
An incremental map-matching algorithm based
on Hidden Markov Model ?

Piotr Szwed and Kamil Pekala

AGH University of Science and Technology
pszwed@agh.edu.pl, kamilkp@gmail.com

Abstract. Map-matching algorithms aim at establishing a vehicle lo-
cation on a road segment based on positioning data from a variety of
sensors: GPS receivers, WiFi or cellular radios. They are integral part of
various Intelligent Transportation Systems (ITS) including fleet manage-
ment, vehicle tracking, navigation services, traffic monitoring and con-
gestion detection. Our work was motivated by an idea of developing
an algorithm that can be both utilized for tracking individual vehicles
and for monitoring traffic in real-time. We propose a new incremental
map-matching algorithm that constructs of a sequence of Hidden-Markov
Models (HMMs). Starting from an initial HMM, the next models are
developed by alternating operations: expansion and contraction. In the
later, the map-matched trace is output. We discuss results of initial ex-
periments conducted for 20 GPS traces, which to test algorithm robust-
ness, were modified by introduction of noise and/or downsampled.

Keywords: GPS, map-matching, Hidden Markov Model, Viterbi

1 Introduction

Map-matching algorithms aim at establishing a vehicle location on a road seg-
ment based on positioning data from a variety of sensors: GPS receivers, WiFi
or cellular radios, odometers and others. As all sensors used as input may yield
uncertain data, map-matching involves making decision on to which location at
several candidate road segments the vehicle should be assigned. The decision
can be based on a current sensor reading or on a history comprising a number
of past data.

Map-matching is an integral part of various Intelligent Transportation Sys-
tems (ITS) including fleet management, vehicle tracking, navigation services,
traffic monitoring and congestion detection. Such systems experience growing

? This is the draft version of the paper presented at the Artificial In-
telligence and Soft Computing - 13th International Conference,
ICAISC 2014, Zakopane, Poland, June 1-5, 2014. The paper was pub-
lished in Artificial Intelligence and Soft Computing – Lecture
Notes in Computer Science, Volume 8468, 2014 and is available at:
http://link.springer.com/chapter/10.1007/978-3-319-07176-3 51

2

popularity due to proliferation of smartphone devices capable of receiving po-
sitioning data and transferring them over cellular networks. The type of map-
matching algorithm that they internally use depends on particular application.

Our work was motivated by an idea of developing an algorithm that can
be both utilized for tracking individual vehicles and for monitoring traffic in
real-time. Such algorithm must be incremental, i.e. should update the informa-
tion upon arrival of new sensor reading, as opposed to global, when a closed
sequence of readings is analyzed. In this paper we propose a new incremen-
tal map-matching algorithm, which in order to determine the vehicle trajectory
constructs a sequence of Hidden-Markov Models (HMMs). In our approach a
HMM state corresponds to a road segment and a sensor reading to an obser-
vation in HMM. Starting from an initial HMM, the next models are developed
by alternating operations: expansion (new states are added to the model) and
contraction (dead ends are deleted, the graph root is moved forward along the
detected path and a part of trajectory is output). We report results of initial
experiments conducted for 20 GPS traces, which to test algorithm robustness,
were modified by introduction of artificial noise and/or downsampled.

The paper is organized as follows: the next Section 2 discusses various types
of map-matching algorithms. It is followed by Section 3, in which a model of road
network is described. The next Section 4 introduces HMM model and provides
the algorithm description. Conducted experiments are reported in Section 5 and
finally Section 6 gives concluding remarks.

2 Related works

More then thirty map-matching algorithms are surveyed by Quddus et. al in [1].
Authors divided them into four groups: geometric, topological, probabilistic and
advanced.

Algorithms employing geometric analysis take into account shapes of road
segments only, while ignoring, how they are connected. The simplest approach
consists in finding the closest map node (a segment endpoint) to the current
GPS reading (point-to-point matching). Another option is to find the closest
road segment (point-to-curve matching) [2] or to match pairs of points from the
vehicle trajectory to the road segments [3]. All those algorithms are very fast,
however, they are sensitive to map data (in particular to the density of nodes)
and may yield vehicle trajectories, which are not consistent with the connections
within the road network [4].

