

First Task: the tree is built by adding the previously
discovered IMFIs (along with their corresponding support)
of Pi to the tree.

Second Task: the construction of the tree is completed by
reading the records from the Di + 1.

(ird Task: the support value for each item in the header
table and the counter for the nodes in the tree are updated so
that it becomes equal to incr_Sup for that item in Pi + 1.

Phase 3. Extract MFIs from the tree using FP-Max algo-
rithm, conducting bottom-up looping of each item in Pi + 1
where cur_Sup≥ cur_Minsup, or incr_Sup≥ incr_Minsup.
Lines 7-8.1. 2 in Algorithm 1 explain Phase 3. In line 8.1.3, if
useNM is true, then Phase 4 (lines 8.1.3.1-line 8.1.3.2) and

Phase 5 are proceeded; else, line 8.1.4 Phase 5 is proceeded
(lines 8.1.4.1-8.1.4.2).

Phase 4. Perform dynamic pruning of MFIs using NM
constraint. In this phase, one task is to calculate the NM
between MFIs and all IMFIs in Pi + 1 and select the minNM
value from NM values. Algorithm 4 (interesting measure
algorithm) explains the first task. If the min-
NM≥minNovlty, then the MFIs are interesting (IMFIs), so
Phase 5 is proceeded, else the MFIs are discarded; thus Phase
3 is processed until the first item in Pi + 1.

Phase 5. (is phase runs two tasks.
First Task: the list of IMFIs in Pi + 1 is updated by adding

newMFIs to the list, as represented in line 8.1.4, Algorithm 1.
Second Task: rules from MFIs are generated, which have

Conf≥minConf, by calling association rule generation al-
gorithm, Algorithm 1, line 8.1.5.

3.6. Time Complexity. Regarding the time complexity of the
developed algorithm (IIMFIs), the complexity varied vis-
à-vis the algorithmic conditioning of the mining process at
three divided times and the total time spent on the incre-
mental database. (e first algorithmic step was to call Al-
gorithm 2 to create PD_IMFIs, and the time complexity is
O(n× i), where n is the total number of transactions in the
databases and i is the number of items in n. (e time
complexity here is almost similar to all the other algorithms
when performed on static databases. However, in the case of
incremental databases, the time is less complex in Algorithm
2 of our proposed method compared with other algorithms
due to the algorithmic condition that if any item has been
already discovered, it needs just the update of P data and not
the creation of a new item. As Algorithm 3 was called to
create the updated tree, two recursive cycles were involved.
(e first cycle was to build the tree from the previously
discovered MFIs associated only with the items having in-
cremental support cur_Sup value≥ cur_Minsup value, or
incr_Sup≥ incr_Minsup, and the time complexity here is
o(n). (e second recursive cycle was used to conduct the
second scan of the databases to complete the construction of
the tree, and the time complexity for this step is the same as
for Algorithm 2, O(n× i). It is to be noted that the tree

Table 3: NM calculation between the new MFIs {a,s} and all IMFIs in IMFI list.

S1 |S1| S2 |S2| K NM minNM ≥minNovlty
{r,m,s} 3

{a,s} 2
1 ((3 + 2) − (2×1))/(3 + 2)� 3/5� 0.6

0.6 Yes{r,b,m} 3 0 ((3 + 2) − (2× 0))/(3 + 2)� 5/5�1
{m,t} 2 0 ((2 + 2) − (2× 0))/(2 + 2)� 4/4�1

Table 4: NM calculation between the new MFIs {u,s,m} and all IMFIs in IMFI list.

S1 |S1| S2 |S2| K NM minNM ≥ minNovlty
{r,m,s} 3

{u,s,m} 3
2 ((3 + 3) − (2× 2))/(3 + 3)� 2/6� 0.33

0.2 No{r,b,m} 3 1 ((3 + 3) − (2×1))/(3 + 3)� 4/6� 0.2
{m,t} 2 1 ((2 + 3) − (2×1))/(2 + 3)� 3/5� 0.6
{a,s} 2 1 ((2 + 3) − (2×1))/(2 + 3)� 4/4� 0.6

Complexity 7

Input:
Di + 1
Pi // when i� 0 T0, the P0 is null.
useNM // its optional, either true or false. If true call Algorithm 4 to calculate minNM.
minNovlty, minSup, minConf are values≥ 0 and≤ 1, entered by user.
Output:
Pi + 1 // a new PD_IMFIs output at now time Ti + 1
Phase 1: Create PD_IMFIs as Pi + 1 and incremental support and minimum threshold
(1) Pi + 1�Call Created PD_IMFIs Algorithm (Di + 1, Pi)
(2) cur_Minsup�Min_Sup∗ n
(3) For each item in Pi + 1 as P
(3.1) P. incr_Minsup +� cur_Minsup

(4) End for
Phase 2: Create of tree, it includes previous IMFIs and transactions in Di + 1
(5) tree� null // as structure FP-tree
(6) tree�Call Created Tree Algorithm (Pi + 1, Di + 1, cur_Minsup)
Phase 3: Find MFIs from tree based on FP-Max algorithm
(7) MFI-tree�null
(8) For each item from bottom to up in Pi + 1 as P // where from bottom to up as header table with tree
(8.1) If P. cur_Sup≥ cur_Minsup or P. incr_Sup≥P. incr_Minsup (en

(8.1.1) MFIsnew� null
(8.1.2) MFIsnew� call FP-Max Algorithm (tree, MFI-tree)
(8.1.3) If useNM� � true (en // Go to Phase 4:

Phase 4: Incremental Dynamic Pruning of MFIs
(i) MinNMPi+1

MFIsnew � call Interesting Measure Algorithm (Pi + 1, MFIsnew) // to determine the minimum value of the
deviation between MFIsnew and all IMFIs in Pi + 1.

(ii) If MinNMPi+1
MFIsnew minNovlty (en

(a) Add MFIsnew to P.list_IMFIs in Pi + 1
(iii) End if

(8.1.4) End if
Phase 5: Generation Association Rules

(8.1.5) Call Association Rule Generation Algorithm (MFIsnew, minConf)
(8.2) End if
(9) End for

(10) Return Pi + 1

ALGORITHM 1: Main IIMFI algorithm.

Input:
Di + 1, Pi
Output:
Pi + 1
(1) Pi + 1�Pi
(2) For each transaction T in Di + 1 // first scan current database
(2.1) For each item I in T
(2.1.1) If I is equal item_Name for each item in Pi + 1 as P (en

(i) increase value of P. cur_Sup, and P. incr_Sup by 1
(2.1.2) Else

(i) Create a new item as Pnew with default value fields item_Name� I, cur_Sup� 1, incr_Sup� 1, incr_Minsup� 0, and
list_IMFIs�null

(ii) add a Pnew to 1-Items list in Pi + 1
(2.1.3) End if

(2.2) End for
(3) End for
(4) Re-sort Pi + 1 in descending order by the value of incr_Sup filed.
(5) Return Pi + 1

ALGORITHM 2: Created PD_IMFI algorithm.

8 Complexity

construction in IIMFIs is much faster and more efficient
because the assumed pathways of the tree have already been
constructed in the first recursive cycle. (e second cycle
involved only completion of the tree construction through
just updating the counter for each node. (e worst time
complexity is O(n3) where Algorithm 4 was called within the
recursive cycle of Algorithm 1 in case useNM� true, but if
useNM� false, Algorithm 4 would not be called and, the
time complexity, in this case, is O(n2).

