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Abstract

Data clustering has become an important task for discovering significant
patterns and characteristics in large spatial databases. The Mufti- Centroid,
Multi-Run Sampling Scheme (MCMRS) has been shown to be effective in
improving the k-medoids-based clustering algorit hms in our previous work.
In this paper, a more advanced sampling scheme termed Incremental Multi-
Centrozd, Multi-Run Sampling Scheme (IMCMRS) is proposed for k-medoids-
based clustering algorithms. Experimental results demonstrate the proposed
scheme can not only reduce by more than 80’ZOcomputation time but also re-
duce the average distance per object compared with CLARA and CLARANS.
IMCMRS is also superior to MCMRS.

1 Introduction

Clustering is a useful practice of classification imposed over a finite set of
objects. The goal of clustering is to group sets of objects into classes such
that single groups have similar characteristics, while dissimilar objects are in
separate groups.

Various existing clustering algorithms have been proposed and designed
to fit various formats and constraints of application including k-means [16], k-
medoids [11], BIRCH [18], CURE [8], CHAMELEON [10], DBSCAN [4],
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AUTOCLUST [6] and AUTOCLUST+ [5]. No single algorithms is suitable
for all types of objects, nor are all algorithms appropriate for all problems,
however, k-medoids algorithms have been shown to be robust to out liers
(or noise) and are not generally influenced by the order of presentation of
objects. Moreover, k-medoids algorithms are invariant to translat ions and
orthogonal transformations of objects. Partitioning Around Medoids (PAM)
[11],Clustering LARge Applications (CLARA) [11], Clustering LARge Ap-
plications baaed on RANdomized Search (CLARAIVS) [17], Clustering Large
Applications based on Simulated Annealing (CLASA), fuzzy k-medoids al-
gorithm [13], genetic k-medoids algorithm [15] are existing k-medoids-based
algorithms.

Both k-means (which adopts as the representative point the weighted
mean of the cluster) and k-medoids (which adopts as the representative point
the most central object in the cluster) algorithms are a partitioning method.
One of the main elements to limit the use of k-medoids algorithm is the
inefficiency of k-medoids algorithms comparing with k-means - k-means al-
gorithm is several orders of magnitude faster than k-medoids algorithm. In
general, it is not efficient to use k-medoids algorithm even for moderate sized
dat asets. This shortcoming can be overcome with the aid of an efficient sam-
pling scheme.

In the following section we discuss existing k-medoids-based algorithms
including the Mult i-Centroid, Multi-Run Sampling Scheme (lfC&fRS) dis-
cussed in [2]. We then propose improvements to MCMRS [2] by adopting the
adaptive concept - Increment al Multi- Centroid, Multi-Run Sampling scheme
(IMCMRS) which will be described in Section 3 while Section 4 will report
on some promising results we have obtained by using four artificial databases
and one image database. The conclusions are given in Section 5.

2 Related Work

2.1 PAM

PAM (Partitioning Around Medoids) was developed to find the k most rep-
resentative objects (medoids) that represent k clusters such that non-selected
objects are clustered with the medoid to which it is the most similar. The
tot al dist ante between non-medoid objects and their representative medoid
may be reduced by swapping one of the medoids with one of the objects it-
eratively. Obviously, it is time consuming even for the moderate number of
objects and small number of medoids.

2.2 CLARA

CLARA (Clustering LARge Applications) was developed to overcome the
computational complexity drawbacks of PAM. Instead of finding represen-
tative objects for the whole data set, CLARA reduces the complexity by
drawing multiple samples of the objects and applying PAM on each sample.
The final medoids are obtained from the best result of these multiple draws.
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2.3 CLARANS

The clustering process in CLARANS (Clustering Large Applications based
on RANge Search) is formalised as searching through a graph where each
node is represented by a set of k medoids – two nodes are neighbors if
they only differ by one medoid. CLARANS starts with a randomly selected
node. It moves to the neighbour node if a test for the mazneighbour number
of neighbors is successful; otherwise it records the current node as a local
minimum. If the node is found to be a local minimum, it restarts with a new
randomly selected node and repeats the search for a new local minimum.
CLARANS also displays the drawback in that uses a randomised search
algorithm, the efficiency is still slow although it is faster than CLARA and
PAM.

