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Abstract—Information Retrieval (IR) based bug localization
techniques use a bug reports to query a software repository to
retrieve relevant source files. These techniques index the source
files in the software repository and train a model which is then
queried for retrieval purposes. Much of the current research is
focused on improving the retrieval effectiveness of these methods.
However, little consideration has been given to the efficiency of
such approaches for software repositories that are constantly
evolving. As the software repository evolves, the index creation
and model learning have to be repeated to ensure accuracy of
retrieval for each new bug. In doing so, the query latency may
be unreasonably high, and also, re-computing the index and the
model for files that did not change is computationally redundant.
We propose an incremental update framework to continuously
update the index and the model using the changes made at each
commit. We demonstrate that the same retrieval accuracy can
be achieved but with a fraction of the time needed by current
approaches. Our results are based on two basic IR modeling
techniques - Vector Space Model (VSM) and Smoothed Unigram
Model (SUM). The dataset we used in our validation experiments
was created by tracking commit history of AspectJ and JodaTime
software libraries over a span of 10 years.

I. INTRODUCTION

IR based bug localization techniques follow a multi-step

process shown in Figure 1 in order to identify source files

relevant to a bug [1]. The raw source files are first preprocessed

and subsequently indexed to create an internal representation

of the source files. The index is then used to learn the

parameters of an IR model chosen to represent the software

repository. The bug report is preprocessed in the same manner

as the files and used to query the software repository through

its IR model.

Much research effort has gone into improving the retrieval

accuracy of these algorithms, by using sophisticated text

models [2][3], incorporation of additional information such

as version histories [4], bug-fixing history [5], class rela-

tionships [6] and so on. Effort has also gone into studying

and improving the quality of the query to improve retrieval

accuracy [1][7][8][9][10]. In other words, research in the area

of IR based bug localization has focused primarily on retrieval

effectiveness.

However, the current approaches to IR based bug local-

ization are not efficient for continuously changing software

repositories. Software systems are constantly evolving for a

variety of reasons such as bug fixes, removal of security

vulnerabilities, addition of features, adaptations to operating

system changes or new software/hardware architectures, etc.

Fig. 1. A typical bug localization process shown for a single bug.

These changes cause addition, deletion or modification of

source files causing the index and the model to be out of sync

with the software repository. The straight forward approach

to ensuring retrieval accuracy is to re-create the index and

the model for each bug that needs to be localized on a

newer version of the software. Henceforth, we refer to this

approach as the batch mode approach. However, this can

be time consuming and can lead to high query latency1.

Alternatively, one could re-compute the index and the model at

major releases and ignore commit-level changes (henceforth,

we refer to this approach as the limited update). With this

approach it is not possible to guarantee retrieval accuracy as

a retrieval carried out using an out dated index or model may

be meaningless or erroneous. In other words, with the current

state of the art IR based bug localization techniques, it is not

possible to achieve effective and efficient retrieval at the same

time.
In this paper, we propose an incremental approach to

IR based bug localization that achieves the same retrieval

accuracy as that of batch mode approach at significantly

lower query latency. We draw inspiration from the incremental

indexing techniques developed for web collections in the

domain of text-retrieval [12][13]. The proposed framework

continuously updates the index and the model using only the

source files changed in each commit — these files are typically

referred to as the change set. Since the size of the change-set

is generally lower than the size of the software repository,

the computational cost of keeping the index and the model

updated is expected to reduce considerably. Additionally, since

1Query latency is the amount of time a user needs to wait before the
retrieved list is available [11].

978-1-4799-2931-3/13 c© 2013 IEEE WCRE 2013, Koblenz, Germany

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

62

2013 20th Working Conference on Reverse Engineering



the index and the model do not need to be re-computed

before querying for each new bug, the query latency is greatly

reduced as well.
We demonstrate the effectiveness of our method by com-

paring the retrieval accuracy obtained with the incremental

approach and the batch mode approach using two different but

commonly used text modeling methods, Vector Space Model

(VSM) and Smoothed Unigram Model (SUM). We have also

carried out rigorous empirical evaluation of the time-savings

in various stages of the retrieval process to demonstrate the

efficiency of our approach. Evaluation has been carried on

a benchmark dataset called moreBugs2, that tracks commit-

level changes over 10 years of history of two software systems:

AspectJ and JodaTime. In the next section, we present some

motivating examples to emphasize the need for an incremental

approach to IR based bug localization.

II. THE NEED FOR INCREMENTAL APPROACH TO BUG

LOCALIZATION

Recall that, in order to localize a bug using an IR based

bug localization technique, the following four steps need to

be executed (as shown in Figure 1): (a) Text Preprocessing

(b) Index Creation (c) Model Learning and (d) Retrieval.

Table I shows the time taken by each of the above steps

for three typical bugs in the JodaTime and AspectJ software

repository. It is worthwhile to note that the text preprocessing

and the index creation are the most time-consuming parts of

the process. The query latency increases more than 10 times

as the size of the repository grows from 486 files to 7594.
For an evolving software repository, the batch mode ap-

proach ensures accurate retrieval by repeating the above steps

for each bug filed on a newer version of the software. However,

this approach is sub-optimal in terms of computational effort,

since each new commit is likely to change only a small

portion of the code base. We illustrate this very important fact

through the results we obtained by mining 7477 revisions of

AspectJ spanning 10 years of its developmental history. Figure

2 displays a histogram of the number of source files affected

(added, deleted, modified, renamed, or copied) at each commit

during these 10 years. As shown in the figure, it is unlikely

that more than 5 source files are changed in a single commit.

