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Abstract— Recently, the human-like behavior on the an-
thropomorphic robot manipulator is increasingly accomplished
by the kinematic model establishing the relationship of an
anthropomorphic manipulator and human arm motions. No-
tably, the growth and broad availability of advanced data
science techniques facilitate the imitation learning process in
anthropomorphic robotics. However, the enormous data set
causes the labeling and prediction burden. In this paper, the
swivel motion reconstruction approach was applied to imitate
human-like behavior using the kinematic mapping in robot
redundancy. For the sake of efficient computing, a novel
incremental learning framework that combines an incremental
learning approach with a deep convolutional neural network
(IN-DCNN) is proposed for fast and efficient learning. The
algorithm exploits a novel approach to detect changes from
human motion data streaming and then evolve its hierarchical
representation of features. The incremental learning process can
fine-tune the deep network only when model drifts detection
mechanisms are triggered. Finally, we experimentally demon-
strated this neural network’s learning procedure and translated
the trained human-like model to manage the redundancy
optimization control of an anthropomorphic robot manipulator
(LWR4+, KUKA, Germany). This approach can hold the
anthropomorphic kinematic structure-based redundant robots.
The experimental results showed that our architecture could
not only enhance the regression accuracy but also significantly
reduce the processing time of learning human motion data.

I. INTRODUCTION

Human-like practice imitation and analysis have attracted

increasing research attention in anthropomorphic robotics

control over the past decades [1], [2]. It has been demon-

strated that the human-like motion control of anthropo-

morphic manipulators is capable of enhancing the quality

of Human-Robot Interaction (HRI) prominently in multiple

areas, like industry and biomedical engineering purposes [3]–

[5]. Especially for the anthropomorphic serial robot with

human-like mechanical structures, for example, YuMi (ABB,

Zurich, Switzerland), Justin robot (Institute of Robotics and

Mechatronics, Wessling, Germany), and LWR4+ (KUKA,
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Augsburg, Germany) resembling human-like action in the

kinematic level can be more social, cognitive and reasonable.

Many investigations had been delivered to implement

human-like conduct presence on the robot’s end-effector.

An autonomous adaptation human-like control for reaching

the target of hands-on surgical robots was completed by

Beretta et al. in [6]. A human-like reaching motion had

been proposed in [7] for robot-environment interactions. The

hand pose’s human-like path planning was achieved using

a feed-forward Artificial Neural Network (ANN) in [8].

However, these contributions cannot control the whole-body

of mimicking human-like behavior because they ignore the

arm pose on manipulators.

For solving these limitations, the elbow swivel motion

angle of the human arm is defined, shown in Fig. 1, to

achieve whole-body human-like motion. The wrist-elbow-in-

line approach is implemented to project human-like kinemat-

ics resolution for mapping the demonstrated human elbow

angle based on the real robot [9]. The elbow swivel angle

is redefined by mapping the modeled human-like swivel

motion to the Yumi robot to imitate human behavior [10],

[11]. The relationship of the hand pose and the elbow

swivel angle is investigated for improving the human-like

model. Moreover, the nonlinear regression relation between

elbow swivel angles and hand poses achieves human-like

deliveries [12]. A categorical mathematical model cannot

analyze the relationship between end-effector configuration

and elbow swivel angle. Recently, both regression errors

and prediction time are tested based on different regression

models, such as curve fitting (CF), artificial neural network

(ANN) [13], and deep learning (DL) approach [14]). The

comparison results show the CF model cannot map the non-

stationary relationship of them. Although the feed-forward

neural network (FFNN) algorithm with a single hidden layer

was utilized for accuracy enhancement, it limits the real-time

prediction. The development of the advanced data science

techniques, such as machine learning (ML) and intelligence

computation, facilitates imitation learning in anthropomor-

phic robotics [15]. However, the high computational burden

is imposed by huge data streams.

Due to the overfitting of neural network (NN) models

and low-speed computation, they cannot satisfy efficient

learning requirements in a nonstationary environment, the big

data processing techniques are widely used for making the

robot imitating human-like behavior. The main application

areas are the evolution of computing, the Internet of Things



Fig. 1: Elbow swivel angle.