2.4 CLASA

CLASA (Clustering Large Applications based on Simulated Annealing) gen-
erates medoids by applying the simulated annealing method [12, 9]. The col-
lection of the k medoids is called a state in CLASA [1]. There are *

states where T is the total number of objects. It is possible to move from
current state to any other states depending on the moving strategy. For our
preliminary experiments, we consider only movements between two states
that involve changing only one medoid. The CLASA algorithm can be illus-
trated as follows:

1. Choose an initial state s of medoids at random and set the initial tem-
perature Temp = To.

2. Randomly choose another state s’ (some perturbation of state s) by swap-
ping the medoids with the objects. Calculate the difference oft ot al distor-
tion AD = Dt (s’) – Dt (s). If AD <0, replace the state s by s’ otherwise

replace s by s’ with probability e* and go to step 3.
3. If the number of total dist ante drops dis.drop exceeds a prescribed num-

ber or the fixed number of perturbations per is reached, go to step 4;
otherwise go to step 2.

4. Terminate the program and return the selected medoids if the temper-
ature Temp is below some prescribed freezing temperature Tj or the
tot al number of perturbations total-peris reached; otherwise lower the
temperature Temp and go to step 2.

There are several possible met hods for the annealing schedule, it is convenient
to set Temp = To#, where t is the number of iterations, q is a constant
coefficient, O < ~ < 1.

2.5 Fuzzy k-medoids algorithms

The concept of fuzzy k-means clustering algorithm can be applied to gener-
ate the medoids. Two methods, the fuzzy k-medoids algorithm and fuzzy k-
trimmed medoids algorithm were proposed in [13]. The evaluation function of
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the fuzzy k-medoids algorithm is to minimise Jm(O, X) = ~~=1 ~f=l u~r(zj, oi)

where r (x~, Oi) is the dissimilarityy bet ween object zj and medoid o;.

2.6 Genetic k-medoids algorithm

Genetic algorithms [7] have been applied to k-medoids algorithm [15]. In
[15], the genetic k-medoids algorithm, GCA (genetic clustering algorithm)
generates P individuals initially and each individual consists of k different
parameters selected from T objects randomly. The fitness function is the in-
verse oft he total distortion. The fitness is also modified using a linear scaling
technique. The modified fitness of each individual is evaluated and a pair of
individuals is selected based on the roulette selection. These two individuals
are used in a crossover operation to generate temporary individuals with half
the parameters from each selected individual. A mutation technique is then
applied to this temporary individual. After obtaining the same population
size, the evaluation, select ion, crossover and mut ation are applied again un-
til the maximum number of generations is reached or the satisfied fitness is
obtained. The experiments have been carried out to test the performance of
GCA and CLARA algorithms. Experimental results demonstrate that GCA
is superior to CLARA for a large number of medoids. For small number of
medoids, both CLARA and GCA find acceptable solutions.

2.7 MCMRS Sampling Scheme (Multi-Centroid, Multi-Run

Sampling Scheme)

For k-means, each cluster is represented by the mean value oft he objects in
the cluster whereas each cluster is represented by one of the objects located
near the centre of the cluster in the k-medoids algorithm. k-means can be
sensitive while k-medoids is generally more robust to outliers (or noise). One
of the main factors to limit the use of the k-medoids algorithm is the ineffi-
ciency of k-medoids algorithms comparing with k-means - k-means algorithm
can be several orders of magnitude faster than the k-medoids algorithm. This
drawback can be overcome with the aid of an efficient sampling scheme. From
our empirical observations, we noticed that there is a higher probability of
better medoids being selected within some distance from the centroid of the
clusters. Based on this observation and the efficiency of the centroid-based
clustering, we can generate k clusters of medoid candidates with each clus-
ter cent aining NumCandidat e nearest objects from the centroid for each
centroid-based cluster. k medoids can be collected from each object in each
cluster randomly. This process iterates NumSample times. This sampling
scheme can be made more robust by repeating the above procedure many
times. The proposed MCMRS can be depicted as follows:

1. Repeat the following steps for NumRun times.
2. Obtain representative centroids by calling the centroid-based clustering

algorithm (such as k-means or GLA [14]) with random initialisation.
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3. Obtain NumCandidate objects for each cluster by sorting the NumCandidate
nearest objects from the centroid in each cluster.

4. Repeat the following steps for iVumSample times.

5. Generate medoids by selecting one object from the NumCandidate near-
est objects in each cluster.

6. Calculate the average distance per object and update the best medoids.

3 IiY!lCMRS (Incremental Multi-Centroid, Multi-Run
Sampling Scheme)

Although MCMRS [2] improves the efficiency and effectiveness of the k-
medoids algorithms, it can be further improved by adopting the adaptive con-
cept. The idea of Incremental Multi-Cent roid, Multi-Run Sampling scheme
(lJfCJfRS) is based on the observation that better medoids are not always
near the centres of the clusters for each run of the centroid-based cluster-
ing algorithm. In order to reduce computation time, the sampling times and
the number of candidate objects should be increased for the better results of
centroid-based clustering and conversely reduced for the worse than average
results. Based on this observation and the efficiency of the centroid-based
clustering, we can generate NumRun groups of medoid candidates with each
group cent aining several nearest objects from the centroid for each centroid-
based cluster. k medoids can be collected from each object in each group ran-
domly. This process iterates NumSample times. The groups with the worse
results are deleted and more objects are chosen from the better groups. The
IMCMRS sampling scheme can be described as follows:

1. Obtain NumRun groups representative centroids by calling the cent roid-
based clustering algorithm (such as k-means or GLA [14]) with random
initialisation for NumRun times.

2. Obtain the nearest object to the centroid for each cluster and choose the
nearest objects as the medoids. Calculate the average dist ante per object.
Set n = 1, where n is the iteration count.

3. Set NumRun = NumRun/2 and choose NumRun groups with better
average distance and obtain O = NumCandidate+NumSelectxn objects
for each cluster by sorting the O nearest objects from the centroid in each
cluster.

4. Repeat the following step for NumSample + St epSamplezn times.

5. Generate medoids by selecting one object from the nearest objects in each
cluster.

6. Calculate the average distance per object and update the best medoids,
If NumRun = 1, terminate the program; otherwise increment n and go
to step 3.

© 2002 WIT Press, Ashurst Lodge, Southampton, SO40 7AA, UK. All rights reserved.
Web: www.witpress.com  Email witpress@witpress.com
Paper from: Data Mining III, A Zanasi, CA Brebbia, NFF Ebecken & P Melli (Editors).
ISBN 1-85312-925-9



558 Data Mining III

4 Experimental Results

4.1 Databases

Four artificial databases and one real image dataset were used for the exper-
iments as follows:

1. 1,500 objects collected from four elliptic clusters.
2. 12,000 objects collected from twelve elliptic clusters.
3. 3,100 objects collected from five compact clusters.
4. 3,000 objects with 8 dimensions are generated from the Gauss-hlarkov

source that is of the form yn = ayn _ 1 + Wn where Wn is a zero-mean,
unit variance, Gaussian whit e noise process, with a = 0.5.

5. 16,384 objects with 16 dimensions are generated from the LENA grey-
level image with size 512 by 512.

Space precludes the reporting of all results here (in particular, the LENA tests
are not reported at all) but the associated report [3] and other related work
(available at http: //kdm. f irst. f linders. edu. au) contains full results.