Thus, recomputing the index and the model from scratch for

each new bug is not only computationally expensive but also

sub-optimal.
The reader may argue that, given that a commit affects only

a small portion of the code-base, one can ignore commit-level

changes and update the index and re-compute the model only

at major software releases. While this limited update approach

would obviously reduce the query latency for a bug, it would

be at the cost of retrieval accuracy. In Table II we compare

retrieval precision of batch mode approach with the limited

update for sample bugs in JodaTime and AspectJ software

repositories. As shown in Table II, for some queries a reduction

in retrieval precision by up to 98% may occur when the model

is re-computed only at major releases3. Furthermore, if a bug

report relates to source files introduced into the repository after

2Our benchmark dataset is being made publicly available at https://
engineering.purdue.edu/RVL/Database/moreBugs/.

3A more detailed analysis is presented in Section VII-A2

Fig. 2. Modification statistics over 7477 revisions of the AspectJ software in
the moreBugs repository.

TABLE II
COMPARING RETRIEVAL ACCURACY USING AVERAGE PRECISION FOR

SAMPLE BUGS IN JODATIME AND ASPECTJ SOFTWARES USING A MODEL

THAT IS UPDATED ONLY AT SOFTWARE RELEASES (COLUMN LABELED AS

limited update) WITH THE batch mode LEARNED MODEL. LAST COLUMN

SHOWS THE % REDUCTION IN RETRIEVAL ACCURACY.

Software Model BugID Batch
Mode

Limited
Update

% Re-
duction

JodaTime SUM 3520651 0.1060 0.0788 25.66
AspectJ VSM 33011 0.1438 0.0800 44.37
AspectJ VSM 75129 0.2250 0.0688 69.42

JodaTime SUM 3161586 0.1820 0.0516 71.66
JodaTime VSM 1887104 0.5147 0.0406 92.11
JodaTime SUM 2461322 1.0000 0.0625 93.75
AspectJ VSM 70794 0.2536 0.0031 98.78

the model and the index were created last, any file retrievals in

response to that bug would be meaningless. In our evaluation

dataset, we found that for about 67/321 (20%) bugs in AspectJ

and 4/43 (9%) bugs in JodaTime, at least one of the relevant

source files was found missing in the index built on a previous

release. Thus, limited update approach to re-computing the

index and model at major releases may not guarantee retrieval

accuracy.

In summary, it would be ideal to keep the software reposi-

tory in sync with the index and the model as this would ensure

accurate retrieval as well as low query latency.

• The problem with current approaches is that they cannot

simultaneously achieve these goals.

• We look for avenues of optimization in the current

method by eliminating repeated computation on the

source files that did not change after previous model

learning. Efficiency can be achieved if incremental meth-

ods are used only on the source files changing with each

commit. Furthermore, query latency is reduced as index

and the model need not be computed before responding

to each query.

The incremental update framework proposed in this paper

starts with an index and a model built by a batch-mode

algorithm (as shown in the next section).

III. CURRENT APPROACH TO IR BASED BUG

LOCALIZATION

In this section we expand on the batch mode retrieval

process shown in Figure 1 with focus on the steps that can be

optimized using incremental update.
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TABLE I
TYPICAL TIME SPENT (IN SECONDS) IN DIFFERENT STAGES OF THE RETRIEVAL PROCESS FOR SOFTWARE REPOSITORIES OF DIFFERENT SIZES.

bug ID Dataset Number of
source files

Number
of terms

Model Pre-processing
(a) (in seconds)

Indexing (b)
(in seconds)

Model Learning
(c) (in seconds)

Retrieval (d)
(in seconds)

Query latency
(in minutes)

178828 JodaTime 486 10,824 VSM 264.70 37.06 0.69 0.23 5.04
3192457 JodaTime 864 12,174 VSM 603.17 92.70 0.89 0.42 11.62
371684 AspectJ 7,594 40,256 VSM 2942.11 228.47 2.869 2.43 52.93

A. Text Preprocessing and Index Creation

For each new bug, all the source files in the bug’s pre-

fix revision of the repository are checked out. The text

preprocessing of the all the source files in the repository is

carried out using with the following steps. First, the source

files are tokenized and Unicode character strings, numerical

literals, etc. are deleted. Next, the identifier names formed by

concatenation of terms (e.g. “PrintHandler”, ”Print Request”,

“submitcommand”) are split into more generic terms [2]. This

is followed by stop-word removal in which commonly occur-

ring programming language constructs like “for” and “while”

are dropped. The same is done to other commonly occurring

words of the English language, such “the,” “for,” “up”, “on”,

etc. Finally, all surviving tokens are stemmed to their roots.

The preprocessed source files are then used to create an index.

The index contains the vocabulary (denoted by V) extracted

from the entire repository and an internal representation for

each of the source files. One such representation is the term-

document matrix A, where the source files correspond to the

columns and the terms to the rows. If there are M source files

in the repository, A is a |V| ×M term-document matrix and

Am(w) denotes the frequency count of the wth word in the

vocabulary V of the mth source file.

