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Abstract— the age of big data and dynamic environments result in the increasing demand of 

advanced machine learning techniques to deal with concept drifts in large data streams. Evolving 

Fuzzy Systems (EFS) are one of recent initiatives from the fuzzy system community to resolve the 

issue. Existing EFSs are not robust against data uncertainty, temporal system dynamics, and the 

absence of system order, because vast majority of EFSs are designed in the feed-forward type-1 

fuzzy network architecture. This paper aims to solve the issue of data uncertainty, temporal 

behaviour, and the absence of system order by developing a novel evolving recurrent fuzzy neural 

network, called Evolving Type-2 Recurrent Fuzzy Neural Network (eT2RFNN). eT2RFNN is 

constructed in a new recurrent network architecture, featuring double recurrent layers. The new 

recurrent network architecture evolves a generalized interval type-2 fuzzy rule, where the rule 

premise is built upon the interval type-2 multivariate Gaussian function, while the rule consequent 

is crafted by the non-linear wavelet function. The eT2RFNN adopts a holistic concept of evolving 

systems, where the fuzzy rule can be automatically generated, pruned, merged and recalled in the 

single pass learning mode. eT2RFNN is capable of coping with the problem of high 

dimensionality, because it is equipped with online feature selection technology. The efficacy of 

eT2RFNN has been experimentally validated using artificial and real-world data streams and 

compared with prominent learning algorithms. eT2RFNN can produce more reliable predictive 

accuracy, while retaining lower complexity than its counterparts. 

Index Terms—evolving fuzzy systems, fuzzy neural networks, recurrent fuzzy neural networks, type-2 fuzzy systems, incremental 
learning, concept drifts 

I. INTRODUCTION 

Large data streams and dynamic environments are the two most challenging research problems 

in today’s real-world big data applications [20],[44],[45],[55]. Every day, a massive amount of 

data streams are generated from sensors, the internet, etc. These data streams usually do not follow 

static and predictable data distributions, because they are influenced by rapidly changing statistical 

parameters. The Evolving Fuzzy System (EFS) [1] has gained increasing popularity in the machine 

learning community, because it answers an urgent demand for ‘learning from non-stationary data 

streams’. EFS answers desiderata for data stream mining for four reasons: 1) EFS works in the 

Incremental Learning of Concept Drift Using Evolving 

Type-2 Recurrent Fuzzy Neural Network 
Mahardhika Pratama, Jie Lu, Edwin Lughofer, Guangquan Zhang, Meng Joo Er 



truly sequential (or one-pass) learning scenario, which is capable of processing large data streams 

on the fly [2]; 2) EFS is capable of self-organising fuzzy rules in accordance with its relevance to 

the current learning environment [46]; 3) EFS has a built-in rule growing procedure, which is 

capable of automatically generating a new fuzzy rule when encountering new knowledge [3],[47]. 

This learning module is equivalent to a drift detection scenario in conventional machine learning, 

because it monitors the conflict level induced by a data stream;4) EFS is equipped by rule base 

simplification modules: rule merging, pruning, etc, which warrants the rule base complexity at a 

low level and avoids the overfitting case. EFS deserves more in-depth investigation, because 

existing EFSs are mostly built upon the type-1 fuzzy system, which features a crisp and certain 

characteristic [4]. This makes the EFS not robust to cope with information uncertainty as a result 

of noisy measurement, noisy data, and disagreement of expert knowledge [5]. Furthermore, vast 

majority of the EFS are constructed in the feed-forward network architecture, which cannot 

properly handle the temporal system dynamic and requires system order to be known in order for 

the I/O relationship of the regression model to be defined.   

We propose a novel Evolving Type-2 Recurrent Fuzzy Neural Network (eT2RFNN), which is 

capable of resolving all three underlying issues in an online mode: uncertainty, temporal system 

dynamic, and system order. eT2RFNN constitutes a fully evolving and adaptive learning 

algorithm, that can initiate its learning process from scratch with an empty rule base and 

automatically add, prune, merge its fuzzy rules from data streams afterwards. eT2RFNN borrows 

three learning modules proposed in [17] : 1) The rule growing process is governed by the Type-2 

Data Quality (T2DQ) method; 2) the parameter learning scenario relies on the Fuzzily Weighted 

Generalized Recursive Least Square (FWGRLS) method; 3) the rule merging process is done by 

virtue of the Extended Vector Similarity (EVS) concept. Meanwhile, eT2RFNN conveys four 

novel learning components as follows: 

 A Novel Recurrent Network Architecture: eT2RFNN puts forward a new recurrent network 

topology, which presents a double local recurrent connection at both rule layer [12] and consequent 

layer [18]. The recurrent connection at the rule layer functions to delineate the temporal firing 



strength of the model by memorising the membership degree of the previous sample, whereas the 

recurrent link at the consequent layer aims to expedite the dynamic of the Wavelet function. To 

the best our knowledge, existing recurrent fuzzy neural networks still make use of a single 

recurrent layer in the form of local, global or interactive feedback.  

 A Generalized Interval Type-2 Fuzzy Rule: A generalised interval type-2 fuzzy rule is 

proposed in this paper, which employs a multivariate Gaussian function in the input part and 

utilises a nonlinear Wavelet function in the output part. The main difference between this rule and 

that of [17] can be seen in the rule consequent, where the nonlinear Wavelet function is exploited. 

This amendment is to address the demanding memory demand of the Chebyshev polynomial [18]. 

This fuzzy rule can be perceived as an extension of [10], because it triggers arbitrarily rotated 

ellipsoidal rule instead of the ellipsoidal rule in the main axes.  

 Type-2 Relative Mutual Information (T2RMI) method: A novel rule pruning method, 

namely the T2RMI method, is proposed. The T2RMI method is capable of detecting 

inconsequential fuzzy rules by scrutinising the correlation between the fuzzy rules and the target 

variables. The original version of the RMI method was originally initiated in [18]. In this paper, 

the T2RMI method is extended to suit the working principle of a type-2 fuzzy system. Furthermore, 

the T2RMI method adopt a different concept of the utility method [20], popular in the literature. 

The significance of a rule is derived from the issue of relevance of a rule to a target variable, 

whereas the utility method relies on the percentage of usage of a rule during its lifespan.  

 Sequential Markov Blanket Criterion (SMBC): Several online feature selection scenarios 

have been designed for EFS [20], [21],[48]. All of which are based on the relevance of input 

attributes, and discount possible redundancy issues among input attributes. In this paper, a novel 

online feature selection, namely SMBC, is put forward, which depicts the online version of MBC 

[22]. The SMBC takes into account both relevance and redundancy facets in determining the 

importance of input features.  

To sum up, this paper proposes a solution to address the issue of uncertainty, temporal system 

dynamic, absence of system order simultaneously in learning from large data streams. Major 



contribution of this paper can be found in four aspects:1) a generalized recurrent network 

architecture with double self-feedback loops at rule and consequent layers are put forward, 2) a 

new type of the interval type-2 fuzzy rule is presented, where the rule premise is crafted by the 

interval type-2 multivariate Gaussian function with uncertain means, while the rule consequent is 

driven by the nonlinear Wavelet function, 3) this paper also offers two novel learning components 

of the EFS, the T2RMI method for the rule pruning process and the SMBC method for the online 

feature selection mechanism, 4) The universal approximation capability of eT2RFNN is also 

investigated.  It is well-known that the type-2 fuzzy system is essentialy a universal approximator, 

because it is a modified version of the type-1 fuzzy system. An open issue is, however, in the case 

of the recurrent fuzzy neural network, whose inter-temporal dependency is to the best of our 

knowledge uncharted in a standard universal approximation theorem of the fuzzy neural network. 

This paper discusses the universal approximation capability of the eT2RFNN by extending the 

result of [59] for the single recurrent connection architecture to the double recurrent connection 

architecture. The efficacy of the eT2RFNN is experimentally validated using various real-world 

and synthetic data streams and are also benchmarked with state-of-the art EFSs, where eT2RFNN 

demonstrates the most encouraging numerical results in both complexity and accuracy. The 

remainder of this paper is organised as follows: Section 2 deliberates the network architecture of 

eT2RFNN; Section 3 elaborates the learning policy of eT2RFNN and also the complexity analysis; 

Section 4 details the numerical studies and the experiments based comparisons with its 

counterparts; Conclusions are drawn in Section 5. 