4.2 Experiment al results

Experiments were carried out to test the number of distances calculation and
the average distance per object for the CLARA, CLARANS, MCMRS and
the proposed IMCMRS algorithms, Since the computation time depends not
only on the clustering algorithm but also on the use of comput ation facility. It
is better to choose one measure criterion so that the measure results are the
same for all types of computers and this measure criterion is proportional
to the computation time. That is why we choose the number of distance
calculation as the benchmark. Squared Euclidean dist ante measure is used
in this paper. The four elliptic clusters were used for the first experiment
and 12 medoids are selected from 1500 objects, For CLARA, the parameter
q was set to 5 and s was set to 160 + 2k. For CLARANS, the parameter
numlocal was set to 5 and parameter maxneighbor was set to 270 (ie. 1.5’%0
of K x t). For MCMRS, k-means is used to generate 12 centroid-based
clusters. The parameters NumRun, NumCandidate and NumSample in
MCMRS were set to 20, 10 and 200, respectively. For IMCMRS, k-means
is also used to generate 12 centroid-based clusters. The parameters NumRun,
NumCandidate, NumSample, NumSelect and St epSample in IMCMRS
were set to 32, 1, 1, 1 and 5 respectively. The experimental results based on 10
runs for CLARA, CLARANS, MCMRS and IMCMRS are shown in Table
1 and Fig. 1. In comparison with CLARA and CLARANS, IMCMRS may
reduce the computation time by more than 919’0 and 8070. Both MCMRS
and IMCMRS performed better than CLARANS and CLARA both in the
comput ation time and the average dist ante per object.

The twelve elliptic clusters were used for the second experiment. 12 medoids
are selected from 12000 objects. For CLARA, the parameter q was set to 5
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Fig. 1. Performance comparison for four elliptic clusters

and s wa8 8et to 960 + 2k. For CLARANS, the parameters numlocal
maxneighbor are set to 5 and 1800, respectively. For MC’MRS, k-means

and

is u8ed to generate 12 centroid-based clusters. The parameters NumRun,
NumCandidate and NumSample in MCMRS were set to 20, 10 and 200,
respect ively. For IMCMRS, k-means is also used to generate 12 cent roid-
based clusters. The parameters NumRun, NumCandidate, NumSample,
NumSelect and StepSample in IMCMRS were set to 32, 1, 1, 1 and 5
respect ively. As shown in Table 2, IMCMRS will reduce the computation
time by more than 98%, 97% and 73% by in comparison with CLARA,
CLARANS and MCMRS. Both MCMRS and IMCMRS are more effi-
cient and effective than CLARA and CLARANS.

The compact clusters with noise were used for the third experiment.
5 medoids are selected from 3100 objects. For CLARA, the parameter g
was set to 5 and s was set to 200 + 2k. For CLARANS, the parameters
numlocal and maxneighbor are set to 5 and 200, respectively. For MCMRS,
k-means algorithm is used to generate 5 centroid-based clusters. The param-
eters NumRun, NumCandidate and NumSample in MCMRS were set to
20, 10 and 200, respectively. For IMCMRS, k-means is also used to gen-
erate 5 centroid-based clusters. The parameters NumRun, NumCandidate,
NumSample, NumSelect and StepSample in IMCMRS were set to 32, 1,
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1, 1 and 5 respectively. Experimental results based on 10 runs for CLARA,
CLARANS, MCMRS and IMCMRS are shown in Table 3. If the database
is not large and the medoid size is small, the performance of CLARA is better
than CLARANS shown in Fig. 2. Comparison with CLARA, CLARANS
and MCMRS show that IMCMRS may reduce the computation time by
more than 6070, 8l% and 83Y0, respectively.