Topological map-matching algorithms utilize information about connections
between road segments. This removes leaps between map links that can be ob-
served for algorithms based only on geometrical information. Another features
that can be considered are turn angles and also a vehicle state (heading, velocity)
[3, 5].

Many positioning devices are capable of delivering a circular or elliptic con-
fidence region associated with each position reading, e.g. the location API for
Android devices defines the accuracy parameter. The circle radius can be about

3

10 meters for GPS [6] and 50 m for cellular networks. However, in dense urban
area with street canyons and in the presence of trees, the GPS accuracy can
degrade substantially. The confidence region can be also estimated using dead
reckoning. The idea behind probabilistic algorithms is to select in the match
mapping process only those road segments that intersect with the confidence
region. If several candidates are found, only one of them with the highest proba-
bility is chosen. Such approach was discussed in [7]. An enhanced algorithm that
employs such approach at junctions was described in [8].

Advanced algorithms usually combine both topological and probabilistic in-
formation, while applying various techniques to assign road links to GPS read-
ings. Kim et al. used Kalman Filter [9] to establish vehicle location along a link
after performing point-to-curve matching [10]. Fuzzy Sugeno rules for road seg-
ment selection were used in [11, 12]. Gustafsson et al. reported an approach based
on particle filter [13], Yang et al. applied Dempster-Shafers evidence theory while
determining weights in point-to-curve matching.

Several map-matching algorithms are path-oriented, i.e. they maintain a set
of candidate paths. In the algorithm developed by Marchal et al. [14] they ware
stored in a collection being sorted according to a path score based on distance
to the GPS trace. An idea of using a tree like structure representing a set of
candidate paths was proposed by Wu et al. [15]. Both algorithms are incremantal,
i.e. they update the path representation on arrival of a new GPS reading. On
the other hand, if a full GPS trace is initially known a global approach based on
calculation of Fréchet distance can be applied [16].

Hidden Markov Model (HMM) [17] is a Markov process comprising a num-
ber of hidden (unobserved) states. Transitions between states can occur with
a certain probabilities. Each state is assigned with a set of observations. One
of them is to be output, as the state is reached. For a given state conditional
probabilities of observations occurrence (emission probabilities) sum up to 1. A
problem that can be elegantly formulated with HMM is the decoding problem:
it consists in finding the most probable sequence of transitions between hidden
states that would produce a given sequence of observations. Such sequence can
be efficiently determined with the well-known Viterbi algorithm [18].

There are at least four implementations of global map-matching algorithms
[19–22] that employ HMM approach. In all of them hidden states correspond to
projections of vehicle positions on road segments and observations to location
data obtained mainly from GPS sensors. Transition probabilities are established
based on links connectivity and/or dead reckoning, whereas emission probabili-
ties assume Gaussian distribution of GPS noise.

In this paper we have taken the similar approach. The main difference that
should be emphasized is that our algorithm is incremental, i.e. it does not build
a single HMM model for a given GPS trace to be analyzed afterwards with
the Vitrebi algorithm, but updates the HMM model on each input and in some
situations only applies the Viterbi algorithms. Moreover, the algorithms can be a
basis for developing real-time services like vehicle tracking and traffic estimation.

4

3 Road network model

The used road network model is defined as a directed graph G = (V,E, I), where
V ∈ R2 are graph nodes described by two coordinates: longitude and latitude,
E ∈ V ×V are straight road segments linking two nodes and I ⊂ E×E specifies
inhibited maneuvers at road junctions. If ((v1, v2), (v2, v3)) ∈ I, then a path
containing the sequence (v1, v2, v3) is forbidden according to traffic regulations.

We assume that road links are represented by straight segments. If a road
has a curved geometry, e.g. appears on a map as an arc, it can be approximated
a sequence of connected segments. This is a typical approach for many map
sources, e.g. OSM [23]. Moreover, as performing various geometrical operations
we are actually interested in undirected arcs, we define a function S : E → 2V

that maps an edge (v1, v2), v1 6= v2 onto a a set {v1, v2} comprising exactly
two vertices. We will extend this function to the whole set E, hence S(E) =⋃

e∈E S(e).
For a given segment s = {vb, ve} and a point g, we define the projection

p(g, s) of g onto s as a point g′ belonging to the segment s that minimizes the
distance:

p(g, s) = arg min
g′=vb+t(ve−vb)∧t∈[0,1]

d(g, g′), (1)

where d(g, g′) is a distance between g and g′ given by the haversine formula.
The projection point p(g, s) calculated according to formula (1) can be either

an orthogonal projection on a segment or one of its end points (see Fig. 1).