II. Related Works 

A. Type-2 Fuzzy Systems 

Real-world data, by their nature, contain bias, noise, abnormalities due to faulty sensors, etc., 

resulting in a high degree of uncertainty. Because training data do not truly represent system 

dynamic, an accurate paremeter identification strategy as necessitated in the type-1 fuzzy system 

becomes an extremely difficult task. In light of this issue, The type-2 fuzzy system [5] characterises 

a fuzzy membership via a so-called fuzzy-fuzzy set, which provides some tolerance against 

information uncertainty. The issue of complexity hinders the viability of the type-2 fuzzy system 



in online real-time situations. In addition, it cannot be handled by well-known type-1 fuzzy 

mathematics. This drawback has led to the notion of the interval type-2 fuzzy system [6], which 

presents a simplified version of the type-2 fuzzy system. The interval type-2 fuzzy system assumes 

the secondary grade of a membership function as unity to enable the use of the type-1 fuzzy 

mathematics. Three configurations of non-evolving interval type-2 fuzzy system and their learning 

algorithms were put forward in [50]. The interval type-2 fuzzy system concept has been 

implemented in an evolving network structure in [7]. However, the initial version of the interval 

type-2 fuzzy neural network is overly dependent on the Karnik-Mendel (KM) type reduction 

method, computationaly prohibitive, because the rule consequent has to be first reordered in an 

ascending manner and then the KM method is carried out to find the crossover points [8]. To this 

end, the construct of a q coefficient was proposed in [9] to perform the type reduction scenario in 

lieu of the KM method. This method has been incorporated into the scope of EFS in [10]. The 

concept of interval type-2 fuzzy system has gained tremendous success in various real-world 

applications: edge detection [51], time-series prediction [52], intelligent agent in ambient 

environments [53], congestion control in the video streaming across IP networks [54].  However, 

the interval type-2 EFS is still an open research area because of three technical flaws: 1) it is 

constructed in the feed-forward network architecture, which cannot properly model temporal 

behaviour and is sensitive to the number of delayed input attributes; 2) it endures the absence of a 

rule base simplification method, which may result in costly pre- and/or post-training steps; 3) vast 

majority of existing works have not incorporated an online feature selection scenario and thus 

usually treat feature selection as a pre-processing step. 

B. Recurrent Neural Networks 

In contrast to its feedforward counterpart,  the recurrent network architecture is fitted out by an 

internal memory component in the form of a feedback or recurrent layer [11], which offers a 

plausible solution to surmount the temporal property of the data streams. This component can store 

the previous characteristics of the system dynamic, and is thereby able to handle the temporal 

system dynamic reliably. This appealing trait is also capable of overcoming the absence of system 

order, because the internal memory component can feed the past behaviour of the system in lieu 



of the lagged input and/or output variables in the I/O relationship of the regression model. In 

general, recurrent fuzzy neural networks can be classified into three types with respect to their 

recurrent layers: local [12], global [13], and interactive [14]. In our opinion, the local recurrent 

layer is the most suitable one for the EFS, because it imposes the lowest complexity and is 

applicable in the local learning context [15]. Recently, the notion of the recurrent network topology 

has been integrated into the realm of the interval type-2 fuzzy neural network in [16]. These works, 

however, rely on the KM iterative procedure, which is computationally expensive Table 1 

summarises key characteristics of 14 related works, reviewed in Section 1 and 2.  

Table 1. Main Features of Related Works 
ALGORITHMS REFERENCES Type Structure Learning Principle 

eTS  [1] Type-1 Fuzzy Feedforward Evolving 

Simp_eTS [2] Type-1 Fuzzy Feedforward Evolving 

PANFIS [3] Type-1 Fuzzy  Feedforward Evolving 

SEIT2FNN [7] Interval Type-2 Fuzzy  Feedforward Evolving 

T2TSKFNS [9] Interval Type-2 Fuzzy Feedforward Static 

TSCIT2FNN [10] Interval Type-2 Fuzzy Feeforward Evolving 

eT2Class [17] Interval Type-2 Fuzzy Feedforward Evolving 

IT2FNN [50] Interval Type-2 Fuzzy  Feedforward Static 

RSONFIN [11] Type-1 Fuzzy Single Globally Recurrent Evolving 

RSEFNN-LF [12] Type-1 Fuzzy Single Locally Recurrent  Evolving 

TRFN [13] Type-1 Fuzzy Single Globally Recurrect Evolutionary 

IRSFNN [14] Type-1 Fuzzy  Single Interactively Recurrent  Evolving 

rClass [15] Type-1 Fuzzy Single Locally Recurrent Evolving 

RSEIT2FNN [16] Interval Type-2 Fuzzy  Single Locally Recurrent Evolving 

III. Network Architecture of eT2RFNN 

In this section, the network architecture of eT2RFNN is outlined. The eT2RFNN puts forward 

a novel recurrent network architecture to produce its final output. The unique property of the 

network topology lies on double local recurrent links at both rule and consequent layers. In 

essence, the recurrent property allows a model to store previous information, thus being more 

robust to temporal system dynamics [11]. It also resolves the bottleneck in ascertaining the system 

order of the model. It is worth noting that, in the feed-forward fuzzy neural network, the output is 

often the function of previous input and/or output. On the other hand, the use of the wavelet 

function in the rule consequent can retard the reaction speed against rapidly changing data 

distributions. The decline is compensated for by the recurrent connection in the rule consequent. 

Several variants of recurrent networks have been published: interactive [14], global [13], and local 

[12]. The local recurrent connection is utilised in the eT2RFNN, because it still retains the local 

learning trait, where each fuzzy rule is trained separately and the learning process of one rule has 



no effect on the stability of other rules. It is worth mentioning that a single recurrect connection is 

usually enough to induce an internal memory component property of the network architecture. The 

eT2RFNN is , however, equipped with the second recurrent link in the consequent layer to further 

strengthen robustness against the temporal problem and importantly to increase sensitivity of the 

Wavelet function against changing operating conditions [18]. Fig.1 shows the network architecture 

of the ET2RFNN.  

The network architecture generates a generalized interval type-2 fuzzy rule. It utilises the 

interval type-2 multivariate Gaussian function with uncertain means in the hidden layer, and the 

nonlinear wavelet function in the consequent layer. In short, the fuzzy rule is defined as follows: 
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denotes the uncertain centroids of the i-th rule and u is the number of input 

dimensions. Because the interval type-2 fuzzy set with uncertain means is employed, the upper 
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represents a non-diagonal inverse 

covariance matrix, whose elements pinpoint the interrelation of input variables, and in turn govern 

the orientation of ellipsoids. The multivariate Gaussian function induces more reliable input space 

partition, because the non-axis parallel ellipsoidal cluster is capable of covering arbitrary contours 

of data clouds [3]. This merit reduces the demand of fuzzy rules in the training process. On the 

other hand, the multivariate Gaussian rule possesses the scale-invariant trait and sustains the 

interrelation among input attributes, which vanishes under the conventional fuzzy rule using the 

product t-norm operator.  

The multivariate Gaussian rule does not possess the fuzzy set representation. This fact affects 

to the rule transparency, because the fuzzy rule does not exhibit the atomic clause of human-like 

linguistic rule. In realm of the interval type-2 fuzzy system, the fuzzy set also plays crucial role in 

forming the Footprint of Uncertainty (FoU). Hence, a transformation strategy must be carried out 

to form the fuzzy set representation of the multivariate Gaussian rule. Since the centroid of the 



multivariate Gaussian function has the same expression in the fuzzy set level, our only focus is to 

solicit the radii of the Gaussian function in the main axes. To this end, the second method in [3] is 

generalised for the interval type-2 fuzzy rule in the eT2RFNN, because it offers an instantaneous 

mechanism, although it is rather inaccurate in dealing with the ellipsoidal cluster rotated at 45 

degrees. In a nutshell, the radius of the non-axis ellipsoidal cluster is defined using the average 

cardinality principle as follows: 
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which denotes the interval weight vector of the i-

th rule, where ],...,[ 1 ui ww , ],...,[ 1 ui ww and m stands for the number of output dimension. 

)( ii z stands for the extended input vector, stemming from a nonlinear mapping of the Wavelet 

function. Note that the standard zero or first TSK rule consequent does not fully explore the local 

output approximation aptitude. This flaw is overcome by exploiting the nonlinear Wavelet 

function. The wavelet function puts forward the multi-resolution property, which can capture 

useful information on various resolution levels. As a result, it substantiates the model’s 

generalisation and reduces the number of fuzzy rules. We make use of the dilated and translated 

versions of the Mexican function [23] as follows: 
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where jiji ba ,, , indicates the dilation and translation parameters and jid , labels the output of the local 

recurrent layer. P denotes the number of rules. The dilation and translation variables are not fixed, 

but rather adjusted to portray the different local behaviours of the real trend of the approximation 

curve. We do not rely on the concept of functional link consequent via the trigonometric or 

Chebyshev function [24], because this strategy imposes a more prohibitive memory demand due 



to the higher DoF and is not adaptive due to the absence of the tuning mechanism to adjust its 

shape.  
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where ji, denotes the weight of the self-feedback link, which can be seen as a storage coefficient. 