CLARA CL ARANS MCMRS IMCMRS
seed

Ave. Count of Ave. Count of Ave. Count of Ave. Count of

dist ante dist. (105) dist ante dist. (105) dist ante dist. (10’) distance dist. (10’)

1 2.436 253 2.432 584 2.398 646 2397 99
2 2.425 274 2.457 600 2.397 647 2.397 107

3 2.430 264 2.429 604 2.398 655 2.397 96
4 2.440 295 2.442 504 2.397 649 2.397 102
5 2.405 232 2.431 583 2.398 651 2.397 103

6 2.411 253 2.419 606 2.398 655
7

2.397 102
2.435 243 2.457 530 2.397 642 2.397 104

8 2.422 285 2.470 519 2.397 654 2.397 104

9 2.444 253 2.417 620 2.397 647 2.397 112
10 2.440 274 2.424 581 2.398 645 2.397 120

Ave. 2.429 263 2.438 573 2.398 649 2.397 105

Table 3. Results of Experiment for compact clusters

5

2
0,00E+OOi 00E+072,00E+07300E+074.00E+075.00E+07600E+077 00E+07

no ofdistancecdc”latbn

Fig. 2. Performance comparison for five compact clusters

© 2002 WIT Press, Ashurst Lodge, Southampton, SO40 7AA, UK. All rights reserved.
Web: www.witpress.com  Email witpress@witpress.com
Paper from: Data Mining III, A Zanasi, CA Brebbia, NFF Ebecken & P Melli (Editors).
ISBN 1-85312-925-9



Data Mining III 561

A Gauss-Markov source was used for the fourth experiment. 32 medoids
are selected from 3000 objects. For CLARA, the parameter q was set to 5
and s was set to 320 + 2k. For CLARANS, the parameters numlocal and
maxneighbor were set to 5 and 1200, respectively. For MCMRS, k-means
was used to generate 32 centroid-based clusters. The parameters NumRun,

NumCandidate and NumSample in MCMRS were set to 20, 10 and 200,
respectively. For IMCMRS, k-means was again used to generate 32 centroid-
based clusters. The parameters NumRun, NumCandidate, NumSample,
NumSelect and StepSample in IMCMRS were set to 32, 1,1, 1 and 5 re-
spectively. Experiment al results shown in Table 4, compared with CLARA
and MCMRS, shows that IMCMRS can reduce the computational com-
plexity by more than 99% and 70%, respectively. The proposed IMCMRS
can reduce the computation time by approximately a factor of 30 and also
obtains better average dist ante in comparison with CLARANS.

CLARA CLARANS MCMRS IMCMRS
seed

Ave. Count of Ave. Count of Ave. Count of Ave. Count of

dist ante dist. (105) dist ante dist. (105) dist mce dist. (105) dist ante dist. (105)

1 4.559 154809 4.432 37604 4.48? 4439 4.357
2

1340

4.592 163692 4.359 53234 4.476 4349 4.382

3

1330

4.551 17S918 4.381 37512 4.490 4411 4.376

4

1273

4.578 172574 4.398 40559 4.495 4417 4.371
5

1364
4.559 1S2725 4.367 39694 4.489 4403 4.375

6

1234

4.526 167498 4.384 41370 4.489 4357 4.379
7

1278
4.527 185263 4.3s0 32312 4.485 4379 4.377

8

1309

4.483 162423 4.394 39600 4.499 4382 4.361
9

1307

4.545 190338 4.377 36707 4.491 4400 4.369 1276
10 4.514 180187 4.406 35835 4.485 437s 4.329 1309

Ave. 4.543 173843 4.388 39443 4.489 4391 4.368 1302

Table 4. Results of Experiment for Gauss-Markov source

5 Conclusions

In this paper, an incremental sampling scheme using multiple centroids with
multiple runs (IMCMRS) is presented. This sampling scheme can be applied
to PAM, CLARA, CLARANS and CLASA. Experimental results based
on four artificial databases and one real image dataset confirms that the
proposed IMCMRS not only can reduce the average distance but also speed
the clustering process. The computation load in IMCMRS can be further
improved by applying a more efficient centroid-based clustering method [9].
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