.

.

s3
s2

s1
d(o,s1)

d(o,s2
) d(o,s3

)
o

p(o,s2)

p(o,s1)

p(o,s1)

Fig. 1. Projections of a GPS point o and distances to road segments s1, s2 and s3

4 Map matching algorithm

The map-matching algorithm comprises three basic operations organized into
a pipeline (see Fig. 2). Firstly, an input GPS trace is smoothed with Kalman
filter. This allows for compensating noise and removing outliers from the trace.

5

In the next processing step it is checked, whether the distance between two
consecutive samples is small enough to match the map scale (or more precisely
lengths of typical road links). If the distance is too large, the required number
of intermediate samples is generated by applying simple linear interpolation.
Finally, the input trace after the two preprocessing steps is interpreted with the
proper map-matching algorithm based on Hidden Markov Model (HMM). Due
to limited capacity, in this section we will focus on this step only.

Smoothing
(Kalman filter)

Interpolation
Interpretation

(Hidden Markov Model)

GPS trace

Map-matched
trajectory

Fig. 2. Processing steps of the map-matching algorithm

4.1 Hidden Markov Model

While constructing Hidden Markov Models the approach similar to [21, 22] was
taken. A state in HMM describe both a road segment and a projection of a GPS
fix on the segment calculated according to formula (1). Thus, each state tuple
(s, p, i) ∈ Q has the following components: e - a road segment, p - a projection
point belonging to the segment S(e) and i - a sequence number.

In the assumed model observations O correspond to data obtained from GPS
sensor, i.e. they are tuples (x, y, t), whose elements are longitude, latitude and
time respectively.

Below we give the definition of Hidden Markov Model reflecting adaptation
introduced to support the map matching problem.

Definition 1 (Hidden Markov Model). Hidden Markov Model is a tuple
λ = (Q,A,O, Pt, Po, q0), where

– Q is a set of states, Q ⊂ E × R2 × N
– A ⊂ Q×Q is a set of arcs,
– O is a set of observations, O ⊂ R2 × R
– Pt : A→ (0, 1] is a function that assigns a probability to a transition between

states.
– Po : Q × O → [0, 1] is an emission probability function satisfying ∀q ∈
Q :

∑
o∈O Po(q, o) = 1.

– q0 is an initial (root) state.

Two states q1 = (e1, p1, i1) and q2 = (e2, p2, i2), where e1 = (v11, v12) and
e2 = (v21, v22), can be connected with an arc a = (q1, q2), if e1 = e2 or there
exists a path in a graph π = v11, . . . v22 linking endpoints of road segments.
Currently, in most cases we consider sequences of length 3, i.e. two consecu-
tive segments having common endpoints. Longer sequences can be calculated to

6

handle special situations requiring reinitialization of algorithm. This assumption
imposes the requirement that observations (locations obtained form a GPS sen-
sor should be dense enough to be assigned to consecutive segments. If a segment
was missed, then the map matching algorithm would probably get lost. The
interpolation step (see Fig. 2) was introduced to satisfy this requirement and
achieve real-time performance.

In order to calculate a transition probability for an arc a linking states q1
and q2 a weight function θ(a) : A → [0, 1] is used. Basically, it assigns 1 if q1
and q2 can be connected by a path, however if the possible path violates traffic
rules or physical constraints (e.g. speed greater than 250 km/h) a small value
(0.1) is used. Finally, the weights assigned to outgoing arcs for a given state q
are normalized applying the formula (2) to give the probabilities.

Pt(a) = 1
Zt
θ(a),

where Zt =
∑

ai : ai=(q,qi)∈A
a=(q,qa)

θ(ai). (2)

Emission probability Po is computed for a subset of states in HMM QH and
an observation o. For a given HMM state q = (e, p, i), where p = (xp, yp) is
the vehicle position, its GPS observations o can be distributed on XY plane
around the point p. Until there is no bias, e.g. related to satellite visibility,
the applied distribution should have its mean at the point p and decrease with
growing distance between points d(p, o). We have assumed 2-dimensional normal
distribution given by (3).