3.7. A Detailed Example. Assume D1, D2, and D3 are three
databases coming at three different times T1, T2, and T3, as
shown in Tables 5–7, respectively. (e last column (ordered

Input:
Pi + 1, Di + 1, cur_Minsup
Output:
tree // tree is update includes all items in IMFIs and Di + 1
(1) For each item in Pi + 1 as P
(1.1) If P.list_IMFIs!� null and (P. cur_Sup≥ cur_Minsup or P.incr_Sup≥P.incr_Minsup) (en

(a) For each IMFIs in P. list_IMFIs
(i) Add all itemsets in IMFIs to new array as arrayTrns
(ii) Re-sort items of arrayTrns in descending order as items in Pi + 1
(iii) tree�Call FP-Growth algorithm to build tree (arrayTrns, IMFIs.support).

(b) End for
(c) P.list_IMFIs� null // reset list_IMFIs as null or remove all IMFIs from P.list_IMFIs

(1.2) End if
(2) End for
(3) For each transaction T in Di + 1 // second scan new database Di + 1.
(3.1) add all items in T to new array as arrayTrns //where item is equal to item_Name; and cur_Sup≥ cur_Minsup or

incr_Sup≥ incr_Minsup in Pi + 1.
(3.2) Re-sort items of arrayTrns in descending order as Pi + 1.
(3.3) tree�Call FP-Growth algorithm to build tree (arrayTrns).

(4) End for
(5) Update support in header table, and counter nodes on main path to equal incr_Sup for each item in Pi + 1 where the item in
header table and node equal item_Name and the same level on main path and Pi.
(6) Return tree

ALGORITHM 3: Created tree algorithm.

Input:
Pi + 1, MFIsnew
Output:
minNM
(1) minNM� 1
(2) For each Item in Pi + 1 as P
(2.1) For each IMFIs in P.list_IMFIs // where P.list_IMFIs not null

(2.1.1) NMtemp� (S1 + S2)–(2∗ k)/(S1 + S2) //where S1 is size of IMFIs, S2 is size of MFIsnew, k is count items of the similar
between IMFI and MFIsnew.

(2.1.2) If NMtemp<minNM then
(a) minNM�NMtemp

(2.1.3) End if
(2.2) End for

(3) End for
(4) Return minNM

ALGORITHM 4: Interesting measure algorithm.

Table 5: Database D1 at T1.

Tid Itemsets Ordered itemsets
1 A C D C A
2 B C E B E C
3 A B C E B E C A
4 B E B E
5 A C D C A
6 B C E B E C
7 A B C E B E C A
8 B E B E
9 A B C E B E C A
10 B E B E

Complexity 9

items) in these tables shows the representation of items in
descending order according to incr_Sup value for each item
in 1-Items list as used in the construction of the tree. Let
Min_Sup� 0.5, minNovlty� 0.5, and minConf� 0.7.

At T1 Phase 1, P1 is created, all items in D1 to1-Items list
with cur_Sup and incr_Sup� support of item in D1 are added,

and incr_Minsup is set; here,� cur_Minsup, and the value of
cur_Minsup� 0.5 ∗10� 5. Figure 3(a) shows P1 after Phase 1.
Phase 2: the tree is created as shown in Figure 3(b). At T1, the
tree is built only from transactions in D1. Phase 3: bottom-up
looping of each item in 1-Items list from P1 is started; if
cur_Sup≥ cur_Minsup or incr_Sup≥ incr_Minsup, it is started

item_Name cur_Sup incr_Sup incr_Minsup list_IMFIs

B 5 8 5 null

C 5 8 5 null

E 7 7 5 null

A 5 5 5 null

D 2 2 5 null

(a)

Item Support
Header table

B 8

Root

B (8)

E (8)

C (5)

A (3)

A (2)

C (2)
E 8
C 7
A 5

(b)

item_Name cur_Sup incr_Sup incr_Minsup list_IMFIs

B 5 8 5 null
IMFIs Support

{B,C,E} 5

IMFIs Support

{A,C} 5

C 5 8 5 null

E 7 7 5

A 5 5 5

D 2 2 5 null

(c)

Figure 3: Example at T1. (a) P1 after phase 1, (b) tree as FP-tree after phase 2, and (c) P1 after phases 3-4.

Table 8: Rules that have Conf ≥0.7 after phase 5 at T1.

No. Rule Conf No. Rule Conf No. Rule Conf
1 A⟶C 1 4 B⟶E 1 7 CE⟶B 1
2 C⟶A 0.71 5 E⟶B 1 8 BC⟶E 1
3 C⟶B 0.71 6 C⟶E 0.71 9 C⟶BE 0.71

Table 6: Database D2 at T2.

Tid Itemsets Ordered itemsets
1 D C B B C D
2 B C E G B C E G
3 D B G B D G
4 A C D G C D G
5 B C E G B C E G
6 A B C E D B C E D

Table 7: Database D3 at T3.

Tid Itemset Ordered itemsets
1 E B C B C E
2 C E B R B C E
3 G B D A M B M
4 B A C B C
5 M R B B M
6 C B E M B C E M

10 Complexity

from item {A} and then FP-Max is called for mining MFIs, and
its output is MFIsnew� {A, C:5}. Phase 4: the value of
MinNMIMFIslist

A,C{ } is calculated, and its value� 1, because IMFI
list for each item in 1-Items list from P1 is null. �en, the value
of MinNMIMFIslist

A,C{ } ≥ minNovlty (1≥ 0.5) is compared; i.e.,
MFIs {A, C:5} are interesting, so it is added to IMFI list of the
item {A}. Phase 5: rules from it are generated where each rule
has Conf ≥0.7. �en, phase 3 is proceeded for taking item{C}.
�e output of this phase isMFIs� {B, C, E:5}. Phase 4: the value
of NMAC

BCE � ((2 + 3) − (2∗ 1)/2 + 3) � 0.6 is calculated,
which is the minNM. �en, the value of MinNMIMFIslist

BCE ≥
minNovlty (.6≥ .5) is compared; thus, MFIs {B, C, E:5} are
interesting, so it is added to IMFI list with item {C}. Phase 5:
rules from it are generated where each rule has Conf≥0.7.�en,
Phase 3 is proceeded, and item{E} is taken; this phase is not the
output MFIs for item{E}, so Phase 4 is not processed; also, item
{B} has no MFIs. Figure 3(c) shows P1 after phases 3-4 at T1.
Table 8 shows generated rules that have Conf ≥0.7 after phase 5
at T1. (Note) At T1, 9 rules are interesting (1-9) (green color).

At T2, Phase 1, P2�P1 is created, and then, cur_-
Sup� support of item in D2, incr_Sup+� cur_Sup, and
incr_Minsup +� cur_Minsup are set. At T2, the value of
cur_Minsup� 0.5 ∗ 6� 3. Figure 4(a) shows P2 after phase 1.
Phase 2: the tree is created. Figure 4(b) shows P2, and
Figure 4(c) shows the tree after phase 2. �e outcome of

phases 3-4 is P2 as Figure 4(d) shows. Phase 5: rules that have
Conf ≥0.7 are generated as shown in Table 9. (Note) At T2,
only 2 rules are interesting (rule 15 and rule 16) (green
color), 14 rules are not interesting, 12 rules undergo change
in value Conf (3-14) (red color), and 2 rules experience no
change in value Conf (1-2).