B. Learning parameters of the text model

Any text model of a software repository typically contains

the document-level parameters and collection-level parame-

ters. The document-level parameters refer to the distribution of

the terms in each source file. On the other hand, the parameters

that exist at the collection-level characterize the distribution of

the terms over all the source files. For both models studied in

this paper: VSM and SUM, we show how these collection-

level and document-level parameters are learned from the

index. For retrieval, a bug report’s textual fields like the title

(summary) and description are extracted and preprocessed to

construct a query which can then be represented as a |V|-
dimensional vector Aq .

1) Vector Space Model (VSM): The VSM model [14]

associates three different frequencies with a term, the term

frequency, the document frequency, and the inverse document

frequency. The term frequency vector representation of mth

source file (dm) is nothing but the mth column of A (Am).

The document frequency, denoted df(w), is the number of

documents that contain the term indexed at w. In other words,

df(w) = |m : Am(w) > 0|. The inverse document frequency

is denoted idf(w), and is given by:

idf(w) = log(
M

df(w) + 1
) (1)

The terms that are common to all documents will have a

df ≈ M value and an idf ≈ 0. Thus, the idf value exercises

control over the relative importance of the terms in a document

with regard to how well they help in distinguishing this doc-

ument from other documents. A source file dm is represented

in the VSM model as a weighted vector (called as the tf-

idf representation) of length |V|, where each term Am(w) is

weighted by idf(w): Am(w)idf(w). Similarly, the query is

represented by a |V|- dimensional term-frequency vector Aq

and weighted by the idf values as follows: Aq(w)idf(w). A

cosine similarity between the two vectors is used to compute

the score and this score is used for ranking the source

file vis-à-vis the query. Owing to its simplicity, the VSM

model has been used extensively for retrieval from software

libraries [1][5][6][15][16].

2) Smoothed Unigram Model (SUM): The SUM [17] fits a

single multinomial distribution to the term frequencies in each

file. The representation of the mth source file (dm) under SUM

is a |V|-dimensional probability vector puni(w|dm) whose

elements must add up to 1, that is,

puni(w|dm) = µ
Am(w)

dl(m)
+ (1− µ)pc(w)

pc(w) =
cf(w)∑
w cf(w)

(2)

cf(w) =
∑

m

Am(w) & dl(m) =
∑

w

Am(w)

where dl(m) is the length of dm. pc(w) is called the collection

model that represents the multinomial distribution of the

terms over the entire collection of source files. pc(w) is the

normalized version of the collection-wide term frequencies

cf . µ is the smoothing parameter that controls the degree

of importance given to the term frequencies in the document

and to the collection-wide term frequencies. The query can

be represented in a similar fashion as a |V|-dimensional

representation, by smoothing the normalized term frequencies

Aq(w) with the collection model pc(w). A Kullback−Leibler

(KL) divergence between the two probability vectors is used

to compute the retrieval score of the source files vis-à-vis

the query [18]. Due to its simplicity and robustness, the

SUM has gained popularity for numerous software engineering

(SE) problems like bug localization [2], program comprehen-

sion [19], concern location [20] and so on.

IV. THE PROPOSED APPROACH

In this section, we present our incremental framework to

update the index and the incremental algorithms to update

the model parameters. Figure 3 shows the main steps of this

proposed framework. In this framework, the index and the

model once created are not re-computed but incrementally

updated as the software evolves. In the rest of the paper we use

At to indicate the state of the term-document matrix after the
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Fig. 3. Incremental update framework for bug localization.

tth commit operation. Since both SUM and VSM are linear

models, the update equations shown below yield a model that

is a replica of the model learned from batch-mode techniques.

A. Change Preprocessing and Index Update

For each new commit, the source files in the change-set are

checked-out and subject to the preprocessing steps described

in Section III-A. Recall that the columns of At correspond to

the source files At = [At
1A

t
2...A

t
M ], and thus changes to the

software alters the term-document matrix as follows:

• Addition: At+1 = [AtAdd].
• When the jth source file is modified: At+1 =

[At
1A

t
2...A

t+1

j ...At
M ]

• When the jth source file is deleted: At+1 =
[At

1A
t
2...0...A

t
M ]

In general, a given commit may involve a combination of the

above changes. Although, not shown explicitly in the notation,

new terms may be added to the index which increases the

number of rows of the term-document matrix. If there are Ma

new source files added and |Va| new terms then the resulting

At+1 is of size {|V|+ |Va|} × {M +Ma}.

B. Text Models and the Incremental Update formulas

In this section we show how updates to the index and the

term-document matrix affect the document-level and collection

level parameters for the two models: VSM and SUM as the

software evolves.
1) Vector Space Model (VSM): Due to the simplicity of

the VSM model, only the collection-level parameters df(w)
and idf(w) need to be updated as the software evolves. The

document-level parameters of the source files are simply the

columns of the term-document matrix (A), which are updated

with the index. As is obvious from Eq. 1, in order to update

idf incrementally, we just need to keep the df updated. For

each source file dm that is affected, and each term w in that

source file, the df is updated by the following equation:

df t+1(w) = df t(w) + sign(At+1
m (w)−At

m(w)) (3)

where, sign(x) = 1 if x > 0, −1 if x < 0 and 0 if x = 0. If

a source file is added to the repository, then for each unique

term in each such file, we simply increment the value of df
for that term by 1 as At

m(w) = 0 for such cases. For each file

that is deleted from the repository, and for each unique term

in the file, we decrement the value of df for that term by 1 as

At+1
m (w) = 0 for such cases. Last but not the least, for each

file that is modified, the above formula can be used as-is for

updating the df values.

