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Measured Components Impedance Matrices in Local dq Frames
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SUMMARY

State space model (SSM)-based eigenvalues analysis method has been widely used to analyze

stability issue of power electronics-dominated power systems. One important advantage of it

is to perform participation factor analysis, so oscillation source can be identified. However, the

derivation procedure of SSM is complicated for large-scale power systems. Furthermore, it’s

not easy to obtain system SSM due to unknown internal structure and parameters. This paper

presents an incremental state space modelling method of power electronics-fed power system

based on measured components impedance matrices on local dq frames. Terminal impedance

frequency responses of all components are first measured by frequency scanning method on lo-

cal dq frames. Then, SSMs of all components are fitted according to the measured dq impedance

matrices by matrix fitting algorithm. Finally, SSM series operator and parallel operator are used

to aggregate the fitted components SSMs in a recursive way. Simulation results show that the

proposed incremental state space modelling method needs not know components internal in-

formation. In addition, dynamics of all components can be preserved in the established system

SSM, while the information is lost in the existing dq impedance matrices aggregation method.

The proposed incremental state space modelling method is also applicable for both mirror fre-

quency decoupled system and mirror frequency coupled system.

KEYWORDS

DQ impedance matrix, impedance aggregation, matrix fitting algorithm, stability analysis, state

space model operator.
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INTRODUCTION

Renewable energies such as wind power and solar power are increasingly penetrating into power

systems in recent years. Voltage source converters (VSCs) as an important interface are com-

monly used to transmit power energy into utility grid. However, oscillation phenomena during

different frequency ranges have ben frequently reported in grid-connected VSCs.

State space model (SSM) has been widely used to analyze stability issue and identify oscillation

source by participation analysis [1–3]. However, complicated mathematical derivation of SSM

decreases analysis efficiency in large-scale power systems due to heavy computational burdens

of high-dimensional matrices. To reduce computational burdens of SSM, modular state space

modelling method has been originally proposed in [3,4], where the overall system is partitioned

into different subsystems, and SSMs of subsystems are independently established. Then, system

SSM is formulated by combining subsystems SSMs according to connection matrices among

these subsystems. However, it’s not practical to obtain detailed structure and parameters of all

subsystems. System identification methods such as vector fitting (VF) algorithm and matrix

fitting (MF) algorithm have been proposed to fit a SSM from a set of frequency responses [5,6].

However, a SSM cannot be fitted for an unstable power system in [5]. In addition, problematic

components cannot be identified, since the whole system is regarded as a black box. Alter-

natively, [6] overcomes the two drawbacks by partitioning overall system into several stable

subsystems of which the SSMs are fitted by VF algorithm, and system SSM is obtained by the

aforementioned modular state space modelling method. However, PLL dynamics is ignored,

which causes inaccurate impedance frequency characteristics in low-frequency range. In addi-

tion, topological characteristics of transmission network is not considered, which complicates

modular state space modelling method.

The VF-based modular state space modelling method in [6] is developed in this paper by consid-

ering PLL dynamics and transmission network. In this work, dq impedance matrix is adopted.

Different from phase-domain impedance, dq-domain impedance matrix is dependent on se-

lection of dq reference frame, which means that the fitted SSM is related with dq reference

frame. Commonly, dq-domain impedance matrix of a VSC is aligned with its terminal volt-

age. Therefore, established SSMs of subsystems in different dq frames should be transferred

into the same dq frame, and all of these SSMs are combined together. Components impedance

matrices aggregation in different dq frames have been widely studied in [7–11]. Rotation ma-

trix is integrated into the VSC impedance model by a case specific method in [7]. However,

the method is not applicable for an arbitrarily given network. In addition, the resulting source

and load subsystem impedance matrices are complicated for larger-scale system. In [8, 9], a

simpler method in which the alignment is achieved by a rotation matrix based on power flow

information is proposed so that no internal information is needed. However, only local stability

analysis results can be obtained, and instability sources cannot be identified. In addition, the

impedance network modelling method proposed in [10, 11] fails to identify oscillation sources,

since the whole power system is represented by an aggregated impedance matrix in the global

dq frame. However, the combination of SSMs of different components in different dq frames

has been slightly concerned.

