
An Incremental Interpreter for High-Level Programs with Sensing

Giuseppe De Giacomo
Dipartimento di Informatica e Sistemistica

UniversitY. di Roma "La Sapienza"
Via Salaria 113, 00198 Rome, Italy

degiacomoOdis, uniromal, it

Hector Levesque
Department of Computer Science

University of Toronto
Toronto, Canada M5S 3H5
hectorOcs, toronto, edu

Abstract

Like classical planning, the execution of high-level
agent programs requires a reasoner to look all the
way to a final goal state before even a single action
can be taken in the world. This deferral is a serious
problem in practice for large programs. Furthermore,
the problem is compounded in the presence of sens-
ing actions which provide necessary information, but
only after they are executed in the world. To deal
with this, we propose (characterize formally in the
situation calculus, and implement in Prolog) a new
incremental way of interpreting such high-level pro-
grams and a new high-level language construct, which
together, and without loss of generality, allow much
more control to be exercised over when actions can be
executed. We argue that such a scheme is the only
practical way to deal with large agent programs con-
taining both nondeterminism and sensing.

Introduction

In (De Giacomo, Lesperance, & Levesque 1997) it was
argued that when it comes to providing high level con-
trol to autonomous agents or robots, the notion of high-
level program execution offers an alternative to classical
planning that may be more practical in many appli-
cations. Briefly, instead of looking for a sequence of
actions d such that

Axioms ~ Legal(do(d, So)) A ¢(do(d,

where ¢ is the goal being planned for, we look for a
sequence d such that

Axioms ~ Do(6, So, do(d, So))

where 5 is a high-level program and Do(6, s, s’) is
formula stating that 5 may legally terminate in state
s’ when started in state s. By a high-level pro-
gram here, we mean one whose primitive statements
are the domain-dependent actions of some agent or
robot, whose tests involve domain-dependent fluents
(that are caused to hold or not hold by the primitive
actions), and which contains nondeterministic choice
points where reasoned (non-random) choices must
made about how the execution should proceed.

What makes a high-level agent program different
from a deterministic "script" is that its execution is
a problem solving task, not unlike planning. An inter-
preter needs to use what it knows about the prerequi-
sites and effects of actions to find a sequence with the
right properties. This can involve considerable search
when 5 is very nondeterministic, but much less search
when 5 is more deterministic. The feasibility of this
approach for AI purposes clearly depends on the ex-
pressive power of the programming language in ques-
tion. In (De Giacomo, Lesperance, & Levesque 1997),
a language called CONGOLOG is presented, which in
addition to nondeterminism, contains facilities for se-
quence, iteration, conditionals, concurrency, and prior-
itized interrupts. In this paper, we extend the expres-
sive power of this language by providing much finer
control over the nondeterminism, and by making pro-
visions for sensing actions. To do so in a way that
will be practical even for very large programs requires
introducing a different style of on-line program execu-
tion.

In the rest of this section, we discuss on-line and off-
line execution informally, and show why sensing ac-
tions and nondeterminism together can be problem-
atic. In the following section, we formally characterize
program execution in the language of the situation cal-
culus. Next, we describe an incremental interpreter in
Prolog that is correct with respect to this specification.
The final section contains discussion and conclusions.

Off-line and On-line execution

To be compatible with planning, the CONGOLOG in-
terpreter presented in (De Giacomo, Lesperance,
Levesque 1997) executes in an off-line manner, in the
sense that it must find a sequence of actions constitut-
ing an entire legal execution of a program before actu-
ally executing any of them in the world.1 Consider, for
example, the following program:

(a]b) ;A ;p?

lit is assumed that once an action is taken, it need not
be undoable, and so backtracking "in the world" is not an
option.

28

From: AAAI Technical Report FS-98-02. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

where a and b are primitive actions, t indicates nonde-
terministic choice, A is some very large deterministic
program, and p? tests whether fluent p holds. A legal
sequence of actions should start with either a or b, fol-
lowed by a sequence for A, and end up in state where p
holds. Before executing a or b, the agent or robot must
wait until the interpreter considers all of A and deter-
mines which initial action eventually leads to p. Thus
even a single nondeterministic choice occurring early
in a large program can result in an unacceptable delay.
We will see below that this problem is compounded in
the presence of sensing actions.