At T3, Phase 1: P3 � P2 is created, and then, cur_-
Sup� support of item in D3, incr_Sup+� cur_Sup, and
incr_Minsup +� cur_Minsup are set. At T3, the value of
cur_Minsup� 0.5 ∗ 6� 3. Figure 5(a) shows P3 after Phase 1.
Phase 2: the tree is created. Figure 5(b) shows P3, and
Figure 5(c) shows the tree after Phase 2. Figure 4(d) shows
P3 after phases 3-4. Phase 5: rules that have Conf ≥0.7 are
generated as shown in Table 10. (Note) At T3, only 1 rule is
interesting (rule 17) (green color), 16 rules are not inter-
esting, 12 rules undergo change in value Conf (3-14) (red
color), and 4 rules undergo no change in value Conf
(1,2,15,16).�e results of the previous example at three times
are summarized in Table 11.

4. Experiments and Results

To evaluate the performance of the proposed algorithm
(IIMFIs), three experiments were conducted. �e �rst ex-
periment was performed to compare the running time of

item_Name cur_Sup incr_Sup incr_Minsup list_IMFIs
B 5 13 8 null

IMFIs Support
{B,C,E} 5

IMFIs Support
{A,C} 5

C 5 12 8 null
E 3 11 8
A 2 7 8
D 4 6 8 null
G 4 4 3 null

(a)

item_Name cur_Sup incr_Sup incr_Minsup list_IMFIs
B 5 13 8 null

IMFIs Support
{A,C} 5

C 5 12 8 null
E 3 11 8
A 2 7 8
D 4 6 8 null
G 4 4 3 null

null

(b)

Item Support
Header table

B 13

Root

B (13)
C 12

E 11

D 4

G 4

D (1)

G (1) E (11) D (1)

C (11)

D (1)G (2)

C (1)

D (1)

G (1)

(c)

item_Name cur_Sup incr_Sup incr_Minsup list_IMFIs
B 5 13 8 null

IMFIs Support
{B,C,E} 11

IMFIs Support
{A,C} 5

IMFIs Support
{B,G} 4
{C,G} 4

C 5 12 8 null
E 3 11 8
A 2 7 8
D 4 6 8 null
G 4 4 3

(d)

Figure 4: Example at T2. (a) P2 after phase 1, (b) P2 after phase 2, (c) tree as FP-tree after phase 2, and (d) P2 after phases 3-4.

Table 9: Rules that have Conf ≥0.7 after phase 5 at T2.

No. Rule Conf No. Rule Conf No. Rule Conf
1 A⟶C 1 7 C⟶E 0.91 13 CE⟶B 1
2 C⟶A 0.71 8 E⟶C 1 14 B⟶CE 0.84
3 B⟶C 0.85 9 BC⟶E 1 15 G⟶B 1
4 C⟶B 0.91 10 E⟶BC 1 16 G⟶C 1
5 B⟶E 0.85 11 BE⟶C 1
6 E⟶B 1 12 C⟶BE 0.91

Complexity 11

IIMFI algorithm with two incremental algorithms, namely
IM_WMFI and IMU2P-Miner on datasets incrementally, as
explained in Section 4.1. �e second experiment was per-
formed to compare the running time of IIMFI algorithm on
static datasets against two state-of-the art static algorithms,
namely CL-Max and SelPMiner, as explained in Section 4.2.
(Note that in these two experiments, all algorithms dis-
covered the sameMFIs, con�rming that the results produced
by the algorithms in our experiments are complete and
correct.) �e third experiment was performed to test the
e©ect of NM on reducing the count of the discovered MFIs
as described in Section 4.3.

All algorithms were coded in Java programming lan-
guage.�e three experiments were run on a PC with an Intel

Core i5 2.60GHz CPU and 4GB of RAM. �e operating
system was Windows 10 Pro (64-bit).

�e experiments were conducted on �ve datasets from
the FIMI repository: URL: http://�mi.ua.ac.be. �e datasets
are commonly used by researchers in the �eld of ARM.�ese

Table 10: Generated rules that have Conf ≥0.7 after phase 5 at T3.

No. Rule Conf No. Rule Conf No. Rule Conf
1 A⟶C 1 7 C⟶E 0.88 13 CE⟶B 1
2 C⟶A 0.71 8 E⟶C 1 14 B⟶CE 0.74
3 B⟶C 0.74 9 BC⟶E 0.88 15 G⟶B 1
4 C⟶B 0.88 10 E⟶BC 1 16 G⟶C 1
5 B⟶E 0.74 11 BE⟶C 1 17 M⟶B 1
6 E⟶B 1 12 C⟶BE 0.88

Table 11: Results of the example at times T1, T2, and T3.

Time MFIs Uninteresting rules IMFIs Interesting rules
T1 2 9 2 9
T2 4 16 2 2
T3 5 17 1 1

Table 12: Characteristics of experimental datasets.

Dataset Avr. length Count items Count trans.
T10I4D100K 10 870 100000
Mushroom 23 119 8124
T25I10D10K 24 929 9976
Accidents 33 468 340183
Kosarak 8 41270 990002

Table 13: Characteristics of datasets parts at three times.

Dataset Time Avr. length Count items Count trans.

T10I4D100K
T1 10 869 40000
T2 10 869 30000
T3 10 868 30000

Mushroom
T1 23 78 2708
T2 23 63 2708
T3 23 106 2708

T25I10D10K
T1 22 865 3400
T2 26 901 3400
T3 27 917 3176

Accidents
T1 34 412 150000
T2 34 372 100566
T3 34 368 89617

Kosarak
T1 8 34062 400000
T2 8 31407 300000
T3 8 30703 290002

item_Name cur_Sup incr_Sup incr_Minsup list_IMFIs
B 6 19 11 null

IMFIs Support
{B,C,E} 11

IMFIs Support
{A,C} 5

IMFIs Support
{B,G} 4
{C,G} 4

C 4 16 11 null
E 3 14 11
A 2 9 11
D 0 6 11 null
G 1 5 6
M 3 3 3 null
R 2 2 3 null

(a)

item_Name cur_Sup incr_Sup incr_Minsup list_IMFIs
B 6 19 11 null

IMFIs Support
{A,C} 5

IMFIs Support
{B,G} 4
{C,G} 4

C 4 16 11 null
nullE 3 14 11

A 2 9 11
D 0 6 11 null
G 1 5 6
M 3 3 3 null
R 2 2 3 null

(b)

Item Support
Header table

B 19

Root

B (19)

C 16

E 14

M 3
C (16)

E (14)

M (1)

M (12)

(c)

item_Name cur_Sup incr_Sup incr_Minsup list_IMFIs
B 6 19 11 null

IMFIs Support
{A,C} 5

IMFIs Support
{B,C,E} 14

IMFIs Support
{B,M} 3

IMFIs Support
{B,G} 4
{C,G} 4

C 4 16 11 null
E 3 14 11
A 2 9 11
D 0 6 11 null
G 1 5 6
M 3 3 3
R 2 2 3 null

and (d)

Figure 5: Example at T3. (a) P3 after Phase 1, (b) P3 after phase 2, (c) tree as FP-tree after phase 2, and (d) P3 after phases 3-4.