Therefore, this paper proposes an incremental state space modelling method to integrate indi-

vidual SSMs of different components extracted from terminal impedance frequency responses

on local dq frames. SSMs of all components are first extracted from terminal frequency re-
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sponses on local dq frames by MF algorithm. The SSM series operator and parallel operator

are proposed in this paper to formulate SSM of overall system in a recursive way. The main

contributions of this paper can be explained as follows. A MF algorithm-based modular state

space modelling method is first proposed, where only terminal impedance frequency responses

are required. Then, SSM series and parallel operators are proposed to combine small-signal

dynamics of all components in a convenient way.

PROBLEM FORMULATION AND METHODOLOGY

In this section, the problem to be addressed in this work is first explained, followed by intro-

ducing one existing solution. And, the basis of methodology applied in this paper including VF

and MF algorithms is introduced.

Problem formulation

Fig. 1 shows control diagram of a L-filtered VSC, where current control loop is used to track

current reference i∗tdq, and PLL is used to track phase angle of terminal voltage vtabc. To analyze

stability issue of VSC in low-frequency range, PLL dynamics is considered. Due to asymmetric

impact of PLL on terminal impedance, 2×2 impedance matrix in dq frame shown as (1) should

be used. The dq impedance matrix Zdq is aligned to its terminal voltage vtabc.

Zdq = (Z−1
out +GidGdel((−Gci +Gdei)G

i
PLL +Gd

PLL)K)−1 · (I+GidGdel(Gci −Gdei)K) (1)

where bold letters indicate 2×2 matrices; Gi
PLL, Gd

PLL are two asymmetric matrices related to

PLL. Detailed derivation process and expression of each transfer function matrix can be found

in [14].
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Figure 1. The control diagram of a L-filtered VSC with current control loop and PLL.

Fig. 1 shows control diagram of a VSC connected into capacitive grid, Zdq should be transferred

from l reference frame to k reference frame. The dq impedance matrix of the VSC in the two

reference frames can be linked by (2) [7].

Zk
dq
= Rdq(θ)Z

l
dq

R−1
dq (θ) (2)

where Rdq(θ) = [cosθ ,sinθ ;−sinθ ,cosθ ] is rotation matrix, and θ is angle difference of volt-

ages between node l and node k as shown in Fig. 1.
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One existing solution to align local dq frames and aggregate dq impedance matrices

Two cases including both series connection and parallel connection situations where two com-

ponents are not limited to VSCs are given in Fig. 2. Impedance series operator ⊕′ and

impedance parallel operator ⊙′ are defined.

2dqZ 2v1i 2i1v 3i

l k _ser dqΖ
# 1 # 2

1dqΖ

(a)

1dqZ 1i

2i v
3i

2dqZ
_par dqZ

# 1

# 2

(b)

Figure 2. Two basic components connection cases. (a) Series connection case; (b) Parallel connection case.

• Impedance series operator: Z1dq should be first rotated from l reference point to k

reference point to perform circuit series principle. The total series impedance Zser_dq is

given as (3).

Zser_dq = Zk
1dq

+Zk
2dq = Rdq(θ)Z1dqR−1

dq (θ)+Z2dq = Z1dq ⊕
′ Z2dq (3)

where Zk
1dq

and Zk
2dq are two dq impedance matrices based on k reference point, while Z

1dq

and Z2dq are two dq impedance matrices based on their own terminal reference points.

The definition of Rdq(θ) is the same as that in (2). Impedance series operator ⊕′ is also

defined in (3).

If component #1 is mirror frequency decoupled (MFD) (i.e., Z1dd = Z1qq, Z1dq =−Z1qd),

e.g., passive RLC elements, impedance matrix rotation invariance characteristics is satis-

fied [8], which is given as (4).