(IoT), humanoid robots, and HRI. In [16], a deep convolu-

tional neural network (DCNN) is utilized based non-linear

modeling approach for fast computation, noise robustness,

and accuracy enhancement. However, most of the traditional

methods cannot satisfy the fast-speed calculation with high

accuracy in processing large-volume data.

Since the traditional continuous learning procedure is

costly and time-consuming, developing a fast evolution

method in the dynamic human-like learning procedure is

necessary. The incremental learning approach [17] provides

an efficient solution for model evolution which utilizes the

notion of “concept drift” [18]. The model will be updated for

adapting to the changes (only) when the change is detected.

This paper proposes an incremental learning framework

based on the DCNN approach (IN-DCNN) for fast on-

line human-like motion learning. This architecture aims to

improve the existing DCNN model only when the drift

detection mechanism is triggered. It incorporates the online

learning regression model, along with an adaptive detection

unit. The designed DCNN structure investigates the nonlinear

relation between the human hand pose and the human

swivel angle for improving the ability of regression anal-

ysis. Meanwhile, it is expected for accuracy enhancement

and fast computation. In the experiments, the performance

of the build IN-DCNN model is demonstrated by several

human motion trajectory datasets, and results show that the

proposed IN-DCNN method obtains the lowest Root Mean

Square Error (RMSE) and computational time compared with

other existing methods. Then, it is translated to manage

whole-body human-like kinematic control of the 7 DoFs

anthropomorphic robot arm (LWR4+, KUKA, Germany).

The presented IN-DCNN framework includes the following

contributions:

• A new DCNN architecture is designed to build the

human motion model for achieving fast computation.

• An incremental learning framework is proposed for

efficient human motion learning by utilizing “concept

drift ”. It adopts a non-parametric dynamic threshold

method to detect drifts over streams data. When a

change is detected in the data stream, the previous

Fig. 2: Human-like kinematic mapping on the KUKA an-

thropomorphic manipulator. The coordination positions are

labeled by elbow (E), hand (H), wrist (W), and shoulder (S),

separately. The elbow swivel angle ψ is denoted by calulating

the relationship of reference plane and arm plane.

DCNN model will be updated.

• A decoupled control framework is utilized to achieve the

whole-body human-like kinematic control of the robot

manipulator during the tracking tasks.

The following sections organize the paper. Section II

describes the details of the proposed IN-DCNN model and

the designed hardware system. Section III presents the com-

parison experiment for proving the regression performance

between IN-DCNN and other approaches. It also demon-

strates the real-time prediction results by adopting the KUKA

anthropomorphic manipulator. Finally, Section IV concludes

and discusses further work.

II. METHODOLOGY

To analyze the swivel motion characteristics during ma-

nipulated tasks, it needs to build a human arm’s kinematic

model. Then, we present the online training framework

based on the IN-DCNN learning method. Finally, the decou-

pled control approach is adopted to transfer the established

human-like motion model.

A. Human upper limb kinematic modeling

Fig. 2 shows the human-like motion model building pro-

cedure for achieving a human-like kinematic mapping on

the robot. Hence, the 7 DoFs rigid kinematic chain should

be modeled based on the human arm (see Fig. 3). The

expression of the elbow swivel angle ψ has been presented

in [16]. The forward kinematics function provides hand poses

by using Denavit-Hartenberg (D-H) parameters, and then

the geometry relation helps to compute the joint angles

(qi, i = 1, 2, · · · , 7) [19]. Therefore, the swivel angle ψ can

be denoted by the reference plane and the arm plane [13].



Fig. 3: The kinematic chain of a human upper limb, where

the joint positions is qi, i = 1, · · · , 7 and the link lengths of

each segment is dj , j = 1, 3, 5, 7, separately.

Fig. 4: Skeleton tracking and modeling interface.