2) Smoothed Unigram Model (SUM): With regard to up-

dating the SUM incrementally, we just need to keep cf and the

dl updated since the rest of the probabilities can be calculated

from these by normalization. The logic for updating cf and dl
incrementally is exactly the same as presented previously for

updating df incrementally. The only difference is that unlike

the df , the cf and dl are increased by the actual frequency

count of the term in the source files. For the mth source file

that is affected, we can use the following formulas to update

these count variables:

cf t+1(w) = cf t(w) +At+1
m (w)−At

m(w)

dlt+1(m) = dlt(m) +At+1
m (w)−At

m(w) (4)

C. Retrieval for a query

With the proposed framework the index and the model are

always in sync with the underlying software. Retrieval for a

new bug report now consists of merely two steps (a) pre-

process the bug report using the steps mentioned in Section

III-A, (b) retrieve the source files that are relevant to the query

by matching the two entities in the model-space. The query

latency is reduced because there is no overhead of computing

the index and the model before retrieval. Since the size of the

change-set is typically small, we can also expect to save time

spent on most of the stages of the retrieval process namely

preprocessing, index creation and model learning.

V. TIME COMPLEXITY ANALYSIS

For both SUM and VSM models, the computational com-

plexity of the update for each document is proportional to

the size of the vocabulary i.e. O(|V|) or O(u), where u is

the average number of terms per source file. If there are

n files modified/added/deleted in a commit, then the overall

complexity of incremental update is O(n×|V|) or O(nu). The

corresponding time for batch mode algorithm for both models

is O(M |V|) or O(Mu).

VI. EXPERIMENTAL VALIDATION

A. The Evaluation Dataset

In order to evaluate an automatic bug localization frame-

work, one needs a set of closed/resolved issues/bugs for a

particular software system and for each of these bugs the

following information: (a) the bug report’s textual content

like title, description, comments and so on; (b) the source

files that were fixed in order to resolve the bug (we call this

list of sources files the relevance list for the bug); and (c)

the prefix-snapshot of the software repository. Thanks to the

availability of open-source software code-bases (like Mozilla,

Rhino, JodaTime, Eclipse, Chrome etc.), researchers have

successfully mined the bug-tracking systems and the version

control systems associated with these projects and linked them

together in order to collect the necessary data for the evaluation

datasets [5][21]. Although these benchmark datasets are useful

and have been used extensively in IR based bug localization

research, they lack the commit-level changes that are needed

to evaluate our incremental update framework.

We have therefore created a new and publicly available

benchmark dataset called moreBugs [22] by mining ten

years of commit history for AspectJ and JodaTime projects.
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TABLE III
MOREBUGS SPECIFICATIONS

AspectJ JodaTime

Version Control System Git Git
Number of tags/releases 77 32
Number of revisions 7477 1537
Total duration of the project analyzed Dec’02-

Feb’12
Dec’03-
June’12

Average number of source files/bug 5214 556
Bug tracking system Bugzilla SourceForge
Number of bugs used for evaluation 321 43

Based on 7477 revisions for AspectJ and 1573 revisions for

JodaTime, the dataset contains the commit-level changes and

the release history for the two software libraries. Table III

displays quantitatively the contents of moreBugs. A technical

report detailing the creation of the dataset as well as how

to obtain free public access to the same is available through

https://engineering.purdue.edu/RVL/Database/moreBugs/.

B. Evaluation metrics for the Incremental Update Framework

We have evaluated the incremental update algorithm using

two types of metrics. The first kind compares the retrieval

accuracy obtained using the incrementally updated model with

that obtained using the true model (which can be acquired

at any time through batch mode learning). The second kind

compares the computational effort in terms of the time spent

on preprocessing, index creation and update, model creation

and update, and the retrieval time using the two approaches.

1) Measuring Retrieval Accuracy: The metrics used to

evaluate retrieval accuracy of a search engine are computed

by examining the ranked list of the source files returned by it

in response to a query. The set of the top Nr source files in

the ranked list is called the retrieved set which is compared

with the relevance list to compute the following metrics. For

a more focused assessment of the retrieval performance, one

computes Precision-at-rank-r, denoted P@Nr, to measure the

fraction of the set of retrieved files up to rank r that was

deemed relevant. By the same token, Recall-at-rank-r, denoted

R@Nr, measures the fraction of the set of all relevant source

files that were retrieved up to rank r. In this paper, we report

P@1, P@5, P@10 and R@1, R@5 R@10. An overall metric

of retrieval accuracy, known as Average Precision (AP), is

defined as the area under the Precision-Recall curve. AP has

essentially the same significance as that of Precision. The

higher the value of AP the better the retrieval engine. We

report Mean Average Precision (MAP), which is the average

of the AP values over all the bugs in a database.

Another way to gauge retrieval accuracy is by using rank-

based metrics. This measure computes the number of bugs for

which at least one relevant source file was retrieved at rank r
[3]. For example, the rank measure at r = 1 is the number of

bugs that were localized correctly by retrieval of at least one

relevant source file at rank 1. In our validation experiments,

we have presented rank measures for the following values of

r: r = 1, 2 ≤ r ≤ 5, 6 ≤ r ≤ 10 and r > 10.