If a small amount of nondeterminism in a program
is to remain practical (as suggested by (De Giacomo,
Lesperance, & Levesque 1997)), we need to be able
choose between a and b based on some local criterion
without necessarily having to go through all of A. Us-
ing something like

(alb) ;r? ;A ;p?

here does not work, since an off-line interpreter cannot
settle for a even if it leads to a state where r holds.
We need to be able to commit to a choice that satisfies
r, with the understanding that it is the responsibility
of the programmer to use an appropriate local crite-
rion, and that the program will simply fail without the
option of backtracking if p does not hold at the end.

It is convenient to handle this type of commitment
by changing the execution style from off-line to on-line,
but including a special off-line search operator. In a
on-line execution, nondeterministic choices are treated
like random ones, and any action selected is executed
immediately. So if the program

(alb) ;A ;p?

is executed on-line, one of a or b is selected and exe-
cuted immediately, and the process continues with A;
in the end, if p happens not to hold, the entire pro-
gram fails. We use a new operator E for search, so
that Eh, where 5 is any program, means "consider 5
off-line, searching for a globally successful termination
state". With this operator, we can control how nonde-
terminism will be handled. To execute

r.{(alb) ;r?} ;p?
on-line, we would search for an a or b that successfully
leads to r, execute it immediately, and then continue
boldly with A. In this scheme, it is left to the program-
mer to decide how cautious to be. There is no loss of
expressive power here since to execute a program the
old way, we need only put the entire program within a
E operator.

Sensing actions

This on-line style of execution is well-suited to pro-
grams containing sensing actions. As described in
(Golden & Weld 1996; Levesque 1996; Scherl
Levesque 1993), sensing actions are actions that can

be taken by the agent or robot to obtain information
about the state of certain fluents, rather than to change
them. The motivation for sensing actions involves ap-
plications where because the initial state of the world
is incompletely specified or because of hidden exoge-
nous actions, the agent must use sensors of some sort
to determine the value of certain fluents.

Suppose, for example, that nothing is known about
the state of some fluent q, but that there is a binary
sensing action readq which uses a sensor to tell the
robot whether or not q holds. To execute the program

a ; readq ; if q then A1 else A2 endIf ; p?

the interpreter would get the robot to execute a in the
world, get it to execute readq, then use the information
returned to decide whether to continue with A1 or A2.
But consider the program

(alb) readq ; if q t hen A1 else A2 endIf ;p? .

An off-line interpreter cannot commit to a or b in ad-
vance, and because of that, cannot use readq to de-
termine if q would hold after the action. The only
option available is to see if one or a or b would lead to
p for both values of q. This requires considering both
A1 and A2, even though in the end, only one of them
will be executed. Similarly, if we attempt to generate
a low-level robot program (as suggested in (Levesque
1996) for planning in the presence of sensing), we end
up having to consider both A1 and A2.

The situation is even worse with loops. Consider

(alb) ;readq ;while q do A ;readq endWhile ;p?.

Since an off-line interpreter has no way of knowing in
advance how many iterations of the loop will be re-
quired to make q false, to decide between a and b, it
would be necessary to reason about the effect of per-
forming A an arbitrary number of times (by discover-
ing loop invariants etc.). But if a commitment could
be made to one of them on local grounds, we could
use readq to determine the actual value of q, and it
would not be necessary to reason about the determin-
istic loop. It therefore appears that only an on-line
execution style is practical for large programs contain-
ing nondeterminism and sensing actions.

Characterizing program execution

The technical machinery we use to define on-line pro-
gram execution in the presence of sensing is essentially
that of (De Giacomo, Lesperance, & Levesque 1997),
i.e. we use the predicates Trans and Final to define
a single step semantics of programs (Hennessy 1990;
Plotkin 1981). However some adaptation is necessary
to deal with on-line execution, sensing results, and the
IE operator.