B. Acquisition and preprocessing of human motion data

An acquisition software interface (MATLAB 2018b) is

created using KINECT V2 (Microsoft, USA) device for

collecting the human motion data, namely, swivel angles and

skeleton (see Fig. 4) [20]. The ”Start” button can activate the

visual system, which is at the skeleton viewer’s upward side.

The description of the data acquisition has been discussed

in [13].

The work aims to establish a DCNN-based regression

model to map the 6-D hand pose x = [x, y, z, θx, θy, θz] to

the 1-D elbow swivel angle ψ, where x,y, and z are positions

in the Cartesian coordinate system and θx, θy , and θz are

Euler angles.

Since the DCNN model is the basic structure in the

proposed incremental DCNN framework and convolutive

layers should be applied to filter the input data, they are

good for pixels or sequences of the homogenous dataset [21].

Therefore, the raw input x ∈ R
6×1 should be extended into

a homogenous matrix x
∗ ∈ R

6×3 as follows:

x
∗ = [x;x− x̄;

x− x̄

σx
] (1)

where σx and x̄ are the standard deviation and average of

x, respectively.

C. The designed DCNN Structure

Although the ANN-based approaches demonstrated a

promising performance, their complicated function structure

will often cause them to be overfitting, underfitting, and time-

consuming [13]. The DCNN-based system can solve these

problems using batch normalization, ReLU activation func-

tion, and dropout layer because they are generally known for

fast computation and resolving the overfitting problem [16].

The DCNN model consists of two convolutional mod-

ules, a dropout layer, and a full connection layer. Each

convolutional module has two dimensions (2-D) convolutive

map, Rectified Linear Unit (ReLU) activation function, batch

normalization (BN) (see Fig. 5). Since the tensor represen-

tation should use each heterogeneous object for capturing

the complex relations, the DCNN model is devised to learn

features. The kernel tensor maps the six-order input (x∗) Km

and bias bm as follows:

F o = fc(x
∗ ⊗Km + bm),m = 1, 2 (2)

where fc stands for the non-linear function and ⊗ represents

the convolution operation. Then, the obtained features vector

F o will be normalized by

µB =
1

n

n∑

1

F oi

σ2
B =

√√√√ 1

n

n∑

i=1

(F oi − µB)
2

F̂ oi =
F oi − µB√
σ2
B + ǫ

yBi ← γF̂ oi + β ≡ BNγ,β(F
o
i )

(3)

The obtained output yBi is filtered by the ReLU function

as:

yRi = fr(y
B
i ) = max(0, w⊤yBi + b) (4)

where w means weights and b is the bias. In this paper, the

2-D convolutive layer takes the output by filtering the input

matrix with eight kernels of 2× 2 dissensions.

The dropout layer aims to avoid the overfitting drawback

by randomly dropping each neuron and sampling an ensem-

ble of thinned deep architectures. The following equations

describe the feed-forward procedure:

s
(h)
i ∼ Bernoulli(p)

ã
(t) = s

(h) ∗ a(t)

yRi (t+ 1) = wi(t+ 1)ã(t) + bi(t+ 1)

a
(t+1)
i = fd(y

R
i (t+ 1))

(5)

The input yRi are processed by the dropout network, where

w and b denote the weights and bias in the hidden layer,

respectively. The Bernoulli distribution s(h) is the mask

matrix of each element, while ã
(t) is the masked output

vector. The loss only passes based on the selected structure

in the backpropagation [22]. Finally, the DCNN structure
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Fig. 5: The schematic diagram of DCNN-based online learning framework. The parameters of the DCNN model ψ = f(x,Θ)
are modified in gradient descent learning way when the loss function L measures the discrepancy between the observed ψt
and predicted ψ̂t.

captures new knowledge by reusing the idle subnetworks.

The applied dropout layer (with 0.3 percentage) aims to

avoid the overfitting problem and time-consuming tasks.

The adaptive moment estimation optimizer (Adam) function

is adopted with a 0.001 learning rate. We also add the

dropout layer for avoiding overfitting. The drop factor and

drop period are 0.001 and 500, respectively. Although the

built DCNN regression model predicts the hand poses with

high accuracy, it cannot learn new information in a dynamic

environment.