The efficacy of the Wavelet function usually comes at cost of the rule interpretability, because an 

input vector is mapped to the Wavelet domain – frequency domain. This shortcoming is, slightly, 

alleviated in the eT2RFNN, because it adopts the local learning scheme. The local learning scheme 

provides some sort of rule transparency in terms of operating region of the rule consequent, where 

each rule consequent represents a specific area of the output space in the Wavelet domain.    

The interval type-2 fuzzy inference scheme can be committed once eliciting the spread of the 

multivariate Gaussian function in the main axes, because an interval-valued membership can be 

produced by computing the upper and lower membership degrees as follows: 
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Henceforth, the interval firing strength ],[
~

iii RRR  , describing the matching factor or the 

completeness of fuzzy rule, is obtained by applying the t-norm operator as follows: 
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The rule firing strength is fed to the temporal firing strength layer, which is equipped with an 

internal feedback loop. The temporal firing strength layer results in the temporal firing strength
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  , which is not only influenced by the current spatial firing strength but also 

caused by the past temporal firing strength as follows: 
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where ]1,0[o
i denotes the weight of the recurrent layer. It is observed that the temporal firing 

strength is unique for the i-th rule of the o-th class to foster the temporal learning property of the 

network architecture. Henceforth, the type reduction mechanism is undertaken to transform the 

interval-valued set to the crisp variable, called the type-reduced set. The q design coefficients

 are utilised to perform the type reduction mechanism. The underlying rationale in using 

the q design factor rather than the KM method is that it offers computationally lighter burden and 

more flexible characteristics, where it can be directly embedded in the inference process. The type-

reduced set, leading to the final crisp output, is written as follows. 
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Fig. 1 Network Architecture of eT2RFNN 

where ],[ rl yy stands for the type-reduced set and oy denotes the final crisp output. The design 

coefficients are adjusted using the T2ZEDM method to govern the proportion of the upper 

and lower rules adaptively. The universal approximation characteristic of the eT2RFNN is 

discussed here.  
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Remark: the normalisation term of eT2RFNN is amended from those of [9], because the 

normalisation formula 
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in [9] may lead to invalid interval. Suppose that
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, we arrive at invalid intervals

]24.0,22.0;343.0,369.0;414.0,414.0[ . Our modification 
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produces ]28.0,19.0;39.0,32.0;48.0,36.0[ . This 

strategy is inspired by the interval analysis in [25]. 

Theorem 1: Universal approximation theorem – our network architecture can predict any real 

continuous function T  in a compact set NU  . For any given 0 , there exists a model, satisfying 


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, where  can be any norm. 

This theorem implies that for any given target function over any compact time interval ],[ Nnn o , 

the eT2RFNN can output uniformly reliable prediction with error smaller than any given value of 

ε.This theorem can be easily proven using the Stone-Weierstrass theorem as done in the literature 

[44]. Nevertheless, the Stone-Weierstrass theorem does not yet answer the inter-temporal 

dependencies of the recurrent network architecture, because it is mainly based on a static 

input/output mapping. Universal approximation capability of the recurrent network architecture 

with a specific case of the eT2RFNN is deliberated in Appendix. 

IV. Rule Base Management of the eT2RFNN 

This section details the learning policy of the eT2RFNN. The pseudo-code of the eT2RFNN is 

provided in the Algorithm 1.  

A) The Rule Growing Module: The eT2RFNN is capable of automatically evolving the fuzzy 

rules utilising the T2DQ method. The T2DQ method performs knowledge exploratory mechanism 

by incrementally computing the density of all training data seen thus far and in turn recruits 

samples offering high generalisation potential and summarisation power. This method relies on 

the density-based approach, initiated in the subtractive clustering approach [56] and enhanced in 

the mountain clustering method [57]. Important contribution has been conveyed by Angelov et al 

in [1], where it transforms the density-based clustering approach for an online rule identification 



strategy, the main component of the EFS to cope with the concept drift. The T2DQ method here 

modifies the density-based approach for the type-2 fuzzy system. It is formulated as follows: 
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Algorithm 1: Learning policy of eT2RFNN 

Define: Training Data ),..,,,..,(),( 11 munn ttxxTX   

Predefined Parameters 155 10,05.0,10   s  

/*Phase A: Rule Growing and Recall Scenario/* 

For i=1 to P do 

Compute the T2DQ method (16) 

End For 

For i=1 to P* do 

compute the T2DQ method for P* rules() 

End For 

Determine the winning rule )(maxarg ,...,1 XRPwin iPi


  

IF (17) Then 

If (27) 

Recall the previously pruned fuzzy rule (28) 

Else 

Add a new rule (18), (19) 

End If 

Else  

Adapt the winning rule (22)-(24) 

End If 

/*Phase B: Rule Pruning Mechanism/* 

For i=1 to P do 

Compute RMI (24) 

IF (26) Then 

Prune i-th hidden node 

End IF 

End For 

/*Phase C: Rule Merging Mechanism/* 

For i=1 to P  do 

For j=1 to u do 

Compute the shape-based and proximity-based similarity measures(31),(32) 

Quantify the vector similarity measure (29) 

End For 

IF (30),(34) Then 

Coalesce the fuzzy rules  (35)-(38) 

End IF 

End For 

End IF 

/*Phase D: Feature Selection Mechanism/* 

For j=1 to u Do 

For o=1 to m Do 

Compute the symmetrical uncertainty   

IF ),( oj txSU Then 

Prune the j-th feature 

Else IF 

Append j-th as relevant variables 1,  rerere NNx  

End IF 

End For 

End For 

For j=1 to reN  

For re=1 to reN , rej   

Analyze the redundancy of input attributes ),( rej xxSU   

IF ),(),( rejj xxSUTxSU  Then 

Prune re-th input variable 

End IF 

End For 

End For 

/*Phase E: Parameter Learning Scenario /* 

For i=1 to P do 

Adjust the fuzzy rule consequents (39)-(42) 

For  j=1 to u do 

Adjust the dilation and translation parameters (45),(46) 

Adapt the input recurrent weights (47) 

End For 

For o=1 to m do 

Fine-tune the design factors (43),(44) 

Adjust the consequent recurrent weight (48) 

End For 

End For  

where 1, Njx is a datum in the j-th input attribute received at N-1 training observation and 
1,1, ,
 PjPj cc

stands for the centroid of hypothetical rule (P+1st rule), assigned as xxc N
jPj 1, , xxc N

jPj


1, . 

x is an uncertainty factor, determining the footprint of uncertainty of the rule, and is fixed as 0.1 

for all our simulations here. N
jx is the latest incoming datum in the j-th coordinate. We apply the 

average cardinality principle in (16) which supposes the upper and lower rules to contribute 



equally q=0.5. All recursive parameters are initialised as zero. We assign the weighting factor NU

to diminish the outlier’s leverage as put into perspective in [27]. A training sample is appended as 

a new rule if it complies with the following criteria. 

Pi
iP

Pi
iP FSorFSFSFS

,...,1
1

,...,1
1 )min()max(





           (17) 

where iFS  can be elicited by replacing 
1,1, ,  PjPj cc in (16) with 

ijij cc ,, , . The condition

Pi
iP FSFS

,...,1,
1 )max(


  is deemed to be noteworthy to enhance the summarisation power of the rule base, 

because it captures a highly dense region. On the other hand,
Pi

iP FSFS
,...,1,

1 )min(


  plays a crucial role 

to discover the shift of the system dynamic, because it pinpoints a remote region uncharted by the 

influence zone of the existing rules. Although 
Pi

iP FSFS
,...,1,

1 )min(


  opens the likelihood for outliers to 

be embedded as fuzzy rules, the eT2RFNN is equipped with a rule pruning scenario to overcome 

the problem. It is worth-mentioning that the T2DQ method can be distinguished from the potential 

method [1] in three facets: 1) the T2DQ method is equipped by the weighting factor, which helps 

to reduce the impact of outliers. As found in [27], outliers cause a large pair-wise distance, 

affecting density estimation of next training samples; 2) the T2DQ method defines the type-2 

version of the density-based method, which is fit to the working principle of the type-2 fuzzy 

system; 3) the T2DQ method is built upon a different kernel function, where the inverse multi-

quadratic function is used as an alternate of the Cauchy kernel.  