12 Complexity

http://fimi.ua.ac.be

Ta
bl

e
14
:R

un
tim

e
at

T1
,T

2,
T3

,a
nd

to
ta
lr
un

tim
e
(S
ec
.)
fo
r
II
M
FI
s,
IM

_W
M
FI
,a
nd

IM
U
2P

-M
in
er

al
go
ri
th
m
s
on

fiv
e
da
ta
se
ts

w
ith

di
ffe
re
nt

M
in
_S
up

va
lu
es
.

D
at
as
et

M
in
_S
up

(%
)

T1
Ru

nt
im

e
(S
ec
.)

T2
ru
nt
im

e
(S
ec
.)

T3
ru
nt
im

e
(S
ec
.)

To
ta
lr
un

tim
e
(S
ec
.)

A
lg
or
ith

m
s

A
lg
or
ith

m
s

A
lg
or
ith

m
s

A
lg
or
ith

m
s

IM
_W

M
FI

IM
U
2P

-M
in
er

II
M
FI
s

IM
_W

M
FI

IM
U
2P

-M
in
er

II
M
FI
s

IM
_W

M
FI

IM
U
2P

-M
in
er

II
M
FI
s

IM
_W

M
FI

IM
U
2P

-M
in
er

II
M
FI
s

T1
0I
4D

10
0K

0.
2

1.
93

1.
61

0.
82

2.
28

1.
90

0.
62

2.
79

2.
32

0.
59

6.
99

5.
83

2.
03

0.
4

0.
89

0.
63

0.
55

0.
72

0.
51

0.
42

0.
76

0.
54

0.
43

2.
36

1.
69

1.
40

0.
6

0.
71

0.
44

0.
35

0.
54

0.
34

0.
27

0.
58

0.
36

0.
29

1.
83

1.
14

0.
91

0.
8

0.
65

0.
36

0.
29

0.
48

0.
27

0.
21

0.
47

0.
26

0.
21

1.
60

0.
89

0.
71

1
0.
57

0.
29

0.
23

0.
43

0.
21

0.
17

0.
42

0.
21

0.
17

1.
42

0.
71

0.
57

M
us
hr
oo

m

5
0.
22

0.
21

0.
20

0.
25

0.
24

0.
22

0.
33

0.
31

0.
30

0.
80

0.
76

0.
72

10
0.
04

0.
04

0.
04

0.
06

0.
05

0.
05

0.
07

0.
07

0.
06

0.
17

0.
16

0.
14

15
0.
02

0.
02

0.
02

0.
02

0.
02

0.
02

0.
02

0.
02

0.
02

0.
07

0.
06

0.
05

20
0.
02

0.
01

0.
01

0.
02

0.
02

0.
01

0.
02

0.
02

0.
01

0.
06

0.
05

0.
04

25
0.
01

0.
01

0.
01

0.
01

0.
01

0.
01

0.
02

0.
01

0.
01

0.
04

0.
03

0.
03

T2
5I
10
D
10
K

0.
6

0.
57

1.
19

0.
36

0.
89

3.
10

0.
56

1.
13

4.
57

0.
71

2.
59

8.
86

1.
62

0.
8

0.
36

0.
45

0.
20

0.
52

1.
24

0.
29

0.
48

1.
86

0.
27

1.
35

3.
56

0.
75

1
0.
33

0.
42

0.
19

0.
51

0.
98

0.
26

0.
47

1.
34

0.
24

1.
32

2.
74

0.
68

1.
2

0.
32

0.
15

0.
15

0.
46

0.
60

0.
21

0.
46

0.
69

0.
21

1.
23

1.
45

0.
56

1.
4

0.
32

0.
08

0.
13

0.
44

0.
30

0.
19

0.
46

0.
53

0.
19

1.
22

0.
90

0.
52

A
cc
id
en
ts

40
9.
81

7.
01

2.
16

9.
07

6.
48

1.
64

10
.4
0

7.
43

1.
28

29
.2
8

20
.9
2

5.
07

45
4.
04

2.
78

1.
70

3.
23

2.
23

1.
31

3.
64

2.
51

1.
05

10
.9
0

7.
52

4.
06

50
2.
20

1.
46

1.
26

1.
54

1.
03

0.
95

1.
55

1.
03

0.
80

5.
29

3.
52

3.
01

55
1.
49

0.
96

1.
13

1.
01

0.
65

0.
83

0.
94

0.
61

0.
74

3.
44

2.
22

2.
70

60
1.
32

0.
83

1.
07

0.
89

0.
56

0.
76

0.
80

0.
50

0.
64

3.
01

1.
88

2.
47

K
os
ar
ak

0.
2

8.
87

7.
39

6.
93

10
.1
7

8.
48

4.
51

9.
76

8.
14

4.
35

28
.8
0

24
.0
0

15
.7
9

0.
3

3.
62

2.
78

1.
86

2.
59

2.
00

1.
38

2.
54

1.
95

1.
39

8.
75

6.
73

4.
63

0.
4

2.
37

1.
69

1.
60

1.
76

1.
26

1.
19

1.
69

1.
21

1.
14

5.
82

4.
15

3.
92

0.
5

2.
01

1.
34

1.
36

1.
48

0.
98

1.
02

1.
41

0.
94

0.
99

4.
89

3.
26

3.
37

0.
6

1.
72

1.
08

1.
24

1.
28

0.
80

0.
94

1.
27

0.
80

0.
93

4.
28

2.
68

3.
11

Complexity 13

datasets are varied between real or synthetic datasets in
terms of the number of transactions and the density of the
transaction (average length of a transaction in datasets).
Table 12 shows the characteristics of these datasets. For the
experiment on incremental mining, each dataset was divided
into three parts representing T1, T2, and T3, respectively, as
shown in Table 13.

4.1. Experiment 1 (Runtime Dynamic State). In this experi-
ment, the computation of runtime of IIMFIs is performed
against the well-known incremental IM_WMFI and
IMU2P-Miner algorithms as shown in Table 14. Note that
running time here means the execution time (Sec.), which is
the period between the input of dataset and the finishmining
for each time: time 1 (T1), time 2 (T2), and time 3 (T3). Total
runtime refers to the sum of runtime (Sec.) at T1, T2, and T3.
(is experiment was used in the first phase to discover MFIs
without stepping to the rule generation phase. (e experi-
ment calculates the runtime at T1, T2, and T3 on three
classified times of given datasets as shown in Table 13 and
then compares the total executed runtime of IIMFIs,
IM_WMFI, and IMU2P-Miner algorithms as shown in
Table 14. (Note) In IIMFI algorithm, useNM� false; sub-
sequently, Algorithm 4 used to calculate NM is not called.