Zk
1dq

= Rdq(θ)Z1dqR−1
dq (θ) = Z1dq (4)

(4) means that dq impedance matrix of passive RLC elements is independent on selection

of dq frame.

• Impedance parallel operator: Different from series connection case, terminal voltages

of the two components #1 and #2 are the same for parallel connection case, which means

that no matrix rotation operation is required. The total parallel impedance Zpar_dq can be

calculated by the basic circuit theory, which is given as (5).

Zpar_dq = Z1dq ⊙
′ Z2dq =

Z1dqZ2dq

Z1dq +Z2dq

(5)

Based on the two basic operators, the aggregated impedance matrix of larger-scale power sys-

tem can be calculated in a recursive way. However, it can be seen that the dynamics of all

components are merged, so that instability sources cannot be identified.

Basis of VF and MF

VF and MF algorithms are originally proposed in [12,13]. VF can generate a rational model on

pole-residue form (6) for a series of discrete frequency responses of a single-input single-output

(SISO) system.

f (s) =
rm

s− pm
+

rm−1

s− pm−1
...+

r1

s− p1
+D+ sE = C(sI−A)−1B+D+ sE (6)
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where (ri, pi)(i = 1,2...,m) is the ith residue-pole pair. D is the direct through component, and

E is zero if f (s) is proper. A = diag(p1, p2, ...pm), B = [1,1, ...1]m
T

, C = [r1,r2, ...rm]. Thus,

f (s) can be represented in form of SSM (7).

ẋ = Ax+Bu

y = Cx+Du+ sE
(7)

MF can generate a rational model on pole-residue form for a series of discrete frequency re-

sponses of a multiple-input and multiple-output (MIMO) system. Taking a k-port MIMO sys-

tem as an example, the fitted transfer function matrix is given as (8).

F(s) =
Rm

s− pm
+

Rm−1

s− pm−1
...+

R1

s− p1
+D+ sE = C(sI−A)−1B+ D+ sE (8)

where A= diag(diag(p1, p2...pm), ...,diag(p1, p2...pm))k, B= diag([1,1, ...1]m
T , ...,diag[1,1, ...1]m

T )k,

C= [R1(:,1),R2(:,1)...,Rm(:,1),R1(:,2),R2(:,2)...,Rm(:,2), ...,R1(:,k),R2(:,k)...,Rm(:,k)]. It

can be seen from (8) that all elements in F(s) share the same poles sets (p1, p2..., pm) which can

be used to assess stability issue of the MIMO system.

PROPOSED INCREMENTAL STATE SPACE MODELLING METHOD

Although the dq impedance matrices aggregation method in (3) and (5) can be used to imple-

ment impedance-based stability analysis, individual component dynamics is lost in the aggre-

gation procedure. The combination of SSM of different components can maintain individual

component dynamics in the finally-established system SSM, so contribution of each component

to instability phenomena can be calculated. In this section, definition of the proposed SSM se-

ries operator ⊕ and parallel operator ⊙ is first explained, and details of the proposed incremental

state space modelling method are given.

Definition of proposed SSM series operator ⊕ and parallel operator ⊙

• Proposed SSM series operator ⊕: Series connection case shown in Fig. 2(a) is used to

explain the proposed SSM series operator ⊕. Similar with dq frames alignment for dq

impedance matrices aggregation, the established two SSMs of components #1 and #2 on

local dq frames are first aligned. SSMs of component #1 based on l reference point and k

reference point are assumed as (9) and (10).

ẋ = Alx+Bli1
v1 = Clx+Dli1 + sEl

(9)

ẋ = Akx+Bki1
v1 = Ckx+Dki1 + sEk

(10)

The relationship between SSM matrices in the two dq frames is given as (11) by combin-

ing (3), (6) and (7).