Note that the rule growing scenario functions similarly with a drift detection strategy in the 

realm of machine learning, because it autonomously partitions the input space with respect to true 

data distribution. In comparison with other knowledge exploratory modules in the IT2EFS [7],[10], 

the T2DQ method is more robust against outliers. It enumerates the distance between a new datum 

and other data seen thus far, whereas most IT2EFSs [7],[10] rely on the rule firing strength to 

generate fuzzy rules. In addition, the T2DQ method is threshold-free ‒ no problem-dependent 

threshold needs to be predefined by the user. The parameters of a new fuzzy rule are stipulated: 
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where 5.0 is a completeness constant, which determines a completeness degree a new rule should 

have. This issue pertains to the minimum firing strength of a rule  2)( ii RR . 5.0 is selected, 

because as investigated in [28], the degree of confidence should not be less than 0.5. We initialise 

the centre of a new fuzzy rule as that of the hypothetical rule XCCXCC PPPP   1111 , and 

X is fixed as 0.1. The  completeness criterion is attained using the setting of the covariance 

matrix as verified in [28]. The new local sub-model and output covariance matrix are assigned: 

winP  

~~
1 IP  1

~  , ],[
~

111   PPP
, ],[~

111   PPP        (19) 

where  denotes a large positive constant and is fixed as 510 . 
uu

PPP


  ],[~
111  is the 

new output covariance matrix. Setting a new output covariance matrix with (19) is desired, because 

it is capable of emulating a real solution as attained by the batched learning scheme instantaneously 

[29]. The new local sub-system is akin to the output covariance matrix of the winning rule because 

the winning rule is adjacent to the new rule in the context of local learning, thereby potentially 

being pertinent to the new rule.  

The winning rule is selected by the Bayesian concept, where it focuses on a fuzzy rule having 

a maximum posterior probability )
~

(maxarg ,...,1 XRPwin iPi


 . The underlying reason to choose the 

Bayesian concept in lieu of the omnipresent compatibility measure is because it extracts the 

winning rule in the probabilistic fashion. When there are several candidates lying on par to a newly 

received datum, the prior probability will endorse the most populated rule covering more samples. 

In a nutshell, the posterior probability, the prior probability, and the likelihood function are 

respectively expressed as follows: 
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where iN labels the number of supports of the i-th cluster. The expression of the prior probability 

)(ˆ
iRP is softened from its original formula with the use of the log operation. This technique is to 

allow a new cluster to compete with older clusters in the winning rule selection phase [26].  



It may happen in the training process that a data point violates the rule growing condition (17). 

This condition triggers the rule premise adaptation as follows: 
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where )1(1
1


N
winN and 2)(ˆ

winwinwin CCC  . The adaptation scenario in (22) allows adjusting 

the inverse covariance matrix directly and overrides the requirement of re-inversion [49]. This 

mechanism leads to a more stable and faster adaptation. We exploit the midpoint of the interval 

valued Centre or implement the so-called average cardinality principle to adjust the inverse 

covariance matrix. 

B) Rule Pruning Mechanism and Rule Recall Scenario: A novel rule pruning scenario, namely 

the T2RMI method, is proposed in this paper, where the key idea is to check the correlation 

between the fuzzy rule and the target concept. Note that the underlying difference between the 

T2RMI method and the RMI method in [18] can be seen in its incremental working framework. 

Furthermore, the original RMI method has been only applied to the T1EFS. The relationship 

between the two variables can be analysed using either a linear or nonlinear measure. The linear 

measure is, however, inaccurate, because the interaction between two variables is nonlinear in 

nature [31]. To this end, we exploit the symmetric uncertainty method, which characterises three 

appealing traits: simplicity, low bias for multi-valued features, and insensitivity to the order of two 

variables [32]. The T2RMI method is formulated using the average cardinality principle: 
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where ),()()(),( YRHYHRHYRI iii  is the information gain or the mutual information. )( iRH is 

the entropy of iR and ),( YRH i
is the joint entropy of YRi , . (24) revolves around [0,1], where zero 

signifies that the two variables are uncorrelated. It is worth noting that the term symmetric here 

refers to the information gain ),( YRI i , which is a symmetric measure. Changing the order of the 



two variables will not affect the information gain formula ),(),( ii RYIYRI  . We take this term from 

the popular definition in [22],[58]. There are several avenues to elicit the entropy. The 

discretisation method and the Parzen window estimation are among the most renowned methods. 

Both approaches however adopt a batched learning concept, which is computationally expensive. 

We use the notion of differential entropy, which assumes uniformly distributed training data [33]: 
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where YRii
i

YRR ),,cov(),var(  are respectively the variance of iR , covariance of YRi , , and Pearson’s 

correlation coefficient. It is worth mentioning that the variance of iR  and covariance of YRi ,  can be 

enumerated recursively. The fuzzy rule is pruned given that the following condition is satisfied.  

)(2)( iii RMIstdRMImeanRMI  ,
N

RMI

RMImean

N

n

ni

i


 1

,

)( , 
1

))((

)( 1

2
,

,









N

RMImeanRMI

RMIstd

N

n

ini

ni  (26) 

The mean and standard deviation are computed in respect to the RMI during its lifespan and 

recursively with ease. Condition (26) can also be interpreted as a measure of significant downtrend 

in the correlation of the i-th rule and the target feature. The T2RMI method focusses on the 

relevance of a fuzzy rule for the target concept. This feature is important to capture the drift of the 

target concept, the most common type of concept drift. Once pruned, the fuzzy rule is not 

permanently forgotten, and is able to be reactivated when it is fit to the current data concept

1**  PP . P* denotes the number of fuzzy rules pruned by (24). This scenario is an important 

strategy to respond recurring concept drift, because evolving a completely new fuzzy rule to deal 

with the previously learned concept undermines the logic of truly adaptive online systems and 

catastrophically omits the learning history. In a nutshell, the rule recall criterion is committed when 

the following criterion is met. 
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The pruned fuzzy rule is maintained in memory to solely quantify (16) and is ruled out in any other 

learning scenario. Accordingly, computational load is still relieved. The pruned fuzzy rule is 

reactivated by setting the pruned rule as a new rule as follows: 
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C) Rule Merging Mechanism: Several rule merging methodologies have been designed in the 

context of interval type-2 EFS [34],[35], where they are constructed by a shape-based or distance-

based similarity measure without synergising the two approaches. These methods cannot detect 

the problem of a non-homogenous cluster, where merging different orientation clusters causes a 

blow-up effect. This phenomenon is more apparent in a non-axis parallel ellipsoidal cluster, 

because it enables the cluster to arbitrarily rotate in any direction. To remedy these bottlenecks, 

the eT2RFNN is equipped with a multi-faceted strategy: a vector similarity measure and a blow-

up check. The vector similarity measure estimates the similarity between the two clusters based 

on their shape and proximity, while non-homogenous clusters are solved by the blow-up check. 

The vector similarity measure enumerates the similarity between two fuzzy rules more 

accurately with the use of their distance and shape in one joint formula as follows: 

),(),(),( ,2,1, iwinsiwinsiwins jjjv           (29) 

 where is the shape-based similarity measure between the winning rule and the i-th 

rule in the j-th coordinate and ]1,0[),(,2 iwins j
is the distance-based similarity measure between the 

winning rule and the i-th rule in the j-th axis. We merely investigate the similarity between the 

winning rule and other rules to expedite the model update, because the winning rule is the sole rule 

to receive the rule premise adaptation, the main reason for the rule overlapping. The similarity 

measure in the rule level is elicited by combining the fuzzy set similarity in each input dimension 

with the use of the t-norm operator as follows: 

           (30) 

where stands for a predefined threshold set as in all our simulations in this paper. 

It is worth noting that this parameter is not problem-specific and has been confirmed in [17]. 

Since the vector similarity method treats shape and distance as two independent issues. The 

alignment procedure is carried out in the shape-based similarity measure, thereby being able to 

compare the contour of two fuzzy sets more precisely. That is, the centroid of the winning rule 

jwinc ,
and the i-th rule 

jic ,
 is aligned as

jijwin cc ,,  . The shape-based similarity between the two rules 
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is quantified with an extended Jaccard similarity measure, making use of the average cardinality 

principle as follows: 

        (31) 

where and  respectively stand for the union and intersection of the two fuzzy sets iwin  ~,~ . The 

union of the two fuzzy sets can be derived as  and

denotes the area of the fuzzy set. Because the Gaussian function has a highly nonlinear contour, 

its size is approximated using the triangular function . The 

union of two fuzzy sets is obtained as follows: 

)(2

)(

)(2

))((

2
)(

,,

,,

2

,,

,,

22

,,

jijwin

jijwin

jwinji

jijwin

jijwin

hhh
M


















        (32)  

where . We can execute (32) by performing similar mathematical operations for the 

upper fuzzy set and )( ,, jijwinM   .On the other hand, the distance-based similarity 

measure is committed using the extended Kernel-based metric, where the type-1 version of the 

kernel-based metric was developed in [3]. This method can be applied for the interval type-2 fuzzy 

system by virtue of the average cardinality principle as follows: 

          (33) 
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The extended kernel-based metric features the following properties. 
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After eliciting both the shape- and distance-based similarities in (31), (33), we finally arrive at the 

vector similarity measure formula (30).  