P (x, y) =
1

D
e−k ((x−xp)

2+(y−yp)
2). (3)

The D normalizing factor is given as D =
∫∞
−∞

∫∞
−∞ P (x, y) dx dy. For k the

value 0.01 was taken, what corresponds to a noise giving translations of GPS
readings by 10m. In such case D ≈ 314.0. As the map data used in experiments
used longitude and latitude coordinates, we applied, however, a modified version
of (3), in which Euclidean distance was replaced by the haversine formula.

4.2 Trace interpretation algorithm

The algorithm takes at input a sequence of GPS readings (observations) ω =
(oi : i = 1, n) and constructs a sequence of Hidden Markov Models Λ = (λi : 0 =
1, n). Basically, it contains two stages: initialization, during which the first model
λ1 is built and processing that is repeated for successive observations.

Initialization. This stage involves determining a set of possible states (road
segments), to which the initial vehicle position might be assigned. The algorithm
examines all road segments in a supplied part of the map and chooses only these,
whose distances to the measured point are less or equal than a certain threshold
r (e.g. 35 meters). At that point the construction a sequence of HMMs, which
can be perceived as a trajectory tree, begins. The tree root is set to a fictional

7

state from which the vehicle might have moved to any of the states belonging to
initial Hidden Markov Model λ1. The steps of this stage are listed in Algorithm 1.

Algorithm 1 Initialization

1. For a given observation o1 calculate a set of road segments, whose distance to o1 is
less or equal r, where r is a certain threshold: H = {e ∈ E : d(o1, p(o1, S(e))) ≤ r}.

2. Assign Q1 ← {q0} ∪ {(ei, p(o1, S(ei), 1) : ei ∈ H}; q0 is a fictitious state (a tree
root).

3. Connect states with arcs A1 ← {q0} ×QH , where QH = Q1 \ {q0}.
4. Assign to each arc a ∈ A1 equal transition probability Pt1(a) = 1

|QH |
.

5. For each element in QH calculate emission probability according to formula (3).

Processing. This step is being applied repeatedly for all, but the first GPS
observations. Each i-th iteration comprises two phases: expansion and contrac-
tion, during which a new HMM model λi is constructed. The expansion phase
consists in adding new states and transitions to previous model λi−1. Its steps
are given by Algorithm 2.

Algorithm 2 Expansion

1. Select the set of states in λi−1 that was added in the previous iteration (heading
states) QH = (e, p, k) ∈ Q : k = i− 1.

2. Establish a set of edges ER that are physically reachable from QH . As discussed
in Section 4.1, currently, only neighbor edges are considered.

3. Calculate a subset ERD ⊂ ER comprising those edges, which are placed at a
distance less than or equal to a certain threshold r:
ERD = {e ∈ ER : d(oi, S(e)) ≤ r}.

4. Insert edges from ERD as new states into the model λi. Hence, Qi ← Qi−1 ∪
{(e, p(e, S(e), i) : e ∈ ERD}.

5. Link new states with edges: Ai ← Ai−1 ∪QH × (Qi \Qi−1)
6. Establish transition and emission probabilities according to (2) and (3).

The contraction phase has two goals: firstly orphan nodes without successors
are removed, what keeps the detection model compact, secondly the HMM root is
moved forward and a next part of the trajectory is output. Operations conducted
during this phase are summarized in Algorithm 3.

One of the contraction operation, namely join handling requires some com-
ments. A state qJ is a join, if it has two different predecessors:

∃qa, qb ∈ Qi−1 : (qa, qJ), (qa, qJ) ∈ A ∧ qa 6= qb.

8

Algorithm 3 Contraction

1. Remove from Qi all states with the timestamp less then i, i.e. assign:
Qi ← Qi \ {(e, p, k) : k < i} and update Ai accordingly.

2. Handle joins.
3. Update the root state qr:

a If qr has exactly one successor qj in A, output qr as a next element of the
vehicle trajectory. Otherwise, STOP.

b Assign: qr ← qj and go to a.