Zk
1dq

=
vk

1dq

ik
1dq

= Rdq(θ)Z
l
1dqR−1

dq (θ) = Rdq(θ)
vl

1dq

il
1dq

R−1
dq (θ)

Ck(sI −Ak)
−1Bk +Dk + sEk = Rdq(θ)(Cl(sI −Al)

−1Bl +Dl + sEl)R
−1
dq (θ)

(11)

It can be seen from (11) that the SSM of component #1 based on k reference point can

be calculated once the SSM based on l reference point and angle difference of voltages
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of node k and node l are known. Similar with (4), if component #1 is MFD, e.g., passive

RLC elements, rotation invariance characteristics is also applicable.

Then, SSMs of components #1 and #2 are assumed to have been derived in the same

reference frame k as (12) and (13).

ẋ1 = A1x1 +B1u1

y1 = C1x1 +D1u1
(12)

ẋ2 = A2x2 +B2u2

y2 = C2x2 +D2u2
(13)

where u1 = v1, y1 = i1, u2 = [i2, i3]
T

, y2 = [v1,v2]
T

, i2 =−i1. Then, these SSM elements

can be combined together, i.e., A = diag(A1,A2), B = diag(B1,B2), C = diag(C1,C2),
D = diag(D1,D2), x = [x1,x2]

T , u = [u1,u2]
T , y = [y1,y2]

T . Thus, components input u

and output y are linked with system input a = i3 and output b = v2 as (14).

u = L1y+L2a

b = L3y+L4a
(14)

Where L1 = [0,1;−1,0], L2 = 0, L3 = [0,1] and L4 = 0. System SSM can be derived as

(15).
ẋ = Fx+Ga

b = Hx+Ja
(15)

where F=A+BL1(I−DL1)
−1C, G =BL1(I−DL1)

−1DL2+BL2, H=L3(I−DL1)
−1C,

J =L3(I−DL1)
−1DL2+L4. Generally, for a series-chain model which consists of a ter-

minal part and multiple linkage parts (a terminal part is defined as a one-port network as

# 1 in Fig. 2 (a), while a linkage part is defined as a two-port network as # 2 in Fig. 2 (a)),

the proposed SSM series operator ⊕ is defined as (16) to combine all components SSMs.

ST ⊕S1 ⊕S2...⊕Sm = Sser (16)

where ST , S1,2...,m and Sser are the SSMs of the terminal part, m linkage parts and overall

system in their own dq reference frames, respectively. They are in the forms of (12), (13)

and (15), respectively. Associative law is met for the SSM series operator ⊕, shown as

(17).

ST ⊕S1⊕S2...⊕Sp⊕Sp+1...⊕Sm = ST ⊕S1⊕S2...⊕(Sp⊕Sp+1)...⊕Sm ∀p∈ [1,m−1]
(17)

However, commutative law is not satisfied for the SSM series operator ⊕.

• Proposed SSM parallel operator ⊙: Parallel connection case shown in Fig. 2(b) is

used to explain the proposed SSM parallel operator. SSMs of components #1 and #2 are

assumed to have been derived in the same reference frame aa shown in (12) and (13). The

minor difference with series connection case is that i2 6=−i1, system input a = i3 = i1+ i2
and system output b = v. By solving (14), the matrices can be solved as L1 = [0,−1;1,0],
L2 = [1;0], L3 = [1,0] and L4 = 0. The representations of F, G, H and J are the same

as series connection case. Similarly, the SSM parallel operator ⊙ is proposed to combine

the SSMs of multiple terminal parts ST 1, ST 2..., ST m, shown as (18).

ST 1 ⊙ST 2...⊙ST m = Spar (18)
6



where ST 1, ST 2..., ST m are in the form of (12) and Spar is in the form of (15). Both

associative law and commutative law are satisfied for the SSM parallel operator ⊙ as

shown in (19).