Situation calculus
The starting point in the definition is the situation cal-
culus (McCarthy & Hayes 1969). We will not go over

29

the language here except to note the following compo-
nents: there is a special constant So used to denote
the initial situation, namely that situation in which
no actions have yet occurred; there is a distinguished
binary function symbol do where do(a, s) denotes the
successor situation to s resulting from performing the
action a; relations whose truth values vary from situ-
ation to situation, are called (relational) fluents, and
are denoted by predicate symbols taking a situation
term as their last argument; there is a special predi-
cate Poss(a, s) used to state that action a is executable
in situation s; finally, following (Levesque 1996), there
is a special predicate SF(a, s) used to state that action
a would return the binary sensing result 1 in situation
S.

Within this language, we can formulate domain the-
ories which describe how the world changes as the re-
sult of the available actions. One possibility is an ac-
tion theory of the following form (Reiter 1991):

¯ Axioms describing the initial situation, So. Note
that there can be fluents like q about which nothing
is known in the initial state.

¯ Action precondition axioms, one for each primitive
action a, characterizing Poss(a, s).

¯ Successor state axioms, one for each fluent F,2 stat-
ing under what conditions F(~, do(a,s)) holds as
function of what holds in situation s. These take the
place of the so-called effect axioms, but also provide
a solution to the frame problem (Reiter 1991).

¯ Unique names axioms for the primitive actions.

¯ Some foundational, domain independent axioms.

Finally, as in (Levesque 1996), we include

¯ Sensed fluent axioms, one for each primitive action
a of the form SF(a, s) =- ¢~(s), characterizing SF.

For the sensing action readq used above, we would have
[SF(readq, s) q(s)], an d fo r any or dinary action a
that did not involve sensing, we would use [SF(a, s)
true].

Histories
To describe a run which includes both actions and their
sensing results, we use the notion of a history. By a
history we mean a sequence of pairs (a, x) where a is
primitive action and x is 1 or 0, a sensing result. Intu-
itively, the history (al, xl)..... (an,Xn) is one where
actions al,. ¯ ¯, an happen starting in some initial situ-
ation, and each action ai returns sensing value xi. The
assumption is that if ai is an ordinary action with no
sensing, then xi = 1. Notice that the empty sequence
e is a history.

Histories are not terms of the situation calculus. It is
convenient, however, to use end[a, s] as an abbreviation

2A fluent whose current value could only be deter-
mined by sensing would normally not have a successor state
axiom.

for a situation term called the end situation of history
a on s, and defined by: end[e, s] = s; and inductively,
end[a . (a, x). s] = do(a, end[a, s]).

It is also useful to use Sensed[a, s] as an abbreviation
for a formula of the situation calculus, the sensing re-
sults of a history, and defined by: Sensea~e, s] = true;
and inductively, Sensea~a. (a, 1),s] = Sensed[a,s] h
SF(a, end[a, s]), and Sensea~a. (a, 0), s] = Sensed[a, s]
-,SF(a, end[a, s]). This formula uses SF to tell us what
must be true for the sensing to come out as specified
by a starting in s.

The Trans and Final predicates

The on-line execution of a program consists of a
sequence of legal single-step transitions. In (De
Giacomo, Lesperance, & Levesque 1997), two spe-
cial predicates, Final and Trans were axiomatized,
where Final(a,s) was intended to say that program
5 may legally terminate in situation s, and where
Trans(5, s, 3’, s’) was intended to say that program
in situation s may legally execute one step, ending in
situation s’ with program 5’ remaining. For example,
the transition axiom for sequence is

Trans([61; 52], s, 3’, s’) --
Final(51, s) A Trans(32, s, 5’, s’)

3"1,’. Trans(51, s, V’, s’) A 5’ = (7’; 52).

This says that to single-step the program (31; 52), ei-
ther 61 terminates and we single-step 52, or we single-
step 51 leaving some O/, and (7’; 52) is what is left
the sequence.

For our account here, we include all the axioms for
Trans and Final from (De Giacomo, Lesperance,
Levesque 1997) (the details of which we omit),
add two new ones below for the E operator. However,
instead of using these axioms to characterize a Do for-
mula for off-line execution, we will use them together
with sensing values to define on-line execution.

In the absence of sensing, we have that an action a
is a legal next step for program 5 in situation s only
when

Axioms ~ Trans(3, s, 5’, do(a, s)

for some remaining program 5’. With sensing however,
the existence of such an a may depend on the values
sensed so far. That is, if s is ena~a, So] where a is the
history of actions and sensing values, a should be such
that

Axioms U { Sensea~a, S0]} ~ Trans(5, s, 5’, do(a, s)

In general, given history a starting in situation si, we
look for a next action a satisfying

Axioms U { Sensea~a, si]}
Trans(3, end[a, si], 3’, do(a, end[a, si])).