D. The proposed IN-DCNN framework

Although the three components of the DCNN model are

architecturally elaborated enough to obtain heterogeneous

characteristics, the fast-growing data stream’s dynamic char-

acteristic is still a challenge for HAR [23]. Meanwhile, the

DCNN model uses multiple layers because it is safe from the

gradient vanishing problem. However, the DCNN regression

model is demanded to deal with concept drifts in the real-

world scenarios where a time-varying behavior characterizes

the data streaming [24]. Hence, we propose the incremental

DCNN (IN-DCNN) framework to solve this problem, which

only updates the parameters in a fully connected layer for

fast computation. The IN-DCNN model consists of two

stages, namely the initial increment computation and the

parameters re-training [25]. Each of them should include the

convergence analysis procedure. In order to avoid losing the

current information in the tensor space, the full connection

network’s parameters adopt a new loss function while the

parameters were re-training step capture new information to

train the previous knowledge by fine-tuning method [26].
1) Convergence Analysis: We adopt the supervised ma-

chine learning mechanism 1 to evaluate the function of the

1. In a supervised learning model, the algorithm learns on a labeled
dataset, providing an answer key that the algorithm can use to evaluate
its accuracy on training data. In contrast, an unsupervised model provides
unlabeled data that the algorithm tries to make sense of by extracting
features and patterns on its own.

IN-DCNN framework. In Fig. 5, the time-varying recon-

structed inputs x
∗
t provide new information of the built clas-

sifier ψ̂t = ft(x
∗
t ,Θt). The online learning IN-DCNN model

is designed to modify the overall parameters continuously set

Θt = {Wt,bt}, where W and b denote all of the weights

and bias of DCNN classifier, respectively.

The purpose of nonlinear modeling is to search the optimal

features by calculating the minimum least squares.

Θt = argmin
Θ

N∑

t=1

(
ψ̂t − ψt

)2

= argmin
Θ
‖ψ̂t − ψt‖

2
2

(6)

The performance of DCNN model is evaluated by Root

Mean Square Error (RMSE) εt at time t as follows:

εt =

√√√√
N∑

t=1

(
ψ̂ − ψ

t
)2 (7)

where N is the length of the whole dataset, a lower RMSE

value is expected. IN-DCNN algorithm aims to update the

parameters set Θt when new couple (xt, ψt) is available at

time t continuously as follows:

Θ̂t+1 = Θ̂t − λ
∂L

(
ψt, ψ̂t

)

∂Θ

∣∣∣∣∣∣
Θ̂t

(8)

Where λ denotes the learning rate of this deep neural

network, and L is the loss function, which measures the

squared error between the identified swivel angle ψ̂ and the

observed swivel angle ψ (see Eq. 9). It is a typical gradient

descent learning mechanism for passive solutions [27].

∆L =
1

2
ψ⊤

t Θψ̂t = ft(x
∗

t ,Θt)− ψt (9)
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Fig. 6: The schematic diagram of the DCNN-based incremental learning (IN-DCNN) framework. The whole parameters of

DCNN model (structure described in fig. 5) will be updated when the loss function L(ψt, ψ̂t) measuring the absolute error

|ψt − ψ̂t| is inspected by the query strategy. When εt > ηt, the new couple (xt, ψt) will be saved into the storage space

of error dataset (x̃ε, ψ̃ε). The previous DCNN model evolution: The following condition is to judge whether the length of

the error dataset Ne is larger than the threshold ζ. If both of the conditions are satisfied, it will start to modify the DCNN

model’s parameters.