ST 1⊙ST 2...⊙ST p⊙ST (p+1)...⊙ST m = ST 1⊙ST 2...⊙(ST (p+1)⊙ST p)...⊙ST m ∀p∈ [1,m−1]
(19)

Implementation procedure of proposed modelling method

Fig. 3 shows implementation procedure of the proposed incremental state space modelling

method, which includes two steps.

Partition the whole system into 
m individual components

Perform frequency scanning 
for each component

Obtain Zdq for all m components 

Run power flow, obtain nodes voltages

From terminal component, incrementally establish SSM

Series connection?

Apply SSM series operator

Implement SSM parallel operator

Apply SSM parallel operator 

The last component?

The system SSM is established

Add component

Yes No

Yes

No

Step 1

Step 2

Apply MF on all Zdq for all m components 

Figure 3. Flowchart of the proposed incremental state space modelling method.

• The Step 1 is to extract individual SSMs from terminal impedance frequency re-

sponses on local dq frames by MF algorithm. The overall system is first partitioned

into m individual components. Then, frequency scanning is performed for each com-

ponent. Discrete impedance frequency response of each component on local dq frame

during concerned frequency range can be extracted. And, the SSM matrices in (8) can be

generated by applying MF algorithm on these discrete impedance frequency responses.

• The Step 2 is to establish SSM of the overall system using the proposed SSM opera-

tors ⊕ and ⊙. Simulation is first run to obtain all nodes voltages by power flow. Then,

components are combined together by using proposed series and parallel operators in a

recursive way. The last component is regarded as connected with the rest part in parallel,

so the SSM parallel operator ⊙ is used in the last step.

SIMULATION VERIFICATION

In this section, simulation is implemented to validate effectiveness of the proposed incremental

state space modelling method by two cases. Figure. 4 shows diagrams of two cases, including

passive RLC network and four VSCs-based power system.

Case 1: Passive RLC network

The proposed state space modelling method is first validated in a passive RLC network, where

parameters of RLC components are given in Table 1. The dq impedance matrix Zidq(i =
1,2...,10) and Zg in their own dq reference frames can be obtained by implementing frequency
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Figure 4. Two studied cases. (a) Passive RLC network; (b) Four VSCs-based power system.

scanning at PCCs, as shown in Fig. 3 (100 frequency points are logarithmically distributed in

frequency range [1Hz, 5kHz]). Fig. 5 shows frequency characteristics of the aggregated dq

impedance matrix ZS_with_rot , the aggregated dq impedance matrix ZS_no_rot and measured fre-

quency responses ZS_mea. It can be seen from Fig. 5 that frequency characteristics of ZS_with_rot ,

ZS_no_rot and ZS_mea are nearly matched, which thus validates effectiveness of the impedance

series operator and impedance parallel operator. Also, it shows that dq impedance matrix of

passive RLC elements are rotation invariant.

Table 1

COMPONENTS PARAMETERS OF THE PASSIVE RLC NETWORK.

Components # 1 # 2 # 3 # 4 # 5 # 6

Resistances 0.0218Ω 0.0436Ω 0.1960Ω 0.2178Ω 0.0871Ω 0.1742Ω

Inductances 0.7mH 1.4mH 6.2mH 6.9mH 2.8mH 5.6mH

Components # 7 # 8 # 9 # 10 # 11

Resistances 0.1525Ω 0.1307Ω 0.0653Ω 0.1089Ω 0.0871Ω

Inductances 4.9mH 4.2mH 2.1mH 3.5mH 2.8mH

The dq impedance matrix of ZL is also obtained by frequency scanning method. The measured

impedance matrix is defined as ZL_mea. In addition, measured system dq impedance matrix

Zsys_meais defined as ZL_mea//ZS_mea. Frequency responses of ZS_mea, ZL_mea and Zsys_mea are

given in Fig. 6.
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Figure 5. Verification of dq impedance matrix rotation invariance of passive RLC components (ZS_no_rot /ZS_with_rot

is the aggregated dq impedance matrix obtained without/with using rotation operation. ZS_mea is the dq impedance

matrix obtained by directly performing frequency scanning at PCC).
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Figure 6. Bode diagrams of ZS_mea, ZL_mea and Zsys_mea for case 1 (ZS_mea/ZL_mea is the dq impedance matrix of

source/load part obtained by directly performing frequency scanning at PCC. Zsys_mea is defined as ZS_mea//ZL_mea.