Similarly, we are allowed to terminate the program 5
successfully if

Axioms U { Sensea~a, si]} ~ Final(6, ena~a, si]),

3O

where again the history a can be taken into account.
How do we know that this specification is aptgropri-

ate? It is easy to see that if no sensing action is per-
formed then Sensed[a, si] becomes equivalent to true,
and hence the specification correctly reduces to the
specification of a legal single step from before. More-
over, we can see that it corresponds intuitively to on-
line execution, in that we get to take into account the
sensing information returned by the current action be-
fore deciding on the next one. So if a happened to be
the sensing action readq from above, and it returned
the value 0 in situation s, then in looking for the next
legal action, we would assume that ~SF(readq, s) was
true, and thus, that ~q held in situation s. So if g’
above were [if q then ... else ...], the correct else
branch would be taken for the next action.

As noted above, the only change we require to the
axioms for Trans and Final is for the P. operator. For
Final, we have that (PZ, s) is a final configuration
the program if (g, s) itself is, and so we get the axiom

Final(PZ, s) = Final(g, s).

For Trans, we have that the configuration (P.g, s) can
evolve to (P’7’, s’) provided that (6, s) can evolve
(7’, s’) and from (7’, s’) it is possible to reach a final
configuration in a finite number of transitions. Thus,
we get the axiom3

Trans(~6, s, g’, s’) =
37’. g’ = £7’ A Trans(g, s, 7’, s’)

~7", s". Trans* (7’, s’, 7", s") Final(7", s").

In this axiom, Trans* is the reflexive transitive closure
of Trans, defined by

Trans*(a,s,g’,s’) de__/ VT[... D T(g,s,g’,s’)]

where the ellipsis stands for

Vs,7. T(7, s,7, s)
Vs, 7, s’, 7’, s", 7". T(7, s, 7’, s’)

Trans(7’, s’, D T(7, s,7",s") 7",s").
The semantics of P. can be understood as follows: (1)
(PZ, s) selects from all possible transitions of (a,s)
those from which there exists a sequence of further
transitions leading to a final configuration; (2) the
operator is propagated through the chosen transition,
so that this restriction is also performed on successive
transitions. In other words, within a P. operator, we
only take a transition from 6 to 7’, if 7’ is on a path
that will eventually terminate successfully, and from 7’
we do the same. As desired, ~ does an off-line search
before committing to even the first transition.

An incremental interpreter

In this section we present a simple incremental inter-
preter in Prolog. Although the on-line execution task

aWe do not attempt to deal with the subtleties that arise
when a search is performed with other programs executing
concurrently.

characterized above no longer requires search to a fi-
nal state, it remains fundamentally a theorem-proving
task: does a certain Trans or Final formula follow log-
ically from the axioms of the action theory together
with assertions about sensing results?

The challenge in writing a practical interpreter is
to find cases where this theorem-proving can be done
using something like ordinary Prolog evaluation. The
interpreter in (De Giacomo, Lesperance, & Levesque
1997) as well as in earlier work on which it was based
(Levesque et al. 1997) was designed to handle cases
where what was known about the initial situation So
could be represented by a set of atomic formulas to-
gether with a closed-world assumption. In the pres-
ence of sensing, however, we cannot simply apply a
closed-world assumption blindly. As we wilt see, we
can still avoid full theorem-proving if we are willing
to assume that a program executes appropriate sens-
ing actions prior to any testing it performs. In other
words, our interpreter depends on a dynamic closed-
world assumption where it is assumed that whenever
a test is required, the on-line interpreter at that point
has complete knowledge of the fluents in question to
evaluate the test without having to reason by cases
etc. We emphasize, however, that while this assump-
tion is important for the Prolog implementation, it is
not required by the formal specification.