The difference Θ̂t+1−Θ̂t should be close to the final value

to improve efficiency by reducing the re-training steps. The

L2-norm between ψ̂ and ψ offers the adaption information

to evaluate the performance of preservation [28]. The defor-

mation loss function Lo is

Lo =
1

2
‖ft(x

∗

t ,Θt)−−ψt‖
2
2 (10)

Hence, the increment loss component L is

L = ∆L+ Lo

=
1

2
∆yTΘ∆y +

1

2
‖ft(x

∗

t ,Θt)−−ψt‖
2
2

(11)

When a new couple (x∗
t , ψt) is detected, the query strategy

is triggered to evaluate whether it needs to update the

parameters set Θ by comparing the difference εt−ηt. Where

ηt is the time-varying error threshold. The increment com-

putation problem is transformed to minimize the increment

loss component L as:

∂L

∂Θ
=

∂

∂Θ

(
1

2
∆yTΘ∆y +

1

2
‖ft(x

∗

t ,Θt)−−ψt‖
2
2

)

= 0

(12)

To avoid computational redundancy and enhance accuracy,

a query strategy is proposed in IN-DCNN architecture (see

Fig. 6). It includes two judgment mechanisms. The absolute

error εt = |ψ̂t − ψt| is measured every time by comparing

with the adaptive threshold ηt, which is designed for drifts

detection. ηt is the ξ times Quantile of the continuous

updated absolute errors sequence εt as:

ηt = Φ(εt, n) = ξ × (n− 1)th[εo; εt] (13)

where εo is the initial error and εt is the current value,

respectively. In this paper, ξ = 0.4. The current couple

(xt, ψt) will be saved into the training dataset if εt > ηt.

Meanwhile, the query mechanism continuously counts the

number Ne of the increased error sequence (x̃ε, ψ̃ε) =
[(xε, ψε); (xt, ψt)]. When Nε > ζ, the parameters of the

previous DCNN model will be updated. ζ is the threshold of

the length of error dataset. In this paper, we set ζ = 500 due

to the four testing datasets have 1500 samples. The query

unit will be reset after the gradient descent is activated.

2) Parameters Re-training: Although the proposed IN-

DCNN algorithm only updates the full connection layer

parameters, it needs to make the IN-DCNN model capturing

the aggregate data’s intrinsic features by the incremental

dropout re-training algorithm. The weights can be classified

into three subsets with two thresholds (i.e., η1 and η2). The

assigned probability Pj , j = 1, 2, 3 of each subset subjects

to the Bernoulli distribution. The incremental knowledge can

be saved into the idle neurons with a large probability [28].

Thus, they are easy to be re-trained in the dropout updating

phase.

The norm of N -order weights could be calculated by:

‖w‖ = w ⊗ w =

t1∑

j1=1

· · ·

tN−1∑

jn−1

w2
j1j2...jN−1

(14)



And the subspaces’ weight are divided into the following

three sections:

W1 : 0 < ‖w‖ < η1

W2 : η1 ≤ ‖w‖ < η2

W3 : ‖w‖ ≥ η2

(15)

In the incremental learning procedure, each subspace plays

a different role. Eq. 15 compute the probability of each

subset. Most of the old information is preserved in the

neurons of subspace W2, while W1 is effected on the

features learning. Hence, we update the whole parameters

by the initial parameter, ∆W increment as follows:

Wall = W +∆W ∗M (16)

Then, Yo = f(Wall ⊙ x ⊗ M + b) is the tensor full

connected layer’s outputs. Hence, the backpropagation of

incremental training algorithm consists of three steps as

follows:

1) compute the incremental changes of loss function for

each neuron k, namely

δLk =
∂L

∂Θk
=

∂

∂Θ

1

2
(fkt (x

∗

t ,Θt)− ψ
k
t )

2

2) the incremented changes of full connection layer can

be calculated by

δLk = (Wk)⊤ ⊙ Lk+1 ⊗ Y ′

o ⊗M

3) obtain the incremental weights and bias by

∆W
k =Mk ⊙ Lk+1,∆bk = Lk+1

E. Robotic human-like kinematic control

For the robot manipulator control, a velocity-based con-

troller is investigated in this paper to track the desired target

pose Xd using the human-like swivel angle ψd. The desired

control input and the joint velocity q̇, can be obtained using

the mapping from the end-effector’s velocity Ẋ , which is

represented as:

Ẋ = Jq̇T (17)

where q̇T determines the required joint velocities to achieve

the performing task. q̇N is defined as the joint motion

generated in the Null-space of the corresponding performing

task. The Jacobian matrix J(q) ∈ R
6×7 is acquired from the

manipulator tool pose to the base of the manipulator. This

formulation demonstrates the projection relation between

joint-space and task-space. The given pose of the joint-

space configuration solution is infinite due to the redundant

structure of the manipulator. Null-space projection is an

efficient way to determine redundancy resolution, which can

be expressed as:

q̇ = J+Ẋ +
(
I − J+J

)
JE

+ψ̇uψ (18)

where, the Jacobian matrix JE ∈ R
3×4 is camputed from the

manipulator’s elbow to the manipulator base. ψ̇ is the veloc-

ity of the swivel angle ψ [13]. This presents the relationship

of the joint-space, task space and the elbow position. The

velocity direction vector of the elbow joint, uψ ∈ R
3×1, can

also be viewed as the direction vector of the elbow swivel

motion, represented as follows:

uψ =

−→

SE ×E
−→
W

‖
−→

SE ×E
−→
W ‖

(19)

−→

SE represents the vector from the shoulder of the manip-

ulator to the elbow of the manipulator.
−−→

EW is the vector

from the manipulator’s to the wrist of the manipulator (see

Fig. 2). This also works for the desired variables, as follows:

q̇d = J+Ẋd +
(
I − J+J

)
JE

+ψ̇duψ (20)

In this work, the manipulator is assumed far away from

its singularity and the pseudo-inverse of the Jacobian ma-

trix [29], J+, exists. The sketch of the corresponding de-

coupled kinematic controller is demonstrated in Fig. 7.

Fig. 7: A sketch of the human-like kinematic controller.

III. EXPERIMENT AND DEMONSTRATION

The performance of the proposed IN-DCNN structure is

verified by conducting the following two experiments. Five

trajectory datasets (one for training and four for testing)

are collected. The detailed definition of the data collection

procedure and task performance have been depicted in [13].

Both DL and ML approaches are adopted, such as long-short-

terms memory (LSTM), DCNN, and ANN-based algorithms.

Especially, cascade-forward neural networks (CFNN) and

FFNN (with 20 neurons in the hidden layer) are used to

build the ANN-based models [30]. Quantitative evaluations

are used to test the ability of the IN-DCNN framework

for online prediction. All of the methods are implemented

and compared in the same software (MATLAB 2018b) and

hardware platform based on Intel(R) i7 Core 2.80 GHz CPU

and 16.0 GB RAM.

A. Performance comparisons of IN-DCNN modeling

After building the regression models on the training

dataset (2000 samples), their performance will be evaluated

on the four trajectory groups (each has 1500 samples).

Table I shows the comparison results of RMSE and cumu-

lative predictive time ct among the built models. To avoid

overfitting or underfitting, we run the results over ten times.

The LSTM architecture is designed with an LSTM layer

(150 neurons) and a dropout layer (0.3 percentage). The

Adam estimation optimizer is used. The parameters are set

as follows: the learning rate is 0.01, the minimum batch size

is 50, the drop factor is 0.02, and the drop period is 5.



TABLE I: The comparative results of IN-DCNN, DCNN, LSTM, FFNN, and CFNN models on the four trajectories.

Model Parameters
Datasets Number

Task 1 Task 2 Task 3 Task 4

IN-DCNN
RMSE (rad) 0.1820 ± 0.0278 0.1540 ± 0.0223 0.2187 ± 0.0249 0.2017 ± 0.0175
∑

ct (s) 23.79 ± 0.15 22.73 ± 0.19 27.91 ± 0.14 26.64 ± 0.13

DCNN
RMSE (rad) 0.1866 ± 0.0562 0.1761 ± 0.0623 0.2292 ± 0.0422 0.2026 ± 0.0485
∑