2) Note on Statistical Significance Testing: To guard

against the noise introduced in the retrieval performance by

the quality of the query and the variability in the completeness

(a) Standard significance testing (b) Equivalence testing using TOST.

Fig. 4. Standardized t-test to prove that there is a statistical difference (a)
and equivalence tests to show that the two algorithms are equivalent within a
margin of δ (b).

of the relevance list, it is recommended that an AP-based

result be subject to statistical significance testing [23]. These

tests are designed to show that the retrieval performance

(as measured by MAP) computed by the proposed algorithm

(Algorithm B) is superior (or not similar) to the state-of-art

approach (Algorithm A). Using standard statistical significance

testing, the null hypothesis H0 attempts to show that the two

algorithms are the same (dMAP = MAPA − MAPB = 0)

and then reject the null hypothesis in favor of the alternate

hypothesis H1 : dMAP = |MAPA −MAPB | 6= 0. In order

to reject the null hypothesis using the student’s pair-wise t-

test, one needs to show that the confidence interval of the

distribution of dMAP does not contain 0 (See Figure 4(a)).

However, our goal is to show that the retrieval accuracy

computed on the two modes: batch mode vs. incremental

mode are equivalent, thereby requiring us to prove the null

hypothesis. However, standard significance tests are designed

to reject the null-hypothesis in favor of the alternate hypothe-

sis. Concluding that two retrieval algorithms are equivalent just

because we were unable to reject the null hypothesis would be

invalid. Therefore, while a demonstration that the confidence

interval of dMAP contains the origin is sufficient to say that

we were unable to establish a significant difference, it does

not suffice to show that H0 can be accepted.

Thanks to the on-going work in clinical trials of drugs in

the health industry, equivalence tests have been designed and

used widely to show that two drugs are equivalent to each

other [24]. The null hypothesis of the equivalence test is to

show that the two algorithms A and B differ, that is H0 :
dMAP > δ, where δ is called the equivalence margin. In

order to disprove the hypothesis, a significance test called Two

One Sided Test (TOST) [25] can be used, that aims to shows

that the confidence interval of the distribution of dMAP is

completely contained within the interval [−δ,+δ] (see Figure

4 (b)). If this is indeed the case, the null hypothesis H0 is

rejected in favor of the alternate hypothesis H1 : dMAP <=
δ. The choice of δ is critical and is often based on the nature

of the experiment (prior knowledge). We have selected δ to

be 0.005 as this indicates a difference in the average rank of

relevant documents at ranks r > 200. In this paper, we have

subjected our AP values to two statistical significance tests

namely, the student’s pair-wise t-test and the randomization

test [23] and the TOST based equivalence test.
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3) Measuring improvements in time: In this section, we

present metrics to measure the time spent on each stage of

the retrieval process for the batch mode approach and for the

incremental approach.

• Preprocessing: For batch mode case, this is the time taken

to preprocess all the source files in the repository and

we refer to it as the Batch Preprocessing Time (BPT)

and for the incremental update it is the time taken to

preprocess the source files in the change-set and we call

it the Change Preprocessing Time (CPT).

• Indexing: For the batch mode approach this is the time

taken to create an index from the preprocessed files and

we refer to this as the Index Creation Time (ICT). For

incremental approach this is the time taken to update the

index and the vocabulary and we refer to it as the Index

Update Time (IUT).

• Model learning: For batch mode approach this metric

measures the time taken to learn the model parameters

using all the source files and can be called as Model

Creation Time (MCT). For incremental approach this

time can be referred to as Model Update Time (MUT).

• Retrieval: Retrieval Time (RT) measures the time taken

to construct the query from its bug-report, create its

model-space representation and subsequently carry out

the matching with documents to compute a ranked list

of the source files in decreasing order or relevance. RT

remains the same for both modes of operation.

Note that BPT, ICT and MCT vary with the size of the

repository, and CPT, IUT and MUT vary with the size of

change-set.

C. Research Questions

Our experiments have been designed to answer the follow-

ing research questions (RQ):

1) RQ1: Does the proposed approach impact the retrieval

accuracy compared to the batch mode approach?: The eval-

uation metrics used for this comparison are listed in Section

VI-B1. We subject the AP values to both standard pair-wise

t-test, randomization test and the equivalence testing to show

that (a) we were not able to establish significant differences

between the two algorithms and (b) to show that the two

algorithms are indeed equivalent within a margin of δ. Section

VII-A shows our findings.

2) RQ2: Does the retrieval accuracy suffer if the index

and the model are re-computed only at major releases?: We

have already indicated using sample bugs from both software

libraries that retrieval accuracy degrades for some bugs when

one uses an outdated index and model for retrieval (see Table

II). In Section VII-A, we present overall results using all the

bugs.

3) RQ3: Does the proposed framework reduce the query

latency for bugs?: Using the time measures presented in

Section VI-B3, the query latency can be quantified as BPT +
ICT + MCT + RT for the batch mode case. For retrieval

by the incremental update framework, the query latency is the

time taken for constructing the query from the bug report and

the time taken to perform matching, which is nothing but the

RT .