Merging two different-orientation clusters should be avoided, because it harms the local data 

representation which affects generalisation potential. This step incurs an over-sized cluster, which 

leads to a cluster delamination case, in which some local data clouds are contained by a too-large 

cluster. In light of this issue, the blow-up check is undertaken by examining the volume of the 
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merged cluster in contrast with their independent volumes. The rule merging scenario proceeds if 

the following condition is satisfied.  

)()(( iwiniwinmergedmerged VVVVuVV          (34) 

Equation (35) illustrates that the blow-up situation is unlikely to occur because the volume of the 

merged cluster does not exceed their independent volumes. We involve the term u in (34) to hedge 

the curse of dimensionality.  

If a training observation complies with (30), (34), the two fuzzy rules are merged as follows: 
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The rule merging process refers to the weighted average strategy, which weights the cluster as its 

accumulated supports. This strategy reflects the fact that a cluster with more populations should 

be more influential to the final shape and orientation of the merged cluster, because the merged 

cluster should represent the underlying data distribution and foster cluster’s populations.  

D) Online Feature Selection Mechanism: high dimensional data poses a lot of challenges for 

most real-world applications and lead to the curse of dimensionality. Therefore, online feature 

selection, which is capable of discarding spurious input features in the sample-wise manner during 

the training process, is highly demanded in the EFS to reduce both problem and network 

complexities. Online feature selection has been incorporated in the EFS encompassing the input 

pruning scenario [20] or the input weighting concept [21]. Existing methods merely focus on the 

issue of relevance, while overlooking redundancy problems. It may happen that an input variable 

is inconsequential, because it shares a strong similarity with other input attributes. Such input 

attributes can be pruned without significant loss of accuracy.  

A new online feature selection approach, namely SMBC, is mounted in the eT2RFNN and 

presents a sequential version of MBC. The SMBC is inspired by the Markov Blanket Criterion 



[22], which synergises relevance and redundancy tests in determining the significance of input 

features. The SMBC corrects the instability drawback of conventional input pruning scenarios 

[20], because it assures that once observing the Markov Blanket Criterion in the previous episodes 

an input feature is no longer required for model updates in the future. Note that although the input 

weighting approach [21] does not suffer from the instability problem, it still retains the superfluous 

feature in the training process.  

According to the SMBC, an input attribute can be classified into 4 categories according to its 

contribution: irrelevant, weakly relevant, weakly relevant but non-redundant, and strongly 

relevant. An optimal input feature subset comprises strongly relevant features and weakly relevant 

but non-redundant features. Hence, the underlying goal of the SMBC is to find irrelevant and 

weakly relevant features in order to be pruned. Two tests, namely C-correlation and F-correlation, 

are developed to implement the SMBC.  

Definition 1(C-correlation) [22]: The correlation between any feature
jx and the class T is termed 

as C-correlation, denoted by ),( TxSU j
. This strategy is used to probe relevance. 

Definition 2 (F-correlation) [22]: The correlation between any pair of features 
ij xx , )( ji  is 

termed F-correlation, labelled by ),( ij xxSU . The approximation of redundancy is carried out by 

the F-correlation. 

First, the C-correlation is performed to vet the relevance of input attributes to the given problem. 

The input feature, which happens to be irrelevant or weakly relevant ),( TxSU j
, can be pruned. 

  is a input pruning threshold, set as 0.8 according to the recommendation of [22]. The SMBC 

continues with the F-correlation, examining the redundancy of input variables. Let 
jx be an input 

feature of interest and let XM n  )( nj Mx  . nM is claimed to be a Markov Blanket for 
jx if it 

summarises not only the information of 
jx to the target class T , but also almost all of the input 

features. Therefore, the redundant input features are those of the slightly relevant features having 

the Markov blanket nM . Specifically, these features are those of coming through the C-correlation 

test ),( TxSU j
but violating ),(),( ijj xxSUTxSU  . A two-staged process is committed in the 



ET2RFNN to speed up the selection process, because the C-correlation is capable of eliminating 

the irrelevant or weakly relevant features in the first phase, thereby possibly engaging a smaller 

number of features in the second phase. Both the C-correlation and the F-correlation can be realised 

using the symmetrical uncertainty method as with the T2RMI methods. We do not detail their 

mathematical formulas due to space constraints.  

E) Adaptation of Network Parameters: The adaptation of the eT2RFNN rule base parameters 

comprises two parts: Fuzzily Weighted Generalised Recursive Least Square (FWGRLS), Type-2 

Zero Error Density Maximisation (T2ZEDM). The FWGRLS method adapts the consequent 

weight and presents a local learning version of the GRLS method [36]. The peculiar feature of the 

FWGRLS method in comparison with the standard RLS method lies in the implicit weight decay 

term, which aims to sustain the weight vector to hover around a small bounded interval. Note that 

a small and bounded weight vector prevents the model to be unstable and helps to improve the 

model generalisation [36]. Apart from substantiating the model’s generalisation, this technique is 

able to refine the compactness of the network architecture, because an inactive fuzzy rule possesses 

a minor weight vector, thereby being detected by the rule pruning method more easily. The 

FWGRLS method is defined as follows: 
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where ],[
~

iii RRR  is the firing strength of the i-th rule and )](),([)(~ nnn    is the Kalman gain. 

)](),([)(~ nnn iii   , uun  )( are respectively the output covariance matrix and the covariance 

matrix of modelling error. For simplicity, the covariance matrix of modelling error is set as the 

Hessian matrix as with [36]. ))1(
~

(  ni stands for the gradient of the weight decay function. Note 

that we extend the gradient of the weight decay function to the n-1 time step, when the solution of 

the gradient is too complex to be obtained. The weight decay function can be assigned as any 

nonlinear function, which may not be differentiable. The quadratic weight decay function is chosen 



here 2))1(
~

(
2

1
))1(

~
(  nn ii , because it is capable of diminishing the weight vector to its current values 

proportionally [36]. Note that the FWGRLS method is different from a prominent FWRLS method 

[1], because the regularized term, namely the weigth decay term, is incorporated in the cost 

function of the RLS method. This modification leads to the presence of the weight decay term in 

(41), which does not exist in the FWRLS method.   

The T2ZEDM method adjusts the Wavelet parameters ),( ,, jiji ba , the design coefficients

),( ,,
r
oi

l
oi qq , and the recurrent weights ),( ,, jiji  . It enhances the standard gradient descent method by 

modifying its cost function, where the error entropy is employed in lieu of the Mean Square Error 

(MSE). In principle, this method forces the error entropy to converge at the origin by minimising 

the distance between the probability distribution of the system’s output and the target function. 

This approach is deemed to be efficient to improve the prediction of high order statistical 

behaviour. Because the distribution of the error entropy is unknown, the cost function of the 

T2ZEDM is estimated using the Parzen window estimation method as follows: 
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where N is the number of training data seen so far and  is a smoothing parameter, simply fixed as 

1. 
one ,

is the system error of the o-th output in the n-th training episode. The optimisation process 

is carried out using the gradient descent method as follows: 
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where
  ,,,, baq
are the adaptive learning rates, determined using the Lyapunov stability 

criteria to warrant the convergence and E stands for the error function
2

)( 2
nn yt 
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It is worth stressing that choosing a suitable learning rate plays a crucial role in achieving 

asymptotic convergence. To this end, the stable range of the learning rate is canvassed with the 

use of the Lyapunov stability criterion to guarantee convergence. We arrive at 

NWo

W
AP

N
2

max, )(

22
0


  . The mathematical proof can be derived following the same steps in [15].   

The learning rates are not fixed during the training process, rather are adapted to speed up 

convergence. Specifically, the learning rates are adjusted using the direction of the entropy cost 

function (43)
Nf )0(ˆ . They augment if the cost function increases 

1)0(ˆ)0(ˆ  NN ff  and vice versa.  
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where ]5.1,1(5  , )1,5.0[4  are learning rate factors, which steer the dynamic of the learning rates. 