ct (s) 2426.2 ± 9.04 2440.0 ± 9.23 2509.4 ± 9.77 2450.6 ± 9.10

LSTM
RMSE (rad) 1.2714 ± 0.0562 1.3452 ± 0.0623 1.2980 ± 0.0607 1.3575 ± 0.0579
∑

ct (s) 1571.0 ± 5.14 1576.0 ± 5.11 1882.3 ± 5.13 1594.9 ± 5.10

FFNN [31] [13]
RMSE (rad) 0.1848 ± 0.1677 0.1631 ± 0.1331 0.2172 ± 0.1468 0.2019 ± 0.1655
∑

ct (s) 195.70 ± 2.21 191.11 ± 2.34 201.44 ± 3.09 190.34 ± 2.74

CFNN [32]
RMSE (rad) 0.1948 ± 0.1319 0.1762 ± 0.1205 0.2271 ± 0.1327 0.1994 ± 0.1244
∑

ct (s) 204.81 ± 3.22 198.70 ± 3.40 198.94 ± 3.11 196.21 ± 3.48

As expected, the proposed IN-DCNN framework is the

fastest method in the online regression scheme. It only needs

around 25 seconds to predict all of the results in each

trajectory, while the other four models spend a colossal time.

Meanwhile, the IN-DCNN model obtains the lowest RMSE

even if they are close to that of the DCNN model. Fur-

thermore, the obtained lowest standard deviation of RMSE

proves that the IN-DCNN algorithm is a robust method.

Fig. 8 displays four examples of online RMSE values

comparing among the IN-DCNN, DCNN, LSTM, FFNN,

and CFNN methods on the four trajectories. The red curves

are the results obtained by the IN-DCNN method. The

above results prove that the IN-DCNN method is capable

of achieving high accuracy and fast computation.

B. Demonstration

After validating the performance in the IN-DCNN based

human-like model training process, the human-like redun-

dancy optimization using the trained model is demonstrated

on an anthropomorphic KUKA robot. This requires the

robot to perform the collected human motion in an au-

tonomous way [13]. With the same end-effector task, the

swivel motion of the elbow should be in a similar way. The

anthropomorphic robot manipulator pose is computed using

an interpolation algorithm and used as the DNN model’s

input. The DCNN regression model can predict the human-

like swivel motion angle. Meanwhile, the results are updated

based on the incremental learning procedure. The joints

configuration is obtained by utilizing the decoupled control

strategy. Fig. 9 illustrates the human kinematics strategies

when executing tracking tasks, which achieve human-like

arm posture prediction.

IV. CONCLUSION AND FUTURE WORK

In this paper, an incremental learning framework based

on the DCNN method (IN-DCNN) with a query strategy is

proposed for the human-like system. This scheme can be

implemented on time-varying big data streams. The experi-

mental results show the IN-DCNN algorithm achieving on-

line regression prediction for accuracy enhancement and fast

computation. Meanwhile, the proposed IN-DCNN method

obtains the lowest RMSE and computational time comparing

with the other models (i.e., IN-DCNN, DCNN, LSTM,

FFNN, and CFNN). Finally, the trained human-like kine-

matic model is utilized to manage the redundancy control of

a 7 DoFs anthropomorphic robot manipulator for validation.

In the future, remote minimally invasive surgery (MIS) could

be further developed through the advance of communication

technology and could computing. To improve the realtime

performance of remote MIS, computational cost should be as

low as possible. Therefore, the proposed IN-DCNN method

can also save costs in the area of cloud computing due to the

high computational ability of IN-DCNN. Although human-

like reaching motion could enhance the equality of human-

robot interaction; it is still challenging to deal with the

mapping between the human upper limb and the manipulator.

Therefore, it is necessary to investigate more efficient human

upper limb kinematic models for achieving a human-like

kinematic mapping on the robot, considering joint limits and

other various performance indices, such as manipulability,

repetitive motion performance index, etc.. Besides, human

operators should also perform a non-singular trajectory in

order to avoid the singularity case. In future work, we will

further investigate the performance of the proposed method

in the presence of noisy trajectories.
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