The main loop

As it turns out, most of the subtlety in writing such an
interpreter concerns the evaluation of tests in a pro-
gram. The rest of the interpreter derives almost di-
rectly from the axioms for Final, and Trans described
above. It is convenient, however, to use an implemen-
tation of these predicates defined over encodings of
histories (with most recent actions first) rather than
situations. We get

/* P is a program */
/* H is a history, initially [] */
/* H ::= [] I [(Act,I/O) IH]

incrInterpret(P,H) :- final(P,H).
incrInterpret(P,H)

nextAct(P,H,Act,Pl),
execute(Act,Sv),
incrInterpret(Pi,[(Act,Sv) IH]).

incrInterpret(P,H)
trans(P,H,Pi,H), incrInterpret(Pi,H).

nextAct(P,H,Act,Pl)
trans(P,H,Pl,[(Act,_)]H]).

execute(Act,Sv)
write(Act),
(senses(Act,_)

(write(’:’), read(Sv)) ; (nl,

So to incrementally interpret a program on-line, we ei-
ther terminate successfully, or we find a transition in-
volving some action, commit to that action, execute it

31

in tile world to obtain a sensing result, and then con-
tinue the interpretation with the remaining program
and the updated history. 4 In looking for the next. ac-
tion, we skip over transitions involving successful tests
where no action is required and the history does not
change. To execute an action in the world, we connect
to the sensors and effectors of the robot or agent. Here
for simplicity, we just write the action, and read back a
sensing result. We assume the user has declared using
senses (described below) which actions are used for
sensing, and for any action with no such declaration,
we immediately return the value 1.

Implementing Trans and Final

Clauses for trans and final are needed for each of
the program constructs. For example, for sequence,
we have

trans (ssq(Pl,P2) ,H,P,H1)
final(Pl,H), trans(P2,H,P,Hl).

trans(seq(Pl,P2) ,H,seq(P3,P2) ,HI)
trans (PI,H,P3,HI)

which corresponds to the axiom given earlier. We
omit the details for the other constructs, except for

(search):

final(search(P),H) :- final(P,H).

trans (search (P), H, search (Pl) ,HI)
trans(P,H,PI,Hl), ok(Pl,Hl).

ok(P,H) :- final(P,H).
ok(P,H) :- trans(P,H,Pl,H), ok(P1,H).
ok(P,H) :- trans(P,H,Pl,[(Act,_)lH]),

(senses(Act,_) ->
(ok(Pl, [(Act,0)

ok(Pl,[(Act,l)]H])
ok(Pl,[(Act,l) IH])).

The auxiliary predicate ok here is used to handle the
Trans* and Final part of the axiom by searching for-
ward for a final configuration. ~ Note that when a fu-
ture transition involves an action that has a sensing
result, we need the program to terminate successfully
for both sensing values. This is clearly explosive in gen-
eral: sensing and off-line search do not mix well. It is
precisely to deal with this issue in a flexible way that
we have taken an on-line approach, putting the control
in the hands of the programmer.

Handling test conditions

The rest of the interpreter is concerned with the eval-
uation of test conditions involving fluents, given some
history of actions and sensing results. We assume the
programmer provides the following clauses:

4In practice, we would not want the history list to get
too long, and would use some form of "rolling forward" (Lin
& Reiter 1997).

5In practice, a breadth-first search may be preferable.
Also, we would want to cache the results of the search to
possibly avoid repeating it at the next transition.

¯ poss(Act,Cond): the action is possible when the
condition holds;

¯ senses (Act, Fluent): the action can be used to de-
termine the truth of the fluent;6

¯ initially(Fluent): the fluent holds in the initial
situation So;

¯ causesTrue(Act,Fluent,Cond): if the condition
holds, performing the action causes the fluent to
hold;

¯ causesFalse (Act,Fluent,Cond) : if the condition
holds, performing the action causes the fluent to not
hold.

In the absence of sensing, the last two clauses provide
a convenient specification of a successor state axiom
for a fluent F, as if we had (very roughly)

F(do(a, s)) -
3¢(causesT~e(a, F, ¢) f ¢[4)

F(s) A ~3¢(causesFalse(a, ¢) A ¢[s]).