Because these factors are not problem-specific, they are simply set as 1.11  , 9.02  . This setting 



is plausible, because the adaptation should be more intense when the error entropy grows to 

expedite the model’s updates.  

F) Sensitivity Analysis of Predefined Parameters: the eT2RFNN contains three predefined 

parameters, 3,, X , which may hinder the end-user to operate the algorithm. This section aims 

to ensure that these parameters are not problem-dependent. Furthermore, our numerical results in 

Section 5 are achieved by setting them at their default values.  We exclude 3 from our analysis 

here, because its effect has been well-studied in [17] and has been shown to be not case-sensitive. 

X is an uncertainty factor and is commonly used in the interval type-2 fuzzy neural network to 

determine the region of uncertainty of a new rule [16],[36] .This parameter is set as 0.1, adopting 

the same setting in the literature [16], [36]. The smaller the value of X  the crisper and more 

specific the new fuzzy set will be created, and vice versa. A too crisp fuzzy set, however, leads a 

fuzzy set to behave like the type-1 fuzzy set, whereas a too general fuzzy set usually causes loss 

of representation in a local region. On the other hand, is an input pruning threshold, governing 

the C-correlation of the online feature selection process. The higher the value of this parameter the 

higher the number of fuzzy rules are discarded during the training process and vice versa. We 

assign 8.0 for all our simulations and adopt the same setting of [22].  

The sensitivity of the two predefined paramaters is examined using a popular benchmark 

problem, the Mackey Glass (MG) chaotic time series problem. Our experimental procedure in this 

paper is akin to the standard configuration in the literature [1]. We varied

]3.0,2.0,1.0,08.0,05.0[X to illustrate its effect to the eT2RFNN’s learning performance, while 

we assigned ]1,9.0,8.0,7.0,6.0[ . Note that we kept other parameters fixed at its default setting, 

when a particular pameter was varied. The learning performance of the eT2RFNN was assessed in 

three viewpoints: NDEI, fuzzy rule, input attributes. Numerical results are reported in Table 1.     

It is clear from Table 1 that different values of ,X affected little to the eT2RFNN’s learning 

performance. As expected, a small resulted in no fuzzy rule to be eliminated during the training 

process, while a large X deteriorated the accuracy as a result improper input space partion.     



G) Complexity Analysis: this section discusses the computational and structural burdens of 

eT2RFNN, which can be understood from the resultant complexity of learning modules and the 

network architecture of eT2RFNN. Overall, eT2RFNN entails the computational power of

)**2253( 222 mPmuPPuPmPmuPmmuuO  resulted from the total computational burden 

of each learning module, and is more importantly independent from the number of training data. 

The structural complexity of eT2RFNN is determined from the network parameters to be stored in 

memory. The double recurrent network architecture of eT2RFNN generates 

)232( 2 PmPuPumPuPuO   network parameters. In conjunction to state-of-the art fuzzy neural 

networks such as SEIT2FNN [16], SLFRWNN [18], MRIT2NFS [36], eT2Class [17], the 

eT2RFNN network topology produces a slightly higher number of network parameters. 

Nonetheless, the number of network parameters is also influenced by the number of evolved fuzzy 

rules in the training process, where the eT2RFNN is expected to scatter a fewer number of rules. 

These merits are demonstrated in our numerical studies.  

Table 1. Sensitivity of Predefined Parameters 

Parameters
 

EC I=1 I=2 I=3 I=4 I=5 

X  
NDEI 0.33 0.33 0.3 0.34 0.35 

R 5 5 3 3 3 

Input 3 3 3 3 3 

  NDEI 0.32 0.32 0.3 0.3 0.32 

R 3 3 3 3 3 

Input 4 4 3 2 1 

CR= Classification rate, R=Rule, RT=Runtime 

V. Proof of Concepts 

The efficacy of eT2RFNN was experimentally validated using four synthetic and real-world 

problems, exemplifying various concept drifts, uncertain and noisy characteristics. The proposed 

algorithm was also benchmarked with prominent machine learning algorithms against five criteria: 

predictive accuracy, number of fuzzy rules, number of rule base parameters number of input 

attributes, and execution time. Our simulations were carried out under MATLAB with an Intel (R) 

core (TM) i7–2600 CPU, 3.4 GHz processor and 8 GB memory. 

A. Example 1: Prediction of Nox Emission of Car Engine 

A real-world problem, namely prediction of Nox emission of a car engine, is put into 

perspective to evaluate the viability of the eT2RFNN. This problem features highly noisy and 

uncertain characteristic, because data were sampled from raw data of a car engine. Furthermore, 



this problem also contains a non-stationary characteristic because two important attributes of the 

engine control, namely rotation speed and torque, were varied in order for different driving 

behaviours to be represented in the engine data. This study case also offers an appealing property 

to validate the efficacy of the online feature selection process, because 170 input attributes were 

extracted to guide the prediction problem. This figure results from 17 different physical variables, 

recorded in 10 consecutive measurements by hard sensors mounted in the car engine. eT2RFNN 

is compared with 11 state-of-the art algorithms: PANFIS [3] , GENEFIS [37], simp_eTS [2], 

simp_eTS+ [62], eTS [1], AnYa [38], eTS+ [20], DENFIS [39], BARTFIS [40], eT2Class [17], 

DENFIS [39]. We also experimented five learning configurations of eT2RFNN to demonstrate the 

effectiveness of each learning modules: A) This configuration reveals the learning performance of 

eT2RFNN without structural complexity reduction method elaborated in Section III.B and C, B) 

we switch off the online feature selection module outlined in Section III.D, C) the eT2RFNN is 

implemented using the standard recurrent interval type-2 network architecture [16], C1) this 

configuration is akin to C but during the training process the same number of rules is evolved to 

ensure fair comparision with the eT2Class, D) the eT2RFNN is structured in the type-1 network 

architecture of GENEFIS [37], E) The eT2RFNN utilises only the previous-time instant data n-1 

in the regression model to demonstrate the spatio-temporal property of the eT2RFNN. This 

problem consists of 826 data points, in which 667 samples are fed in the training process, whereas 

the remainder is used in the testing samples. The numerical results are reported in Table 1. The 

predictive quality of benchmarked models is measured using the RMSE.  

From Table 2, the eT2RFNN(A)-(E) produced higher accuracy, while retaining lower 

complexity than other algorithms. The curse of dimensionality is noticeable in this problem, where 

all algorithms without the feature selection process experienced sluggish execution time. Each 

learning module contributed substantially to the resultant learning performance of eT2RFNN. It 

can be viewed from the deterioration of numerical results due to the absence of a particular module. 

Because of very noisy nature of raw engine data, the learning performance of the eT2RFNN in the 

type-1 fuzzy system – eT2RFNN(D)- deteriorated substantially. This fact reveals the advantage of 



the interval type-2 fuzzy system in processing information uncertainty. Although the eT2RFNN(E) 

relied on merely the latest time instant data, it still attained comparable numerical results.  

Table 2. Prediction of Nox emission 

Model Type RMSE Rule Input Runtime Parameters 

eT2RFNN S-2-R 0.03 2 1 0.24 14 

eT2RFNN (A) S-2-R 0.035 4 1 0.27 28 

eT2RFNN(B) S-2-R 0.05 2 170 2.13 59840 

eT2RFNN (C) S-2-R 0.04 3 1 0.24 18 

eT2RFNN(C1) S-2-R 0.05 2 1 0.23 12 

eT2RFNN(D) S-1-R 0.14 5 1 0.27 30 

eT2RFNN(E) S-2-R 0.03 5 1 0.26 35 

eT2Class S-2-F 0.045 2 170 17.98 117304 

PANFIS S-1-F 0.052 5 170 3.37 146205 

GENEFIS S-1-F 0.048 2 2 0.41 18 

Simp_eTS+ S-1-F 0.15 15 7 * 330 

eTS S-1-F 0.38 27 170 1098.4 13797 

AnYa S-1-F 0.054 1 43 * 44 

eTS+ S-1-F 0.14 4 4 * 52 

ANFIS B-1-F 0.3 5 2 100.41 17178+num of training samples 

DENFIS B-1-F 0.29 2 2 * 211043 

*: the result was obtained under different computer environment, S: Sequential, B: Batch, 1: type-1, 2: Type 2, R: Recurrent, F: Feed-forward 

B. Example 2: Tool Wear Prediction of Ball Nose End-Milling Process 

This study case presents a tool wear prediction of a ball nose end milling process (Courtesy of 

Dr. Li Xiang, Singapore). It is a challenging problem, because the use of multi-point cutting tools 

at high speed, varying machining parameters, and inconsistency and variability of cutter 

geometry/dimensions makes accurate prediction extremely difficult to be achieved. A CNC 

milling process (Rőders Tech RFM760) with a spindle rate up to 42000 RPM was used during the 

experiment. Raw data were captured using seven channels DAQ, where the first three channels 

measured the force signal in three dimensional cutting axes, the next three channels collected the 

vibration signal in the three dimensional cutting axes, and the last channel recorded the acoustic 

emission (AE) signal. The prediction of the tool wear was carried out using the force signal from 

two different cutter profiles, where twelve input features were extracted. Force signal was selected, 

because it provides the most informative features of the tool wear prediction, while the tool wear 

itself was determined from visual inspection of flank wear utilising Olympus SZX16 microscope. 