Such situation is illustrated in Fig. 3, where states q2 and qJ are examples
of joins. Presence of a join in HMM indicates that during the map matching
process vehicle positions were assigned to parallel roads that finally joined at
a certain point. Hence, the algorithm faces the problem of selecting the most
probable among at least two competing paths. This is achieved with a dedicated
procedure that searches the closest parent node qF , from which (1) all paths led
to qJ and (2) states belonging to them are reachable only from qF . If such state
exist, the Viterbi algorithm is applied to the subgraph between qF and qJ and
most probable path is kept in the λi. States lying beyond the computed path
are removed.

The subgraph between qF and q2 in Fig. 3 does not satisfy the conditions
given above, as there exists a path from qF to q3 that is not closed. Similarly,
the subgraph between q1 and qJ cannot be accepted, as q2 is a join for a path
that does not start in q1. The subgraph between qF and qJ satisfies the given
conditions and, after applying the Viterbi algorithm, can be replaced by a single
path between these nodes.

qF qJq1

q2

q3

Fig. 3. Example of submodel of HMM, to which Viterbi algorithm is applied to get rid
off joins

Handling special situations. An exceptional situation in expansion phase
occurs if the set ERD established in step 3 of Algorithm 2 is empty. We may
conclude then, that the map matching algorithm got lost. There may be several
reasons of such situations. It may stem from a noise that was not sufficiently
removed by the Kalman filter. The other reason can be that observations are
not dense enough to be matched to neighbor map segments. Such effect can be

9

observed at curved roads, e.g. highway links or roundabouts, which are approx-
imated by a number of short straight lines. Basically, we handle this issue by
performing reinitialization using Algoritm 1 and obtaining a new model λi0.

Further processing depends on application of the map matching component
within an ITS. If we are particularly interested in reconstructing the trajectory
of a tracked vehicle, models λi−1 and λi0 are merged by adding links that are
obtained by applying locally A* shortest path algorithm. If the goal of map
matching is to calculate traffic parameters based on GPS readings, some track-
ing errors can be accepted. For such applications λi−1 model is processed with
Viterbi algorithm to get the most probable path and the whole matching process
restarts from λi0.

Another specific situation is, when it is known that the sequence of observa-
tions ω is finite and ends with on. Then for the last model λn the most probable
trajectory is computed with Viterbi algorithm and the algorithm stops.

5 Experiments

The algorithm was tested on the map of Kraków in Poland. The map originated
from OpenStreetMap project [23]. The input dataset was represented by 20 GPS
traces, which were recorded during several car trips throughout Kraków with
EasyTrials GPS1 software running on iPhone 5. The total length of traces used
in experiments was 148.46km. Both input and map-matched trajectories were
stored in GPX format that is supported by JOSM, the OpenStreetMap editor.

The first phase of experiments consisted in determining parameters of a dis-
crete Kalman filter used in the preprocessing phase. It was designed in form of
two distinct second order filters processing separately noise for longitude and
latitude components. The state variables corresponded, hence, to position and
velocity along one of the axes. Initial parameters for both filters were identical.
They were determined empirically using the Matlab software for calculations
and visualization. The best effects were achieved (and thus those were applied
in the final algorithm) with the following set of parameters (see [9] for notation

details): process noise covariance matrix Q =

[
1 0
0 0.05

]
, measurement noise co-

variance matrix R = 4.5 and initial process noise covariance matrix P =

[
0 0
0 0

]
.

It should be mentioned that the selected parameters reflect features of the used
sensor, i.e. this installed in iPhone 5. They may differ for other device. The
results of of trace smoothing with the designed filter are shown in Fig. 4. An
artificial noise introduced into the original trace yields the zig-zag line, which is
smoothed (the black bold line).

Analyzing the traces manually we have observed that invalid paths was ob-
tained (i.e. broken and impossible to repair with A*) in about 30% of the cases, in
which the algorithm was forced to perform reinitialization. Moreover, reitializa-
tion usually takes more time than the normal algorithm processing step. Thus,

1 http://www.easytrailsgps.com/

10

Fig. 4. Example of application of the implemented discrete Kalman filter

to avoid manual annotating of GPS trials, we decided to use the number of
reinitialization as a quality metrics.