In other words, F holds after a if a causes it to hold,
or it held before and a did not cause it not to hold.
With sensing, we have some additional possibilities.
We can handle fluents that are completely unaffected
by the given primitive actions by leaving out these two
clauses, and just using sensing. We can also handle
fluents that are partially affected. For example, in an
elevator controller, it may be necessary to use sensing
to determine if a button has been pushed, but once
it has been pushed, we can assume the corresponding
light stays on until we perform a reset action causing it
to go off. We can also handle cases where some initial
value of the fluent needs to be determined by sensing,
but from then on, the value only changes as the result
of actions, etc. Note that an action can provide infor-
mation for one fluent and also cause another fluent to
change values.

With these clauses, the transitions for primitive ac-
tions and tests would be specified as follows:

trans(prim(Act) ,H,nil, [(Act,_)]HI) :-
poss(Act,Cond), holds(Cond,H).

trans(test(Cond),H,nil,H) :- holds(Cond,H).

where nil is the empty program. The holds predicate
is used to evaluate arbitrary conditions. Because we

are making a (dynamic) closed-world assumption, the
problem reduces to holdsf for fluents (we omit the
reduction). For fluents, we have the following:

holdsf(F,[]) :- initially(F).

holdsf(F,[(Act,X) IH])
senses(Act,F),!, X=l. /* Mind the cut

SThe specification allows a sensor to be linked to an
arbitrary formula using SF; the implementation insists it
be a fluent.

32

holdsf(F,[(Act,X) lH])
causesTrue(Act,F,Cond), holds(Cond,H).

holdsf(F, [(Act,X) IH])
not (causesFalse(Act,F,Cond),

holds (Cond,H)),
holdsf (F,H)

Observe that if the final action in the history is not
a sensing action, and not an action that causes the
fluent to hold or not hold, we regress the test to the
previous situation. This is where the dynamic closed-
world assumption comes in: for this scheme to work
properly, the programmer must ensure that a sensing
action and its result appear in the history as necessary
to establish the current value of a fluent.

Correctness

This completes the incremental interpreter. The inter-
preter is correct in the sense thatT:

¯ if the goal final((~,a) succeeds, then

Axioms U {Sensed[a, So]} ~ Final(3, end[a, So])

¯ if the goal nextAct(6,a,a,6’) succeeds, then

Axioms U {Sensed[a, So]}
Trans(, end[a, So], do(a, en a, So]))

But despite the very close correspondence between the
axioms for Trans and Final and the clauses for trans
and final, actually proving this correctness is not triv-
ial: we need to show how the axioms of the back-
ground action theory derive from the user-supplied
Prolog clauses listed above given our dynamic closed-
world assumption. We leave this to future research.

Discussion

The framework presented here has a number of limi-
tations beyond those already noted: it only deals with
sensors that are binary and noise-free; no explicit men-
tion is made of how the sensing influences the knowl-
edge of the agent, as in (Scherl & Levesque 1993); the
interaction between off-line search and concurrency is
left unexplored; finally, the implementation has no fi-
nite way of dealing with search over a program with
loops.

One of the main advantages of a high-level agent
language containing nondeterminism is that it allows
limited versions of (runtime) planning to be included
within a program. Indeed, a simple planner can be
written directly:s

while -~¢ do 7ra. (Acceptable(a)? ; endWhile.

7We keep implicit the translation between Prolog terms
and the programs, histories, and terms of the situation
calculus

SThe = operator is used for a nondeterministic choice of
value.

Ignoring Acceptable, this program says to repeatedly
perform some nondeterministically selected action un-
til condition o holds. An off-line execution would
search for a legal sequence of actions leading to a sit-
uation where o holds. This is precisely the planning
problem, with Acceptable being used as a forward filter,
in the style of (Bacchus & Kabanza 1996).

However, in the presence of sensing, it is not clear
how even limited forms of planning like this can be han-
dled by an off-line interpreter, since a single nondeter-
ministic choice can cause problems, as we saw earlier.
The formalism presented here is, as far as we know, the
only one that has a chance of being practical for large
programs containing both nondeterministic action se-
lection and sensing.