4) RQ4: Does the proposed approach save on the compu-

tational effort/time spent at each commit to keep the model

updated?: The net effort spent in keeping the index and the

model updated is a sum of the time taken in preprocessing

the source files in the change sets, and the time taken to

update the index and the model parameters. Using the time

measures presented in Section VI-B3, we quantify the amount

of effort that goes into keeping the model updated as the sum

CPT + IUT +MUT (see Section VII-B).

5) RQ5: At what point is it more beneficial to re-compute

the index or the model from scratch as opposed to incremen-

tally updating it?: The main inspiration of the incremental

approach to bug localization is that each commit only changes

a small portion of the entire repository. The question that

remains to be answered is “what happens at large commits?”.

Our model update formulas and equations do not introduce any

approximations into the incrementally updated model. Hence,

there is no reason to re-compute the model for the purposes

of retrieval accuracy. However, on the account of efficiency,

it is worthwhile to explore the relationship between the size

of the change-set and the time-taken to preprocess the source

files (CPT) and update the index (IUT). We attempt to explore

the upper bounds on the size of the change-set at which the

time-benefits of incremental update is lost.

VII. RESULTS

A. Comparing Retrieval Accuracy

In this section, we demonstrate that the retrieval accuracy

of the incremental framework is as good as that of the batch

mode approach for each of the two models: VSM and SUM.

Using the retrieval performance metrics described in Section

VI-B1 and statistical significance tests detailed in Section

VI-B2, we show the overall results in Table IV and Table

V for JodaTime and AspectJ, respectively. The MAP values

shown in column 14 of the two tables were subject to student’s

pair-wise significance tests (Column 15 shows the p-value)

and equivalence testing (Column 16 shows confidence interval

(ci) computed using TOST) to confirm our findings. Note that

the ci is completely contained within the equivalence margin

of [−0.005, 0.005]. Although not shown in the tables due to

space restrictions, we have carried out randomization test and

additionally confirmed that the differences are not statistically

significant.

1) Parameter Sensitivity Analysis: We now report on the

impact of the parameter µ of the SUM model on the retrieval

accuracy. Figure 5 shows the variation in the retrieval accuracy

using the two approaches for different types of queries w.r.t µ
using the SUM model for JodaTime and AspectJ. Note that,

with the VSM model, since we used a very basic tf-idf weight-

ing scheme, there are no parameters to be examined. Figure 5

confirms that the retrieval effectiveness of the two approaches

are equivalent and robust to variation in parameters.

Answer to RQ1: Retrieval accuracy of the batch mode and

the incremental approach are equivalent (see Tables IV and

V and Figure 5).
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TABLE IV
COMPARING RETRIEVAL ACCURACY USING PRECISION AND RECALL AND THE RANK-BASED METRICS FOR 43 BUGS IN JODATIME. R1 MEANS r = 1,

R5 MEANS 2 ≤ r ≤ 5, R10 MEANS 6 ≤ r ≤ 10, R11 MEANS r > 10. THE EQUIVALENCE MARGIN IS δ = 0.005.

Model QueryType mode P@1 R@1 P@5 R@5 P@10 R@10 R1 R5 R10 R11 MAP p-value ci (×10
−3)

title
batch 0.302 0.178 0.149 0.374 0.119 0.588 13 9 10 11 0.341

0.56 [-0.06,0.03]
SUM inc 0.302 0.178 0.149 0.374 0.119 0.588 13 9 10 11 0.341
µ = 0.9 description batch 0.535 0.291 0.251 0.646 0.147 0.705 23 13 1 6 0.539

0.32 [-0.02,0.08]
inc 0.535 0.291 0.251 0.646 0.147 0.705 23 13 1 6 0.539

title+ batch 0.535 0.291 0.256 0.669 0.156 0.760 23 14 2 4 0.551
1.00 [0,0]

description inc 0.535 0.291 0.256 0.669 0.156 0.760 23 14 2 4 0.551

VSM

title
batch 0.209 0.105 0.112 0.295 0.077 0.389 9 10 5 20 0.236

1.00 [0,0]
inc 0.209 0.105 0.112 0.295 0.077 0.389 9 10 5 20 0.236

description
batch 0.279 0.124 0.116 0.261 0.077 0.350 12 6 3 23 0.234

0.323 [0,0.02]
inc 0.279 0.124 0.116 0.261 0.077 0.350 12 6 3 23 0.234

title+ batch 0.256 0.116 0.126 0.296 0.079 0.374 11 8 3 22 0.243
0.3230 [0,0.01]

description inc 0.256 0.116 0.126 0.296 0.079 0.374 11 8 3 22 0.243

TABLE V
COMPARING RETRIEVAL ACCURACY USING PRECISION AND RECALL AND THE RANK-BASED METRICS FOR 321 BUGS IN ASPECTJ. R1 MEANS r = 1,

R5 MEANS 2 ≤ r ≤ 5, R10 MEANS 6 ≤ r ≤ 10 AND R11 MEANS r > 10. THE EQUIVALENCE MARGIN IS δ = 0.005.