A total of 630 data points were generated and the experiment was executed using 10-fold cross 

validation (CV) technique. The eT2RFNN was benchmarked against state-of-the art EFSs: 

PANFIS [3] , GENEFIS [37], simp_eTS [2], eTS [1], BARTFIS [40], eT2Class [17]. In addition, 

the eT2RFNN was run in several learning configurations as done in example 1 but without the 



eT2RFNN(E), because the input-output (I/O) relationship is defined with the previous step 

observation only without lagged input attributes. Numerical results are tabulated in Table 3.  

Table 3. Tool condition monitoring problem of a complex manufacturing process 

Model Type RMSE Rule Input Runtime Parameters 

eT2RFNN S-2-R 0.04±0.01 3.8±0.6 6.5±0.1 0.55±0.43 242.1 

eT2RFNN (A) S-2-R 0.07±0.01 5.4±0.1 6.9±0.2 0.76±0.35 424.8 

eT2RFNN(B) S-2-R 0.06±0.03 3.8±0.7 12 1.1±0.8 820.8 

eT2RFNN (C) S-2-R 0.05±0.02 4.3±0.2 6.8±0.05 0.6±0.4 320.9 

eT2RFNN(C1) S-2-R 0.06±0.02 3.8±0.8 6.7±0.1 0.58±0.2 263.1 

eT2RFNN(D) S-1-R 0.11±0.01 5 7.5±0.3 0.9±0.6 485.75 

eT2Class S-2-R 0.05±0.01 5.9±01 12 1.1±0.7 2065 

PANFIS S-1-F 0.045±0.01 2 12 0.98±0.11 636.7 

GENEFIS S-1-F 0.0418±0.008 4.1±0.94 11.1±0.31 1.12±0.11 636.7 

Simp_eTS S-1-F 0.26±0.08 5 12 1.4±0.3 137 

eTS S-1-F 0.046±0.01 5.1±0.32 12 1.3±0.02 139.5 

BARTFIS S-1-F 0.0632±0.01 20.6±4.1 12 1.43±0.06 762.2 

FAOSPFNN B-1-F 0.27±0.003 12.7±0.7 12 1.91±0.1 330.2+num of training samples 

*: the result was obtained under different computer environment, S: Sequential, B: Batch, 1: type-1, 2: Type 2, R: Recurrent, F: Feed-forward 

The eT2RFNN (A)-(E) outperformed its counterparts in attaining tradeoff between complexity 

and accuracy. Although the eT2RFNN is built upon a generalized interval type-2 structure, the 

eT2RFNN possessed comparable number of parameters with other consolidated algorithms. This 

aspect is evident that the eT2RFNN network architecture is capable of suppressing fuzzy rule 

demand to low level. Furthermore, the feature selection mechanism of the eT2RFNN is capable of 

reducing the input dimension, thereby lowering network parameters to be saved in the memory. 

The efficacy of the double self-feedback loops is confirmed, where the learning performance 

dropped, when the second recurrent link was removed as depicted in the eT2RFNN(C),(C1). 

C. Example 3: S&P 500 Index Time Series 

This section focuses on evaluating the learning performance of eT2RFNN using the real-world 

financial time-series data. This study case is worth attempting, because the S&P 500 index time 

series data characterise dynamic and volatile behaviours, making them hard to deal with, especially 

for a non-evolving algorithm. 60 years of daily index values were collected from the Yahoo finance 

website and refer to the period from January 3, 1950 to March 12, 2009. In total, 14893 data 

streams were generated for the experiment, where all of which were fed in the training process, 

whereas reverse data were exploited to test the model’s generalisation. As the dynamic of the real-

world financial data stream, this problem is highly volatile and the most complex part lies after 

1980. It is non-uniformly distributed in the interval of [16.66,1565.15]. eT2RFNN is benchmarked 

with 9 state-of-the art algorithms: GENEFIS [37], PANFIS [3], BARTFIS [40], ANFIS [42], eTS 



[1], simp_eTS [2], DFNN [43], GDFNN [28], FAOSPFNN [43], eT2Class [17].We also tested 

some configurations of eT2RFNN to delineate the merits of each learning constituents as done in 

the example 1. Fig. 2(a) displays the predictive trend of eT2RFNN and the numerical results are 

encapsulated in Table 4. The I/O relationship of the model is governed as

))(),1(),2(),3(),4(()1( nynynynynyfny  . We just make use of ))(()1( nyfny  for 

eT2RFNN(E) to exhibit the sensitivity to the delayed input feature, but we also provide the result 

exploiting all input attributes to disclose the efficacy of the online feature selection scenario. Fig. 

2(b) visualises the trace of input attributes. The numerical results are reported in Table 4. 

Table 4. S&P 500 Index Time Series 

Model Type NDEI Rule Input Runtime Parameters 

eT2RFNN S-2-R 0.03 2 2 6.22 32 

eT2RFNN (A) S-2-R 0.04 5 2 8.33 80 

eT2RFNN(B) S-2-R 0.04 2 5 7.26 110 

eT2RFNN(C) S-2-R 0.04 4 2 6.6 52 

eT2RFNN (C1) S-2-R 0.05 2 2 6.2 26 

eT2RFNN(D) S-1-R 0.5 13 3 8.77 312 

eT2RFNN(E) S-2-R 0.01 2 1 4.82 14 

eT2Class S-2-F 0.05 5 5 21.6 385 

PANFIS S-1-F 0.09 4 5 55.3 144 

GENEFIS S-1-F 0.07 2 5 48.3 72 

Simp_eTS S-1-F 0.04 7 5 158.00 39 

eTS S-1-F 0.04 14 5 89.9 75 

BARTFIS S-1-F 0.02 8 5 12.3 128 

DFNN B-1-F 0.06 5 5 548.5 60+ num of training samples 

GDFNN B-1-F 0.07 4 5 951.4 64+ num of training samples 

FAOSPFNN B-1-F 0.07 13 5 159.8 91+num of training samples 

ANFIS B-1-F 0.02 32 5 384.9 222+num of training samples 

S: Sequential, B: Batch, 1: type-1, 2: Type 2, R: Recurrent, F: Feed-forward 

From Table 4, it can be observed that the eT2RFNN(E) demonstrated the most encouraging 

performance in all criteria. More interestingly, eT2RFNN(E) also incurred the least network 

parameters as a result of its generalised fuzzy rule, which can diminish the fuzzy rule demand, and 

its double recurrent links, which can overcome the absence of delayed input features. The network 

simplicity was achieved without any loss of accuracy and expedites the training process. The 

difference between the batched and sequential algorithms is also noticeable, where the batched 

algorithm imposes intractable computational load. In Fig.2(a), the efficacy of the online feature 

selection is confirmed, where it automatically reduces the dimensionality of input space without 

undermining the model’s generalisation.  