We have tested the algorithm by feeding the collected data in four forms:
original, modified by artificially introduced random noise (magnitude between 0
and 20 meters added to each sample), half sampled (H-S) and half-sampled with
the noise. The obtained values are gathered in Table 1. Each table row shows
test results for a particular GPS trace. Subcolums marked with RI give number
of algorithm reinitializations in the selected mode, RIS denotes average number
of reinitalizations per sample.

It is clear and not surprising that the best results were achieved by running
the tests with the original input data. However, for applied half-sampling the
number of reinitializations was practically identical. This effect can be proba-
bly attributed to the interpolation. The worse indicator value was obtained for
noisy data. Nevertheless, all obtained values are fairly good. In the normal mode
the reinitialization occurred once per 6.18km and in about 70% of cases it was
possible to recover from errors.

Only initial results of performance tests can now be reported. The algorithm
implemented in C# language and published as a RESTfull web service was
capable of processing 20 simultaneous feeds with 50 times speed-up, i.e. time
intervals between subsequent send operations were 50 times smaller then dif-
ferences between sample timestamps. This corresponds to 1000 mobile sensors
feeding real-time data simultaneously.

6 Conclusions

This paper presents a new map matching algorithm based on Hidden Markov
Model. Although the idea of applying HMM to map matching was reported al-
ready in a few articles, in works by Krumm et. al [20] and Newson and Krumm
[21] only a global algorithm analyzing the whole path was described. The article

11

Table 1. Test results

No Length (km) Samples
Original Noise H-S H-S & Noise
RI RIS RI RIS RI RIS RI RIS

1 9.45 256 0 0 3 0.012 3 0.012 3 0.012
2 8.26 248 3 0.012 10 0.04 2 0.008 1 0.004
3 7.78 261 2 0.008 5 0.019 1 0.004 2 0.008
4 7.67 267 0 0 6 0.022 3 0.011 5 0.019
5 9.67 233 3 0.013 0 0 0 0 0 0
6 6.40 209 0 0 0 0 0 0 0 0
7 5.59 108 0 0 0 0 0 0 1 0.009
8 9.03 259 0 0 10 0.039 0 0 3 0.012
9 7.05 216 1 0.005 1 0.005 1 0.005 0 0
10 7.94 248 2 0.008 4 0.016 1 0.004 0 0
11 7.19 190 0 0 1 0.005 1 0.005 10 0.053
12 11.22 273 1 0.004 7 0.026 1 0.004 2 0.007
13 4.19 118 0 0 0 0 1 0.008 1 0.008
14 5.96 192 2 0.01 2 0.01 0 0 2 0.01
15 9.03 271 0 0 2 0.007 0 0 0 0
16 6.45 242 1 0.004 3 0.012 2 0.008 3 0.012
17 7.95 228 4 0.018 7 0.031 3 0.013 3 0.013
18 7.41 192 1 0.005 3 0.016 2 0.01 2 0.01
19 7.06 283 4 0.014 7 0.025 2 0.007 6 0.021
20 3.16 188 0 0 2 0.011 0 0 1 0.005

Total 148.47 4482 24 0.005 73 0.016 23 0.005 45 0.010

by Thiagarajan et al. gives yet less details [22]. The paper makes two contribu-
tions. Firstly we describe an incremental algorithm that in each iteration updates
the HMM model by expanding it with new states corresponding to road segments
and contracting to output a certain part of the vehicle trajectory. In most cases
the structure of obtained HMM forms a tree similar to that, proposed by Wu
et al. [15]. However, our model accepts parallel roads. Our second contribution
is the report on performed tests showing that the developed algorithm with ap-
plied filtering and interpolation operations is robust enough to handle noisy and
downsampled data.