One concern one might have is that once we move
to on-line execution where nondeterministic choice de-
faults to being random, we have given up reasoning
about courses of action, and that our programs are
now just like the pre-packaged "plans" found in RAP
(Firby 1987) or PRS (Ingrand, Georgeff, & Rao 1992).
Indeed in those systems, one normally does not search
off-line for a sequence of actions that would eventually
lead to some future goal; execution relies instead on a
user-supplied "plan library" to achieve goals. In our
case, with E, we get the advantages of both worlds:
we can write agent programs that span the spectrum
from scripts where no look-ahead search is done and
little needs to be known about the properties of the
primitive actions being executed, all the way to full
planners like the above. Moreover, our formal frame-
work allows considerable generality in the formulation
of the action theory itself, allowing disjunctions, exis-
tential quantifiers, etc. Even the Prolog implementa-
tion described here is considerably more general than
many STares-like systems, in allowing the value of flu-
ents to be determined by sensing intermingled with the
context-dependent effects of actions.

A more serious concern, perhaps, involves what we
can guarantee about the on-line execution of an agent
program. On-line execution may fail, for instance,
even when a proper sequence of actions provably exists.
There is a difficult tradeoff here that also shows up in
the work on so-called incremental planning (Ambros-
Ingerson & Steel 1988; Jonsson & Backstrom 1995).
Even if we have an important goal that needs to be
achieved in some distant place or time, we want to
make choices here and now without worrying about it.
How should I decide what travel agent to use given
that I have to pick up a car at an airport in Amster-
dam a month from now? The answer in practice is
clear: decide locally and cross other bridges when you
get to them, exactly the motivation for the approach
presented here. It pays large dividends to assume by
default that routine choices will not have distant con-
sequences, chaos and the flapping of butterfly wings
notwithstanding. But as far as we know, it remains an
open problem to characterize formally what an agent

33

would have to know to be able to quickly confirm that
some action can be used immediately as a first step
towards some challenging but distant goal.

References

J. A. Ambros-Ingerson and S. Steel. Integrating Plan-
ning, Execution and Monitoring. In Proc. AAAI-88,
Saint Paul, Minnesota, 1988.
F. Bacchus and F. Kabanza. Planning for temporally
extended goals. In Proc. AAAI-96, Portland, Oregon,
1996.

R. J. Firby. An investigation in reactive planning in
complex domains. In AAAI-87, Seattle, Washington,
1987.

G. De Giacomo, Y. Lespfirance, and H .Levesque.
Reasoning about concurrent execution, prioritized in-
terrupts, and exogenous actions in the situation cal-
culus. In Proc. IJCAI-97, Nagoya, Japan, 1997.
K. Golden and D. Weld. Representing sensing ac-
tions: the middle ground revisited. In Proc. KR-96,
Cambridge, Massachusetts, 1996.

M. Hennessy. The Semantics of Programming Lan-
guages. John Wiley & Sons, 1990.
F. F. Ingrand, M. P. Georgeff, and A. S. Rao. An ar-
chitecture for real-time reasoning and system control.
IEEE Ezpert, 7, 6, 1992,

P. Jonsson and C. Backstrom. Incremental planning.
In Proc. 3rd European Workshop on Planning, 1995.

H. Levesque. What is planning in the presence of
sensing? In Proc. AAAI-95, Portland, Oregon, 1996.
H. Levesque, R. Reiter, Y. Lesp~rance, F. Lin, and
R. Scherl. GOLOG: A logic programming language
for dynamic domains. Journal of Logic Programming,
Special issue on actions, 31, 1-3, pp. 59-83, 1997.

F. Lin and R. Reiter. How to progress a database. In
Artificial Intelligence, 92, pp. 131-167, 1997.
J. McCarthy and P. Hayes. Some philosophical prob-
lems from the standpoint of artificial intelligence. In
Machine Intelligence, vol. 4, Edinburgh University
Press, 1969.
G. Plotkin. A structural approach to operational se-
mantics. Technical Report DAIMI-FN-19, Computer
Science Dept. Aarhus Univ. Denmark, 1981.

R. Reiter. The frame problem in the situation calcu-
lus: A simple solution (sometimes) and a complete-
hess result for goal regression. In Artificial Intelli-
gence and Mathematical Theory of Computation: Pa-
pers in Honor of John McCarthy, pages 359-380. Aca-
demic Press, 1991.

R. Scherl’and H. Levesque. The frame problem and
knowledge producing actions. In Proc. of AAAI-
93, pp. 689-695, Washington, DC, July 1993. AAAI
Press/The MIT Press.

34