ZS, ZL and Zsys are corresponding theoretically-derived curves).

Apparent impedance analysis method proposed in [5] is applied to extract system SSM from

Zsys_mea. Fig. 7 shows the fitted result with fitting order chosen as 4. It can be seen that

the fitting result nearly matches the measured frequency responses.. The eigenvalues of the

fitted system SSM are given in Fig. 8. It can be seen that two magnitude peaks at 268Hz and

379Hz in Fig. 7 are captured by the established SSM (i.e., 1745
2π

= 277.7Hz,2373
2π

= 377.7Hz). In

addition, the eigenvalues of the established system SSM obtained by the proposed incremental

state space modelling method are also plotted in Fig. 8. It can be seen that, the proposed state
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space modelling method can achieve almost the same eigenvalues as the state space modelling

method proposed in [5]. The advantage of the proposed state space modelling method lies in

that the contribution of each component to each eigenvalue can be calculated quantitatively,

which is not impossible in both existing dq impedance matrix aggregation method [7–11] and

apparent impedance analysis method [5].
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Figure 8. System eigenvalues for case 1 obtained by the apparent impedance analysis method proposed in [5] and

the incremental state space modelling method proposed in this paper.

Case 2: Four VSCs-based power systems with RLC elements

In case 2, four terminal RLC components #1, #2, #3 and #4 are replaced by four VSCs under

the control structure shown in Fig. 1. Specifically, VSCs #1 and #2 are with LCL filters, and

VSCs #3 and #4 are with L filters, respectively. Circuit and control parameters of VSCs #3 and

#4 are referred from [8], and are listed in Table 2. In addition, grid side filter inductor L f 2 and

10



Table 2

CIRCUIT AND CONTROL PARAMETERS OF FOUR VSCS.

Parameters Values Parameters Values

dc-link voltage Vdc 1150V Grid voltage Vg (Phase-phase Vrms) 690V

Grid fundamental frequency 50Hz Sampling/Switching frequency fs/ f ′s 10kHz

Inverter side filter inductor L f 1 6.93mH Inverter side filter resistance R f 1 0.44Ω

Grid side filter inductor L f 2 6.93mH Grid side filter resistance R f 2 0.44Ω

Filter capacitance C f 10µF Filter capacitor resistance Rc f 0.44Ω

Grid capacitance Cg 100µF Grid inductance Lg 10mH

Current controller Kpi(p.u./A) 6.4×10−4 Current controller Kii(p.u./(As)) 0.161

PLL controller KpPLL(rad/(Vs)) 7.58×10−3 Current controller KiPLL(V s2) 0.152

filter capacitor C f are only used for VSCs #1 and #2.

A small voltage perturbation including 100 frequency points logarithmically distributed dur-

ing frequency range from 1Hz to 5kHz is injected into PCC points to extract frequency re-

sponses. Fig. 9 shows frequency characteristics of the measured dq impedance matrix Zdq_mea

and theoretically-derived dq impedance matrix Zdq_the using (1) for VSCs #1 and #2. Similarly,

the measured and theoretically-derived results for VSCs #3 and #4 are shown in Fig. 10. It can

be seen from Figs. 9 and 10 that dq impedance frequency characteristics for both LCL-type

VSC and L-type VSC have been identified by frequency scanning method.
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Figure 9. Bode diagrams of frequency scanning-based Zdq_mea and theoretically-derived Zdq_the of VSCs #1 and

#2.
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Figure 10. Bode diagrams of frequency scanning-based Zdq_mea and theoretically-derived Zdq_the of VSCs #3 and

#4.