Figures 6(a)–6(e) reflect the results of the total runtime
(Sec.) of the three algorithms on the five datasets with
different Min_Sup values. As illustrated in Figure 6(a) that
represents the results of the total runtime on T10I4D100K,
IIMFI algorithm records the least runtime, especially at
Min_Sup� 0.2%, followed by IMU2P-Miner algorithm that
takes a reasonable runtime and appears closer to IIMFI
algorithm, particularly at Min_Sup� 1.0%, whereas
IM_WMFI shows a slowing performance. However, the
runtime reduction gap between IIMFIs and IMU2P-Miner
and IM_WMFI is not consistent as it declines at higher
Min_Sup values. Similarly, on T25I10D10K, as Figure 6(c)
shows, IIMFIs outperform the other algorithms at all
Min_Sup values. (e other algorithms show an oscillated
runtime where IM_WMFI almost outpaces IMU2P-Miner
at all Min_Sup except at 1.2%, where they almost exploit the
same runtime, and at 1.4% where IMU2P-Miner shows
better runtime performance. Figure 6(b) reveals that on
Mushroom dataset, almost all the three algorithms take the
same total runtime. A slight difference occurs at Min_-
Sup� 5% where IIMFIs appears a little bit faster. At
Min_Sup� 25%, however, the total runtime is almost the
same for the three algorithms. When operated on Accidents
as in Figure 6(d), IIMFIs perform generally well at lower
Min_Sup� 40% to 50%, while its performance reverts at the
higher Min_Sup� 55% to 60%. On the contrary, IMU2P-
Miner shows better performance at higher Min_Sup values,
while it slows down at lower Min_Sup values; IM_WMFI
stays behind the two, especially at lower Min_Sup values.
Figure 6(e) shows the results of the total runtime on Kosarak
where IIMFIs score a greater reduction runtime rate at
Min_Sup� 0.2% and 0.3%, the same runtime of IMU2P-
Miner at 0.4% and 0.5%, and slower than IMU2P-Miner at
0.6. IM_WMFI is generally the slowest at all Min_Sup.

(e performance of the three algorithms, IIMFIs,
IMU2P-Miner, and IM_WMFI, varies from one dataset to
another depending on the characteristics of datasets
(Figures 6(a)–6(e)). Generally, IIMFI algorithm is faster than
IM_WMFI and IMU2P-Miner on all datasets. (is may be
due to the nature of its incremental tree structure that re-
duces counting loop and time through maintaining the
discoveredMIFs of the first time and updating incr_Sup only
without rescanning the whole data. Based on the experi-
mental results, IIMFIs generally achieve a higher runtime
efficiency rate against other algorithms, particularly on
T10I4D100K, T25I10D10K, and Accidents. However, on
Mushroom and Kosarak datasets the IIMFI runtime oscil-
lates. We can notice the efficiency of IIMFIs in dealing with
high-weight and dense dynamic data as with T10I4D100K
and T25I10D10K, where it scores superiority, especially at
lower Min_Sup. As shown in Figures 6(c) and 6(d), IIMFIs
score higher time efficiency at smaller Min_Sup values due
to the count of items and MFIs since T25I10D10K and
Accidents are dense datasets. However, at higher Min_Sup,
and subsequently, with the high MFI count discovered, it
slightly slows. (is explains that the count of MFIs is higher
at T1, which consequently affects the sum of time needed at
T2 and consequently affects the sum of runtime at T3. As
shown in Figure 6(a), the higher the Min_Sup value is, the
greater the increase in the number of MFIs and, conse-
quently, the less the reduction runtime rate. Since Mush-
room is a sparse dataset but with high count items, the
difference in runtime consumption is almost the same for
the three algorithms (Figure 6(b)). (erefore, at T1 and T2,
item number is greater, MFI count is higher, and Min_Sup
value is lower. In this case, IIMFI performance is faster
because the tree can hold and update the support of MFIs
without the need to re-mine MFIs from the tree. It is ob-
served that at Min_Sup� 1.4% on Mushroom, IMU2P-
Miner algorithm works well at higher Min_Sup values,
which indicates that this algorithm best operates on uni-
variate uncertain dada as it uses a tree structure local array to
keep the updates.

(e evaluation of the execution time of the tested al-
gorithms on dynamic data experimentally revealed that our
algorithm was faster than all the other algorithms due to its
ability to handle the MFI rule mining problem by updating
the tree structure and generating fewer trees and, subse-
quently, shorter executed time. IM_WMFI took the longest
time, especially at lower minimum supports or heavy
datasets.(is was most likely due to the larger number of the
sub-generated trees and the schema of updating structure
rules of the algorithm compared with faster mining of our
algorithm due to its tree structure that does not allow sub-
trees and subsequently admits only new items or updates the
cur_Sup, thus reducing the total runtime. It has been ex-
perimentally observed that when operating on large and
high-weight datasets, IMU2P-Miner and our algorithm ran
similarly well as they used similar FP-tree structure rules.
(is indicated that when the dataset’s weight was too high,
our algorithm was faster as it did not rescan the whole
database, and hence, the runtime required to generate and
scan the updated trees in our algorithmwas also less than the

14 Complexity

0.2
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

0.4 0.6
Min_Sup (%)

T10I4D100K

Ru
n

Ti
m

e (
Se

c.)

0.8 1.0

IM_WMFI
IMU2P-Miner
IIMFIs

(a)

5
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0.9
0.8

10 15
Min_Sup (%)

Mushroom

Ru
n

Ti
m

e (
Se

c.)

20 25

IM_WMFI
IMU2P-Miner
IIMFIs

(b)

0.6
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0

9.0
10.0

8.0

0.8 1.0
Min_Sup (%)

T25I10D10K

Ru
n

Ti
m

e (
Se

c.)

1.2 1.4

IM_WMFI
IMU2P-Miner
IIMFIs

(c)

40
0.000

5.000

10.000

15.000

20.000

25.000

30.000

35.000

45 50
Min_Sup (%)

Accidents

Ru
n

Ti
m

e (
Se

c.)

55 60

IM_WMFI
IMU2P-Miner
IIMFIs

(d)

0.2
0.000

5.000

10.000

15.000

20.000

25.000

30.000

35.000

0.3 0.4
Min_Sup (%)

Kosarak

Ru
n

Ti
m

e (
Se

c.)

0.5 0.6

IM_WMFI
IMU2P-Miner
IIMFIs

and (e)

Figure 6: Comparing the total runtime of T1, T2, and T3 (Sec.) between IM_WMFI, IMU2P-Miner, and IIMFI algorithms on the datasets.
(a) T10I4D100K, (b) Mushroom, (c) T25I100D10K, (d) Accidents, and (e) Kosarak.

Complexity 15

0.2
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

0.4 0.6
Min_Sup (%)

T10I4D100K
Ru

n
Ti

m
e (

Se
c.)

0.8 1.0

CL-Max
SelPMiner
IIMFIs

(a)

5
0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

10 15
Min_Sup (%)

Mushroom

Ru
n

Ti
m

e (
Se

c.)

20 25

CL-Max
SelPMiner
IIMFIs

(b)

0.6
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

0.8 1.0
Min_Sup (%)

T25I10D10K

Ru
n

Ti
m

e (
Se

c.)

1.2 1.4

CL-Max
SelPMiner
IIMFIs

(c)

40
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

45 50
Min_Sup (%)

Accidents

Ru
n

Ti
m

e (
Se

c.)

55 60

CL-Max
SelPMiner
IIMFIs

(d)

0.2
0.0

5.0

10.0

15.0

20.0

25.0

30.0

0.3 0.4
Min_Sup (%)

Kosarak

Ru
n

Ti
m

e (
Se

c.)