Model QueryType mode P@1 R@1 P@5 R@5 P@10 R@10 R1 R5 R10 R11 MAP p-value ci (×10
−3)

title
batch 0.139 0.055 0.072 0.143 0.05 0.194 35 50 27 205 0.127

0.71 [-0.5,0.8]
SUM inc 0.136 0.055 0.071 0.143 0.05 0.193 34 51 27 205 0.126
µ = 0.9

description
batch 0.215 0.081 0.102 0.196 0.069 0.257 53 54 23 186 0.185

0.97 [-1.8,1.7]
inc 0.209 0.079 0.101 0.195 0.067 0.255 51 55 23 187 0.185

title+ batch 0.235 0.089 0.111 0.218 0.074 0.268 59 59 22 179 0.201
0.23 [-0.5,2.1]

description inc 0.235 0.089 0.110 0.217 0.074 0.268 59 59 22 179 0.201

VSM

title
batch 0.077 0.038 0.059 0.138 0.049 0.23 24 59 43 174 0.112

0.492 [-0.7,0.3]
inc 0.077 0.038 0.060 0.14 0.049 0.232 24 60 44 172 0.112

description
batch 0.094 0.04 0.055 0.13 0.052 0.243 29 46 54 179 0.116

0.706 [-0.2,1.4]
inc 0.101 0.041 0.055 0.131 0.052 0.242 31 45 53 179 0.116

title+ batch 0.097 0.040 0.064 0.154 0.057 0.261 30 57 51 172 0.121
0.79 [-0.2,0.3]

description inc 0.100 0.04 0.064 0.154 0.057 0.260 31 56 51 172 0.120

Fig. 5. Sensitivity of retrieval accuracy to the parameter µ using the SUM
for JodaTime (left) and AspectJ (right). The legend for the right graph is the
same as that for the left one. It has been omitted for the sake of clarity and
space restrictions. (see in color)

2) Comparing retrieval accuracy of batch mode and limited

update: Table VI shows the retrieval accuracy obtained by lim-

ited update technique, and compares it to the retrieval accuracy

obtained using the batch mode technique. The last column

shows the % reduction in retrieval accuracy as measured by

MAP. Note that depending on the software system used and

the model used to represent the source files, the degree of

deterioration of retrieval performance can vary from 0.69%

to 24.67%. We confirmed with equivalence testing that the

retrieval accuracy computed from the two approaches are not

equivalent. We also computed the set of queries Qdet, for

which the rank of relevant documents deteriorates severely.

That is, the rank of a relevant source files slips from within

Fig. 6. The number of queries for which retrieval performance deteriorates
severely (|Qdet|) when using limited update compared to batch mode. (see
in color)

the top 10 ranks in the batch mode case to greater than rank 10

in the case of limited update. The cardinality of |Qdet| varied

from 0 to 14, depending on the software, text model and the

type of query (see Figure 6). On the other hand, we observed

that |Qdet| for the case of incremental update was 0 for almost

all cases.

Answer to RQ2: Recomputing the index and the

model only at releases cannot guarantee the same

retrieval accuracy that would have been achieved

with the batch mode approach (See Figure 6 and

Table VI).
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TABLE VI
COMPARING RETRIEVAL ACCURACY OF ASPECTJ AND JODATIME

SOFTWARE USING MEAN AVERAGE PRECISION (MAP) WITH A MODEL

THAT IS UPDATED ONLY AT SOFTWARE RELEASES (COLUMN LABELED AS

limited update) WITH batch mode LEARNED MODEL. LAST COLUMN SHOWS

THE % REDUCTION IN RETRIEVAL ACCURACY.

Query Type Batch
Mode

Limited
Up-
date

Reduction
%

JodaTime title 0.3413 0.2725 20.19
SUM description 0.5389 0.4718 12.45
(µ = 0.9) title + description 0.5514 0.5135 6.87
JodaTime title 0.2316 0.1860 21.22
VSM description 0.2343 0.1765 24.67

title + description 0.2430 0.1871 23.00
AspectJ title 0.1339 0.1208 9.78
SUM description 0.1969 0.1872 4.93
(µ = 0.9) title + description 0.2169 0.2030 6.41
AspectJ title 0.1102 0.1061 3.72
VSM description 0.1163 0.1155 0.69

title + description 0.1204 0.1175 2.41

TABLE VII
SUMMARY OF THE TIME TAKEN BY EACH OF THE STAGES OF THE BATCH

MODE AND THE INCREMENTAL APPROACHES TO BUG LOCALIZATION.

JodaTime AspectJ
mean median gain mean median gain

# of batch 556 494 5214 5309
Files inc 5.41 2 4.42 1

Pre BPT 412.7 303.7
50-150

1628 1052
246-536

processing CPT 7.83 2.07 6.62 1.96

Index ICT 44.97 36.23
133-188

170.15 153.68
241-529

Creation IUT 0.33 0.19 0.71 0.29

SUM
MCT 0.76 0.64

4-9
1.72 1.81

8-25
MUT 0.17 0.06 0.21 0.07

VSM
MCT 1.26 0.52

4
1.44 1.27

5-10
MUT 0.28 0.12 0.28 0.13

B. Improvements in Retrieval Efficiency

In this section we present a detailed analysis of time gains

when using the incremental update framework compared to

batch mode approach as measured by a 2.4 GHz desktop

computer with 4 cores and 6 GB RAM. Table VII presents

the time spent in each of the stages of retrieval and model

update for the batch mode and the incremental approaches,

respectively, for the two software libraries. Note that while

MCT, BPT and ICT are measured for each bug, MUT, IUT

and CPT are measured for each commit. The first row of Table

VII shows the size of the input for each of the modes. While

this is the size of the project for the batch mode case, it is the

size of the change-set for the incremental mode of operation.