D. Example 4: SISO Dynamic System Identification 

This numerical example aims to compare the effectiveness of eT2RFNN’s learning 

performance with state-of-the art RFNNs in the popular benchmark problem, the SISO dynamic 



system identification. This problem is commonly used to delve the performance of RFNNs, 

because it characterises the temporal system dynamic as a result of the temporal control input. In 

short, the mathematical model of the nonlinear system is described as follows: 

)3(2.0)2(01.0)1()1(025.0)(72.0)1( 2  nunununynyny p
    (58) 

 
Fig.2: (a) eT2RFNN’s prediction in S&P 500 time series, (b) the trace of eT2RFNN’s input attribute in S&P 500 time series 

Table 4. SISO dynamic system identification 

Model Type RMSE Rule Input Runtime Parameters 

eT2RFNN S-2-R 0.005 2 1 0.34 14 

eT2RFNN (A) S-2-R 0.05 4 1 0.5 28 

eT2RFNN(B) S-2-R 0.07 2 2 0.47 32 

eT2RFNN(C) S-2-R 0.05 4 1 0.5 22 

eT2RFNN (C1) S-2-R 0.18 2 1 0.3 11 

eT2RFNN(D) S-1-R 0.04 5 2 1.1 70 

eT2Class S-2-F 0.01 4 2 1.1 80 

RSEIT2FNN S-2-R 0.006 2 2 * 18 

RSEFNN-LF S-1-R 0.03 4 2 * 30 

MRIT2NFS S-2-R 0.007 5 2 * 40 

SLFRWNN S-1-R 0.008 7 2 * 33+num of training samples 

*: the result was obtained under different computer environment, S: Sequential, B: Batch, 1: type-1, 2: Type 2, R: Recurrent, F: Feed-forward 

where )(),( nuny stand for the system output and the control input respectively. The input and output 

relationship of the regression model was ))(),(()1( nunyfny  , which excludes any lagged 

input features. 900 data points were generated to train the network, where the control input were 

sampled from the uniformly distributed random sequence in the range of [-2,2] for the first half of 

900 samples, whereas the control input for the remaining time instants was generated from the 

sinusoidal function )
45

sin(05.1 n . The identification problem was done using two input attributes 

y(n),u(n) and the target variable was y(n+1). The validation phase was carried out using 1000 

samples, in which )(nu is set as a temporal input variable as follows: 
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eT2RFNN was compared with 4 state-of-the art RFNNs recently published in the literature: 

RSEIT2FNN [16], RSEFNN-LF [12], SLFRWNN [18], MRIT2NFS [36], eT2Class [17]. 

SLFRWNN constitutes a recurrent type-1 fuzzy wavelet neural network, which incorporates the 

local recurrent link in the rule consequent, while the RSEFNN-LF presents the type-1 fuzzy neural 

network with a local feedback loop in the rule layer. The RSEIT2FNN forms an extended version 

of the RSEFNN-LF in the interval type-2 fuzzy environment, while the MRIT2NFS actualizes a 

recurrent interval type-2 fuzzy network with the interactive recurrent network architecture. By 

extension, eT2RFNN was run in different settings as detailed in the example 1 but the 

eT2RFNN(E) was ruled out, because the standard setting of this problem solely relies on the most 

recent observation n to perform one-step ahead prediction. The results are served in Table 5.  

Table 5. Learning Characteristic of Consolidated Algorithms 

Algorithm Recurrent types Premise Part Consequent Part Learning Type Learning Modules 

eT2RFNN Double Local  Interval type-2 

multivariate Gaussian 

Nonlinear Wavelet Online RG+RA+RP+RM-

RC+FS 

RSEIT2FNN Single Local Interval type-2 

univariable Gaussian 

First order TSK Online RG+RA 

MRIT2NFS Single Interactive  Interval type-2 

univariable Gaussian 

First order TSK Online RG+RA 

TRFNS Single Local Type-1 univariable 

Gaussian 

First order TSK Offline RG+RA 

RSEFNN-LF Single Local Type-1 univariable 

Gaussian 

First order TSK Online RG+RA 

SLFRWNN Single Local Type-1 univariable 

Gaussian 

Nonlinear Wavelet Offline RG+RA 

RG: Rule Growing, RA: Rule Adaptation, RP: Rule Pruning, RM: Rule Merging, RC: Rule Recall, FS: Feature Selection 

From Table 5, eT2RFNN produced the most reliable accuracy, while sustaining the most frugal 

computational and structural complexities. Furthermore, it is evident that the online dimensionality 

reduction method not only functions to ease the network burden, but also is capable of boosting 

the model’s generalisation. The absence of the online feature selection method as shown in 

eT2RFNN(b) degenerated the predictive accuracy. The learning performance of eT2RNN 

substantially deteriorated when realised in the conventional recurrent type-2 FNN as used in 

RSEIT2FNN. This situation justifies the new eT2RFNN network topology plays critical role for 

the training process. Although the SLFRWNN was inferior to the eT2RFNN, its efficacy is 

noticeable in Table 5, where it delivered competitive numerical results against interval type-2 

FNNs: MRIT2NFS, RSEIT2FNN.  

VI. Conceptual Comparison 



The efficacy of eT2RFNN has been experimentally validated using five non-stationary data 

streams and comparisons with prominent FNNs in Section 4. This section specifically analyses the 

key facets of eT2RFNN, which distinguish itself with its counterpart. To this end, eT2RFNN is 

conceptually contrasted with six popular RFNNs in the literature: SLFRWNN [18], TRFNS [13], 

RSEFNN-LF [12], RSEIT2FNN [16], MRIT2NFS [36]. The characteristics of the consolidated 

algorithms are tabulated in Table 6. 

Referring to Table 6, eT2RFNN goes one step ahead of existing RFNNs by putting forward 

double local recurrent connections. This architecture retains the local learning trait, offering 

greater flexibility and robustness for the evolving system. eT2RFNN employs a more advanced 

type of fuzzy rule, which synergises the interval type-2 multivariate Gaussian function in the rule 

premise and the Wavelet function. Most other algorithms in Table 7 except RSEFNN-LF either 

utilise the KM iterative method or the GA method. The GA method is renowned for its offline 

trait, because it relies on the multi-pass optimization process. Although the KM method is 

applicable for an online learning process, it is deemed computationally more expensive than the 

q-design factor of the eT2RFNN, because it requires the weight vector to be reordered in the 

ascending manner. The crossover points are then found using the iterative process.  Other RFNNs 

in Table 7 are presumed to impose more prohibitive structural complexity, because they are not 

fitted out by a rule base simplification procedure.  

VII. Conclusion and Further Study 

A novel recurrent interval type-2 FNN, namely Evolving Type-2 Fuzzy Neural Network 

(eT2RFNN), is proposed with research question of handling concept drifts and uncertainties in 

data stream mining. The eT2RFNN presents a fully flexible and computationally efficient working 

principle, which can adapt, grow, prune, and merge its fuzzy rules and even reduce the 

dimensionality of learning problems on the fly. The salient contributions of eT2RFNN are summed 

up as follows: 1) It is implemented in a novel recurrent network architecture, 2) It puts forward a 

generalised interval type-2 fuzzy rule, 3) the universal approximation capability of the eT2RFNN’s 

network architecture is mathematically proven, 4) A type-2 version of the RMI method is 

developed, and 5) the online feature selection technique, namely the SMBC method, is proposed. 



Our numerical study in various synthetic and real-world data problems demonstrated that 

eT2RFNN outperformed state-of-the art algorithms in both complexity and accuracy. Our future 

work will be devoted to designing a metacognitive scaffolding learning algorithm for eT2RFNN.  

APPENDIX 

A. Universal Approximation Property of the eT2RFNN 

The universal approximation property of the eT2RFNN can be achieved by extending the work 

of [59] for the single-recurrent-link network architecture to the double-recurrent-link case. An 

open dynamical system in discrete time can defined as a state transition and an output equation:    

),(11 nnn usgs  (state transition), )( 1shyn  (output equation)    (A.1) 

where s stands for state transition, a mapping from the present internal hidden state of the system 

and the external input un to a new system state. Note that if the state transition is discounted, we 

revover the expression of the feedforward network architecture, whereas without the external input 

un we arrive at the definition of the autonomous system. The predictive task however will be harder 

with the hidden state, because it takes into account inter temporal dependencies. In [59], a recurrent 

neural network in the state space form is developed to map an open dynamical system (A.1). The 

expression is amended here to suit the eT2RFNN structure as follows: 
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where 2,12,12,1 ,, CBA are weight metrices of appropriate dimension and ()
~
f is an interval type-2 

fuzzy set. The state space form eases the analysis because of explicit correspondence between 

equations and architecture, from which it can be directly transferred into a spatial network structure 

via the so-called unfolding in time and shared weight matrices 2,12,12,1 ,, CBA .  

Theorem 2 [59]: let muPg : be measurable and
mPh : be continuous, the external 

input 
u

nu  , the inner state
P

ns  , and the output
m

ny  . Then, an open dynamical system, 

defined in (A.1)can be predicted by an element of the RNN (A.2)-(A.3) with an arbitrary accuracy, 

where ()
~
f is an interval type-2 fuzzy set.  

Proof : the mathematical proof can be obtained by tracing back the equations of the open 

dynamical system with the representation of the feedforward network structure as a result of 



transforming the RNN definition (A.2)-(A.3) into its feedforward network structure equivalent, 

using the unfolding in time and shared weigth matrices. This can be achieved in two steps: 1) a 

conclusion of the state space equation of the open dynamical system can be approximated by a 

neural network in the form of (A.2); 2) the output equation of the open dynamical system can be 

approximated by a neural network of the form of (A.3). Detailed mathematical derivations are left 

to reader and it can be achieved following the same procedure of [59].  
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