0.5 0.6

CL-Max
SelPMiner
IIMFIs

and (e)

Figure 7: Comparing the runtime (Sec.) between CL-Max, SelPMiner, IIMFIs algorithms on the datasets at static state. (a) T10I4D100K, (b)
Mushroom, (c) T25I100D10K, (d) Accidents, and (e) Kosarak.

16 Complexity

runtime needed to do the same in the other algorithms
because the updated trees in our algorithm were constructed
from conditioned MFIs.

4.2. Experiment 2 (Runtime Static State). In this experiment,
the computation of IIMFI runtime is performed against CL-
Max and SelPMiner static algorithms. Figures 7(a)–7(e)
show the results of the runtime (Sec.) on the five datasets
at a static state. Each dataset has a different Min_Sup value.
In this experiment, IIMFI algorithm’s useNM� false.

Experimentally, when comparing the total runtime of
the three algorithms, we notice that their performance
fluctuates depending on the dataset characteristics and the
mining structure of the algorithms whether they are tree-
based or not. T25I10D10K and Accidents datasets are dense
having an unsymmetrical distribution of the item count and
transaction count (929 and 9976 for T25I10D10K; 468 and
340183 for Accidents, respectively) with relatively long
patterns (average length is 24 for T25I10D10K and 33 for
Accidents), while the datasets T10I4D100K and Kosarak are
sparse with a variation of item count and transaction count
(870 and 100000 for T10I4D100K; 41270 and 990002 for
Kosarak, respectively) and characterized by relatively short
patterns (average length is 10 for T10I4D100K and 8 for
Kosarak). Mushroom is a sparse dataset characterized by
symmetrical distribution of the maximal FPs with relatively
long patterns (average length is 23) and small item count
and transaction count (119 and 8124, respectively). Re-
garding the mining structure of the algorithms, IIMFIs and

SelPMiner are tree-based, whereas CL-Max is not.
Figure 7(a) shows the experimental results on T10I4D100K.
As T10I4D100K contains smaller number of items, the
performance of the algorithms fluctuates so that IIMFIs
prove faster than CL-Max algorithm at all Min_Sup and
outpace SelPMiner at lower Min_Sup� 0.2% and 0.4%.
However, at Min_Sup� 0.6% to 1%, SelPMiner performs
faster than IIMFIs and outperforms CL-Max algorithm at
all Min_Sup. Also, on T25I10D10K, IIMFI algorithm shows
superiority over CL-Max and SelPMiner algorithms at all
Min_Sup, as in Figure 7(c). CL-Max algorithm outpaces
SelPMiner at Min_Sup� 0.8% to 1.4%, except for 0.6%,
where SelPMiner outperforms CL-Max algorithm. As for
the performance of the three algorithms on Accidents
dataset as illustrated in Figure 7(d), the IIMFI algorithm is
generally faster than CL-Max and SelPMiner algorithms at
all Min_Sup, while SelPMiner algorithm shows comfortably
less runtime than CL-Max at all Min_Sup. When
approaching the higher Min_Sup values, they have similar
runtime consumption. As for Mushroom dataset (
Figure 7(b)), IIMFIs take less execution time at lower
Min_Sup� 5% and 10%, but similar runtime of the other
algorithms at higher Min_Sup� 15% to 25%. (is may be
attributed to the characteristic parameters of Mushroom
dataset as sparse but large, having fairly long pattern av-
erage, which makes it appropriately workable for all algo-
rithms. Figure 7(e) shows that SelPMiner algorithm has
faster pruning than IIMFIs and CL-Max algorithms at all
threshold values when implemented on the Kosarak dataset.
IIMFIs take the longest time and are outpaced by both

Table 15: Effect of NM on reduction in MFIs and rules when minNovlty� 0.2 and rules having Conf ≥ 0.7.

Dataset Min_Sup (%) MFIs MFI rules IMFIs IMFI rules
Reduction (-)

MFIs (%) Rules (%)

T10I4D100K

0.8 432 100 36 89 92 11
0.9 397 28 11 28 97 0
1.0 370 18 7 18 98 0
1.1 348 14 7 12 98 14
1.2 322 2 1 2 100 0

Mushroom

5 1442 10053043 315 307770 78 97
10 547 1106131 194 168846 65 85
15 321 152798 131 101146 59 34
20 158 67028 73 55358 54 17
25 105 12512 56 7216 47 42

T25I10D10K

0.2 31424 7208014 30626 3520646 3 51
0.3 19499 2693101 18217 1296805 7 52
0.4 13824 2021162 12583 535968 9 73
0.5 10913 3108115 8910 223342 18 93
0.6 7879 836519 6613 74178 16 91

Accidents

40 762 256044 218 35291 71 86
45 427 100146 138 18552 68 81
50 216 37616 87 9703 60 74
55 125 15878 55 5394 56 66
60 78 7036 39 2762 50 61

Kosarak

0.4 467 3282 427 2549 9 22
0.6 224 1420 212 1362 5 4
0.8 127 755 119 688 6 9
1.0 88 480 82 464 7 3
1.2 67 276 64 269 4 3

Complexity 17

SelPMiner and CL-Max algorithms at all threshold values.
(is may be attributed to the search pattern of SelPMiner
algorithm of selective partitioning, based on itemset-count
tree, which is apt for compact datasets. Its MFI-tree structure
works very well, especially when the dataset is sparse but very
large. On the other hand, IIMFIs are working efficiently when
a dataset is dense, so that at lower thresholds IIMFIs show an
efficient runtime reduction rate compared with SelPMiner
and CL-Max algorithms. (e overall evaluation of experi-
mental tests shows satisfactory results that our algorithm is
still effective and satisfactorily fast.

4.3. Experiment 3 (Effect of NM on MFIs and Rules). In this
experiment, we evaluated the effect of the NM on the re-
duction in MFI count and rules generated from MFIs. (e
experiment was applied to all the datasets with different
multiple Min_Sup. In this experiment, useNM� true is used
in the proposed algorithm, utilizing two minNovlty values 0
and 0.2, and minConf� 0.7. Table 15 shows the effect of NM
on the reduction in MFIs when we applied minNovlty� 0.2.
MFIs refer to the count of extracted MFIs without NM; i.e.,
minNovlty� 0; IMFIs refer to the count of the extracted
MFIs with dynamic pruning when minNovlty� 0.2. MFI
rules refer to the number of rules generated from MFIs
where these rules have Conf≥minConf; IMFI rules refer to
the number of rules generated from IMFIs where these rules
have Conf≥minConf. Reduction (-) indicates the effect of
NM at minNovlty� 0.2 on the pruning of MFIs and, sub-
sequently, the reduction in the overall rules in each dataset at
different Min_Sup values. (e results in Table 15 show that
since we are dealing with fixed values in static datasets, NM
values are generally high.

As Table 15 reveals, there is a direct effect of NM on the
count of MFIs and rules when minNovlty� 0.2 compared
with the case when minNovlty� 0. NM reduces the count of
MFIs and rules in all datasets at all dregs of Min_Sup. (e
highest effect is on T10I4D100K (92%–100%), while the least
effect is on Kosarak (4%–9%). (e difference in the per-
centage of the NM effect from one dataset to another is due
to the intensity and degrees of Min_Sup in each dataset. It
has been found that in some datasets, the effect is direct, i.e.,
the higher the degree of Min_Sup is, the greater the effect of
the NM, as with T10I4D100K and T25I10D10K datasets.
However, some of the datasets have the opposite effect; i.e.,
the higher the Min_Sup is, the lower the impact ratio of NM,
as with Mushroom, Accidents, and Kosarak datasets. (is is
due to the count of MFIs at each Min_Sup and the average
length of MFIs in each dataset.