Acknowledgments. This work is supported by the National Centre for Re-
search and Development (NCBiR) under Grant No. O ROB 0021 01/ID 21/2

References

1. Quddus, M.A., Ochieng, W.Y., Noland, R.B.: Current map-matching algorithms
for transport applications: State-of-the art and future research directions. Trans-
portation Research Part C: Emerging Technologies 15(5) (2007) 312–328

2. White, C.E., Bernstein, D., Kornhauser, A.L.: Some map matching algorithms
for personal navigation assistants. Transportation Research Part C: Emerging
Technologies 8(1) (2000) 91–108

12

3. Greenfeld, J.S.: Matching GPS observations to locations on a digital map. In:
National Research Council (US). Transportation Research Board. Meeting (81st:
2002: Washington, DC). Preprint CD-ROM. (2002)

4. Quddus, M.A., Ochieng, W.Y., Noland, R.B.: Integrity of map-matching algo-
rithms. Transportation Research Part C: Emerging Technologies 14(4) (2006)
283–302

5. Quddus, M., Ochieng, W., Zhao, L., Noland, R.: A general map matching algorithm
for transport telematics applications. GPS Solutions 7(3) (2003) 157–167

6. Modsching, M., Kramer, R., ten Hagen, K.: Field trial on GPS accuracy in a
medium size city: The influence of built-up. In: 3rd Workshop on Positioning,
Navigation and Communication. (2006) 209–218

7. Zhao, Y.: Vehicle location and navigation systems. Artech House ITS series. Artech
House (1997)

8. Ochieng, W.Y., Quddus, M., Noland, R.B.: Map-matching in complex urban road
networks. Revista Brasileira de Cartografia 2(55) (2009)

9. Greg Welch, G.B.: An introduction to the Kalman filter (2006) Chapel Hill.

10. Kim, W., Jee, G.I., Lee, J.: Efficient use of digital road map in various positioning
for its. In: Position Location and Navigation Symposium, IEEE 2000. (2000) 170–
176

11. Syed, S., Cannon, M.: Fuzzy logic-based map matching algorithm for vehicle nav-
igation system in urban canyons. In: proceedings of the Institute of Navigation
(ION) national technical meeting, USA. (2004)

12. Fu, M., Li, J., Wang, M.: A hybrid map matching algorithm based on fuzzy com-
prehensive judgment. In: Intelligent Transportation Systems, 2004. Proceedings.
The 7th International IEEE Conference on. (2004) 613–617

13. Gustafsson, F., Gunnarsson, F., Bergman, N., Forssell, U., Jansson, J., Karlsson,
R., Nordlund, P.J.: Particle filters for positioning, navigation, and tracking. Signal
Processing, IEEE Transactions on 50(2) (2002) 425–437

14. Marchal, F., Hackney, J., Axhausen, K.: Efficient map-matching of large GPS data
sets-tests on a speed monitoring experiment in Zurich. Arbeitsbericht Verkehrs-und
Raumplanung 244 (2004)

15. Wu, D., Zhu, T., Lv, W., Gao, X.: A heuristic map-matching algorithm by using
vector-based recognition. In: Computing in the Global Information Technology,
2007. ICCGI 2007. International Multi-Conference on. (2007) 18–18

16. Brakatsoulas, S., Pfoser, D., Salas, R., Wenk, C.: On map-matching vehicle tracking
data. In: Proceedings of the 31st international conference on Very large data bases,
VLDB Endowment (2005) 853–864

17. Rabiner, L., Juang, B.: An introduction to hidden Markov models. ASSP Maga-
zine, IEEE 3(1) (1986) 4–16

18. Viterbi, A.: Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm. Information Theory, IEEE Transactions on 13(2) (1967) 260–
269

19. Hummel, B.: 10. Innovations in GIS. In: Map Matching for Vehicle Guidance.
CRC Press (November 2006)

20. Krumm, J., Letchner, J., Horvitz, E.: Map matching with travel time constraints.
In: SAE World Congress. (2007)

21. Newson, P., Krumm, J.: Hidden Markov map matching through noise and sparse-
ness. In: Proceedings of the 17th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, ACM (2009) 336–343

13

22. Thiagarajan, A., Ravindranath, L., LaCurts, K., Madden, S., Balakrishnan, H.,
Toledo, S., Eriksson, J.: Vtrack: accurate, energy-aware road traffic delay esti-
mation using mobile phones. In: Proceedings of the 7th ACM Conference on
Embedded Networked Sensor Systems, ACM (2009) 85–98

23. OpenStreetMap: OpenStreetMap Wiki. http://wiki.openstreetmap.org/wiki/

Main_Page (2013) [Online; accessed Dec 2013].