The measured impedance frequency responses for both kinds of VSCs are then fitted by MF

algorithm. The eigenvalues of the fitted 10-order SSMs for four VSCs are listed in Table 3. As

for VSCs #1 and #2, it can be seen from Fig. 9 and Table 3 that, the imaginary part of these

extracted eigenvalues agree with the magnitude peaks of the impedance-frequency curves, i.e.,

554.0661Hz is close to 553Hz, and 654.3337 Hz is close to 656Hz. As for VSCs #3 and #4, the

fitted frequency 346.7350Hz has a high damping coefficient, which means that no magnitude

peak will appear in its Bode diagram. It agrees with the Bode diagram shown in Fig. 10. These

fitted SSMs of all VSCs will be used to establish system SSM by the proposed state space mod-

elling method.

Table 3

EIGENVALUES OF THE FITTED 10-ORDER SSMS OF FOUR VSCS USING MF ALGORITHM.

VSCs #1 and #2 Frequency [Hz] VSCs #3 and #4 Frequency [Hz]

-0.0031 -0.0135

-33.8222 -3.1474

-7.1911e+04 -12.8606

-1.1576e+05 -30.5599

-15.9002±11.4563i 1.8233 -14.4804 ±11.3011i 1.7986

-7.3817e+01 ± 3.4813e+03i 554.0661 -1.9357e+04 ± 2.1786e+03i 346.7350

-7.1833e+01 ± 4.1113e+03i 654.3337 -9.4684e+03 ± 1.3812e+05i 21982

In addition, ZS_mea and ZL_mea can be obtained by directly performing frequency scanning at

PCC. The Bode diagrams of ZS_mea and ZL_mea are shown as the black and red crossed curves

in Fig. 11. Zsys_mea is defined as ZS_mea // ZL_mea, and the Bode diagram is shown as the green

crossed curve in Fig. 11. It can be seen that the dq impedance matrix of both source and load

parts can be obtained by frequency scanning method.
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Figure 11. Bode diagrams of ZS_mea, ZL_mea and Zsys_mea for case 2 obtained by directly performing frequency

scanning at PCC (ZS_mea/ZL_mea is the dq impedance matrix of source/load part obtained by directly performing

frequency scanning at PCC. Zsys_mea is defined as ZS_mea//ZL_mea. ZS, ZL and Zsys are corresponding theoretically-

derived curves).

MF algorithm can be used to extract system SSM from Zsys_mea by the method proposed in [5],

and the eigenvalues of the established system SSM are plotted in Fig. 12. The eigenvalues of the

established system SSM using the proposed method are also plotted in Fig. 12. It can be seen

from Fig. 12 that, both system state space modelling methods obtain almost the same eigenval-

ues. In addition, these eigenvalues also agree with the magnitude peaks of Zsys_mea. It shows

that the proposed state space modelling method can obtain the same stability analysis conclu-

sion as the impedance-based stability criterion and the apparent impedance analysis method. It

should be noted that, compared with the other two methods, the system SSM derivation process

using the method proposed in this paper can preserve individual components dynamics, thus

PFs of all components can be calculated.
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Figure 12. System eigenvalues for case 2 obtained by the “apparent impedance” analysis method proposed in [5]

and the incremental state space modelling method proposed in this paper.
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CONCLUSIONS

This paper presents an incremental state space modelling method of power systems based on

measured components impedance matrices on local dq frames. SSMs of all components are first

extracted from terminal impedance frequency responses on local dq frames by MF algorithm.

Series operator and parallel operator are proposed to combine SSMs of different components in

a recursive way. Simulation results show that the proposed state space modelling method can

obtain the critical eigenvalues for stability analysis. Compared with the existing dq impedance

matrices aggregation method, the proposed method can maintain individual dynamics by us-

ing the proposed SSM series operator and parallel operator. Compared with conventional state

space modelling method, internal structure and parameters are not required in modelling proce-

dure.
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