5. Conclusion and Future Work

(e study introduces a novel approach for mining incre-
mental interesting MFIs by extending FP-Growth and FP-
Max to reduce the scanning time and results of MFIs in
datasets arriving at different times.(e approach framework
is structured in five phases representing the approach al-
gorithm IIMFIs, which constitute the proposed design of
this work. (e proposed approach is incrementally self-

adjusting in nature that integrates the previous and current
data by adding and updating only new items or items with
clearly defined support and incremental support values.
Based on developing a tree structure mining method, the
proposed approach has advantageously integrated objective
and subjective measure (novelty measure) test in dynamic
pruning so that only interesting MFIs are produced and only
interesting rules are generated.

For evaluation purpose, three experiments were con-
ducted on five datasets to test the efficiency of the proposed
IIMFI method. Two experiments were performed to test the
runtime efficiency of IIMFIs against two MFI incremental
methods and two state-of-the-art static algorithms and an
experiment to test the effectiveness of IIMFIs in reducing the
number of MFIs and discovered rules by incorporating NM
during mining process. (e experimental results are
promising, revealing that the proposed IIMFI method NM
generally has a direct effect on the reduction in MFI count
and rules in all datasets at all dregs and Min_Sup. However,
the varying effect of IIMFI performance and NM on the
number of MFIs differs from one dataset to another, which
can be attributed to the nature of the dataset, its average
length (density), and number of items.

Future work will be on testing the effectiveness of the
proposed algorithm on other datasets with different degrees
using the concept of “pre-large” to avoid errors in calculating
the degree of the incr_Minsup, or using list structure for
looking at the price or quantities of the items. More ex-
periments may be conducted to evaluate the impact of
subjective measures on objective measures. Future work is
also suggested for developing a proposed algorithm that
deals with parallel processing of data.

Data Availability

(e dataset used in the experiment were taken from FIMI
repository: URL: https://fimi.uantwerpen.be. (e code for
our proposed algorithm is available at: https://github.com/
alhussein1977/IIMFIs-Algorithm.”

Conflicts of Interest

(e authors declare that they have no conflicts of interest
regarding the publication of this study.

References

[1] R. Agrawal, T. Imieliński, and A. Swami, “Mining association
rules between sets of items in large databases,” ACM SIGMOD
Record, vol. 22, no. 2, pp. 207–216, 1993.

[2] W. Kreesuradej andW. Kreesuradej, “Incremental association
rule mining with a fast incremental updating frequent pattern
growth algorithm,” IEEE Access, vol. 9, pp. 55726–55741,
2021.

[3] J. Han, M. Kamber, and J. Pei, “6-mining frequent patterns,
associations, and correlations: basic concepts and methods,”
in In Data Mining (8ird Edn), J. Han, M. Kamber, and J. Pei,
Eds., Morgan Kaufmann, Boston, MA, USA, pp. 243–278,
2012.

[4] R. Agrawal and R. Srikant, “Fast algorithms for mining as-
sociation rules,” in Proceedings of the 20th International

18 Complexity

https://fimi.uantwerpen.be
https://github.com/alhussein1977/IIMFIs-Algorithm
https://github.com/alhussein1977/IIMFIs-Algorithm

Conference on Very Large Data Bases, pp. 487–499, Santiago,
Chile, September 1994.

[5] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without
candidate generation,” ACM SIGMOD Record, vol. 29, no. 2,
pp. 1–12, May 2000.

[6] H. Liu, L. Cui, X. Ma, and C.Wu, “Frequent itemset mining of
user’s multi-attribute under local differential privacy,”
Computers, Materials & Continua, vol. 65, no. 1, pp. 369–385,
2020.

[7] Z. H. Lv and S. L. Lv, “PrePost+: an efficient N-lists-based
algorithm for mining frequent itemsets via Children-Parent
Equivalence pruning,” Expert Systems with Applications,
vol. 42, no. 13, pp. 5424–5432, 2015.

[8] Z. H. Lv and S. L. Lv, “Fast mining frequent itemsets using
Nodesets,” Expert Systems with Applications, vol. 41, no. 10,
pp. 4505–4512, 2014.

[9] Z. H. Deng, “DiffNodesets: an efficient structure for fast
mining frequent itemsets,” Applied Soft Computing, vol. 41,
pp. 214–223, 2016.

[10] N. Aryabarzan, B. Minaei-Bidgoli, and M. Teshnehlab,
“negFIN: an efficient algorithm for fast mining frequent
itemsets,” Expert Systems with Applications, vol. 105,
pp. 129–143, 2018.

[11] Y. Xun, X. Cui, J. Zhang, and Q. Yin, “Incremental frequent
itemsets mining based on frequent pattern tree and multi-
scale,” Expert Systems with Applications, vol. 163, Article ID
113805, 2021.

[12] M. J. Zaki and C. J. Hsiao, “CHARM: an efficient algorithm for
closed itemset mining,” in Proceedings of the 2002 SIAM
International Conference on Data Mining, pp. 457–473, VA,
USA, April 2002.

[13] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, “Discovering
frequent closed itemsets for association rules,” Lecture Notes
in Computer Science, vol. 1540, pp. 398–416, 1999.

[14] G. Grahne and J. Zhu, “Efficiently using prefix-trees in mining
frequent itemsets,” in Proceedings of the Workshop on Fre-
quent Itemset Mining Implementations (FIMI ’03), pp. 123–
132, Melbourne, Florida, USA, December 2003.

[15] J. Wang, J. Han, and J. Pei, “CLOSET+: searching for the best
strategies for mining frequent closed itemsets,” in Proceedings
of the 9th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD ’03), pp. 236–
245, Washington, DC, USA, August 2003.

[16] N. Minaei-Bidgoli and B. Minaei-Bidgoli, “NEclatClosed: a
vertical algorithm for mining frequent closed itemsets,” Ex-
pert Systems with Applications, vol. 174, Article ID 114738,
2021.

[17] U. Lee and G. Lee, “Incremental mining of weighted maximal
frequent itemsets from dynamic databases,” Expert Systems
with Applications, vol. 54, pp. 304–327, 2016.

[18] H. Shahraki and M. H. N. Shahraki, “Incremental mining
maximal frequent patterns from univariate uncertain data,”
Knowledge-Based Systems, vol. 152, pp. 40–50, 2018.

[19] A. Bai, M. Dhabu, V. Jagtap, and P. S. Deshpande, “An ef-
ficient approach based on selective partitioning for maximal
frequent itemsets mining,” S�adhan�a, vol. 44, no. 8, p. 183,
2019.

[20] D. Burdick, M. Calimlim, and J. Gehrke, “Mafia: a maximal
frequent itemset algorithm for transactional databases,” in
Proceedings of the 17th International Conference on Data
Engineering IEEE, pp. 443–452, IEEE Press, Heidelberg,
Germany, April 2001.

[21] K. Zaki and M. J. Zaki, “GenMax: an efficient algorithm for
mining maximal frequent itemsets,” Data Mining and
Knowledge Discovery, vol. 11, no. 3, pp. 223–242, 2005.

[22] G. Grahne and J. Zhu, “High performance mining of maximal
frequent itemsets,” 6th International Workshop on High
Performance Data Mining, vol. 1, pp. 135–143, 2003.

[23] G. Zhu and J. Zhu, “Fast algorithms for frequent itemset
mining using FP-trees,” IEEE Transactions on Knowledge and
Data Engineering, vol. 17, no. 10, pp. 1347–1362, 2005.

[24] M. J. Hsiao and C. J. Hsiao, “Efficient algorithms for mining
closed itemsets and their lattice structure,” IEEE Transactions
on Knowledge and Data Engineering, vol. 17, no. 4, pp. 462–
478, 2005.

[25] X. Zeng, J. Pei, K. Wang, and J. Li, “PADS: a simple yet ef-
fective pattern-aware dynamic search method for fast maxi-
mal frequent pattern mining,” Knowledge and Information
Systems, vol. 20, no. 3, pp. 375–391, 2009.

[26] S. M. Fatemi, S. M. Hosseini, A. Kamandi, and
M. Shabankhah, “CL-MAX: a clustering-based approximation
algorithm for mining maximal frequent itemsets,” Interna-
tional Journal of Machine Learning and Cybernetics, vol. 12,
no. 2, pp. 365–383, 2021.

[27] D. W. Cheung, J. Han, V. T. Ng, and C. Y. Wong, “Main-
tenance of discovered association rules in large databases: an
incremental updating technique,” in Proceedings of the
Twelfth International Conference on Data Engineering,
pp. 106–114, IEEE, New Orleans, LA, USA, February 1996.

[28] T. P. Hong, C. W. Lin, and Y. L. Wu, “Incrementally fast
updated frequent pattern trees☆,” Expert Systems with Ap-
plications, vol. 34, no. 4, pp. 2424–2435, 2008.

[29] T. P. Hong, C.-W. Lin, and Y. L. Wu, “Maintenance of fast
updated frequent pattern trees for record deletion,” Com-
putational Statistics & Data Analysis, vol. 53, no. 7,
pp. 2485–2499, 2009.

[30] J. Sun, Y. Xun, J. Zhang, and J. Li, “Incremental frequent
itemsets mining with FCFP tree,” IEEE Access, vol. 7,
pp. 136511–136524, 2019.

[31] W. Kreesuradej and W. (urachon, “Discovery of incre-
mental association rules based on a new FP-growth algo-
rithm,” in Proceedings of the 2019 IEEE 4th International
Conference on Computer and Communication Systems
(ICCCS), pp. 184–188, IEEE, Singapore, September 2019.

[32] T. P. Hong, C. Y. Wang, and Y. H. Tao, “A new incremental
data mining algorithm using pre-large itemsets1,” Intelligent
Data Analysis, vol. 5, no. 2, pp. 111–129, 2001.

[33] C. W. Lin, T. P. Hong, and W. H. Lu, “(e Pre-FUFP al-
gorithm for incremental mining,” Expert Systems with Ap-
plications, vol. 36, no. 5, pp. 9498–9505, 2009.

[34] A. S. Al-Hegami, V. Bhatnagar, and N. Kumar, “Novelty
framework for knowledge discovery in databases,” in Data
Warehousing and Knowledge Discoveryvol. 3181, , pp. 48–57,
Springer, 2004.

[35] V. Bhatnagar, A. S. Al-Hegami, and N. Kumar, “A hybrid
approach for quantification of novelty in rule discovery,” in
Proceedings of the Second World Enformatika Conference,
WEC’05, no. 2, pp. 39–42, Istanbul, Turkey, February 2005.

[36] V. Bhatnagar, A. S. Al-Hegami, and N. Kumar, “Novelty as a
measure of interestingness in knowledge discovery,” Inter-
national Journal of Information Technology, vol. 2, no. 1,
pp. 36–41, 2005.

[37] A. S. Alsaeedi and H. A. Alsaeedi, “A framework for incre-
mental parallel mining of interesting association patterns for
big data,” International Journal of Computing, vol. 19, no. 1,
pp. 106–117, 2020.

Complexity 19

[38] J. Xu and L. Xu, “A novel interestingness measure based on
fusion model for association rules mining,” MATEC Web of
Conferences, EDP Sciences, vol. 336, , Article ID 05009, 2021.

[39] B. Tuzhilin and A. Tuzhilin, “Unexpectedness as a measure of
interestingness in knowledge discovery,” Decision Support
Systems, vol. 27, no. 3, pp. 303–318, 1999.

[40] B. Bing Liu, W. Wynne Hsu, S. Shu Chen, and Y. Yiming Ma,
“Analyzing the subjective interestingness of association rules,”
IEEE Intelligent Systems, vol. 15, no. 5, pp. 47–55, 2000.

[41] T. Li, Y. Ren, Y. Ren, and J. Xia, “An improved algorithm for
mining correlation item pairs,” Computers, Materials &
Continua, vol. 65, no. 1, pp. 337–354, 2020.

[42] H. Nam, U. Yun, E. Yoon, and J. C. W. Lin, “Efficient ap-
proach for incremental weighted erasable pattern mining with
list structure,” Expert Systems with Applications, vol. 143,
Article ID 113087, 2020.

[43] G. Yun and U. Yun, “Single-pass based efficient erasable
pattern mining using list data structure on dynamic incre-
mental databases,” Future Generation Computer Systems,
vol. 80, pp. 12–28, 2018.

[44] U. Yun, G. Lee, and E. Yoon, “Advanced approach of sliding
window based erasable pattern mining with list structure of
industrial fields,” Information Sciences, vol. 494, pp. 37–59,
2019.

[45] T. Vo and B. Vo, “MEI: an efficient algorithm for mining
erasable itemsets,” Engineering Applications of Artificial In-
telligence, vol. 27, pp. 155–166, 2014.

[46] J. C. W. Lin, M. Pirouz, Y. Djenouri, C. F. Cheng, and
U. Ahmed, “Incrementally updating the high average-utility
patterns with pre-large concept,” Applied Intelligence, vol. 50,
no. 11, pp. 3788–3807, 2020.

[47] J. C. W. Lin, W. Gan, T. P. Hong, and B. Zhang, “An in-
cremental high-utility mining algorithm with transaction
insertion,” 8e Scientific World Journal, vol. 2015, Article ID
161564, 15 pages, 2015.

[48] W. Gan, J. C. W. Lin, P. Fournier-Viger, H. C. Chao,
T. P. Hong, and H. Fujita, “A survey of incremental high-
utility itemset mining,” WIREs Data Mining and Knowledge
Discovery, vol. 8, no. 2, 2018.

[49] R. V. Priya, A. A.Vadivel, and R. S. (akur, “Maximal pattern
mining using fast CP-tree for knowledge discovery,” Inter-
national Journal of Information Systems and Social Change,
vol. 3, no. 1, pp. 56–74, 2012.

[50] Q. Niu, “Optimization of teaching management system based
on association rules algorithm,” Complexity, vol. 2021, Article
ID 6688463, 13 pages, 2021.

20 Complexity