The fifth column and the eighth column are labeled as “gain”

and measure the degree of speed-up obtained by using the

incremental update framework compared to the batch mode.

Evidently, the incremental update framework speeds up the

preprocessing, index building and the model learning stages

significantly. SUM and VSM are linear models, the speedup

in MUT compared to MCT is not as significant. However,

since MUT depends on the size of the change set, the MUT

remains more or less constant regardless of the size of the

repository. For example, the value of MUT for the SUM for

both repositories is in the range 64-71ms for most revisions.

The query latency time (measured in seconds) for both

Fig. 7. Comparing the query latency using the batch mode and incremental
approach. (see in color)

TABLE VIII
NET COMPUTATIONAL EFFORT MEASURED IN SECONDS TO KEEP THE

MODEL UPDATED USING THE INCREMENTAL APPROACH.

JodaTime AspectJ
Model mean median mean median
SUM 8.2348 2.3265 7.5342 2.3215
VSM 8.4566 2.3823 7.6092 2.3755

modes of operation is presented in Figure 7. Note the time

taken to perform retrieval is significantly reduced with the

incremental update framework as the model is always kept

up-to-date.

Answer to RQ3: Significant reduction in query latency

can be achieved using the proposed approach compared

to batch-mode approach (see Figure 7).

The net amount of computational effort (measured as the

time spent) in keeping the model updated at each revision is

shown in Table VIII. Since the change set is relatively small

(see Figure 2) the overall time spent is just around 2 seconds

for most revisions and 8 seconds on the average.

Answer to RQ4: The net computational effort/time

spent at each commit to keep the model updated is

reasonable within a few seconds (see Table VIII).

1) Sensitivity to the size of change-set: As mentioned

earlier, the time to preprocess the source files in the change-set

(CPT) and update the index (IUT) varies with the size of the

change set. In Figures 8 and 9 we plot the size of the change

set along the x-axis and the time-taken along the y-axis for

both software libraries and the horizontal blue lines correspond

to the mean and the median of the corresponding batch mode

time (BPT and ICT). These figures illustrate that as long as

the size of a change set is much smaller than the size of the

repository (which is likely to be case all the time), the time

taken by the incremental update framework is significantly

less than the time taken by the batch mode framework. Note

that the IUT is highly correlated with the size of the change

set except for some outliers. For example, the large commits

that take very little time for index updates are commits that

delete a significant number of source files. Correlation exists

between the CPT and the size of the change-set as well

69



(a) JodaTime (b) AspectJ

Fig. 8. Variation of CPT with the size of the change-set. The horizontal blue
lines indicate the mean and median of BPT. (see in color)

(c) JodaTime (d) AspectJ

Fig. 9. Variation of IUT with the size of the change-set. The horizontal blue
lines indicate the mean and median of ICT. (see in color)

except for some outliers. The cases where large change-sets

are processed quickly correspond to commits where several

small source files are added (a typical example is adding test-

cases). Similarly, in some cases, a single large file takes a long

time for preprocessing. In general, when the size of change-set

is > 100, the CPT and IUT start to look comparable to that

of BPT and ICT respectively.

Answer to RQ5: For commits that affect large number

of source files (typically > 100 or > 10% of the size of

the repository) the amount of time taken to preprocess

the change-set (CPT) and update the index (IUT) is of

the same order as that of the time taken by batch mode

approach (see Figures 8 and 9).

VIII. THREATS TO VALIDITY

Any empirical research must be subject to an analysis of

threats to its validity. Since the retrieval accuracy of the batch

mode approach and the incremental framework are equivalent,

an apparent threat to validity is the poor retrieval accuracy of

batch mode model itself. For queries where the batch mode ap-

proach gives poor retrieval performance, incremental approach

cannot yield a better retrieval accuracy. A query may perform

poorly for a number of reasons and there is a lot of research

that is focused on identifying such difficult queries [9][10]

and improving their retrieval accuracy [8][5][4][6] and is out

of the scope of this paper. Our approach to incrementally

updating the index does not eliminate deleted files, and so

the size of the index grows monotonically. While this might

necessitate rebuilding of the index for the sake of saving

memory, retrieval accuracy is not affected as these deleted files

are discounted from our retrieval algorithm. Another threat to

validity of this work is related to the experimental set-up of our

incremental framework. The measurements of time-savings are

carried out using a 2.4 GHz desktop computer with 4 cores

and 6 GB RAM and may vary with configuration of system

used, the choice of search tool, level of granularity of the

indexer (e.g. lines of code or functions as code entities as

opposed to source files) and the profiler used. Both AspectJ

and JodaTime are written in Java, hence our conclusions

are not generalizable to software libraries written in other

languages. A possible threat to the validity of the moreBugs

dataset we have created is that we have not performed any sort

of post-processing on the change history of the software. In

the future we plan to use change-distillation [26] to eliminate

null changes to the code entities and merge changes that are

spread over multiple commits [27]. Additionally, moreBugs

only tracks changes taking place in the official/main branch

of the software. However, our proposed framework can be

easily extended to maintain index and model for the various

branches of development of a software.

IX. RELATED WORK

The problem of building search engines for dynamic col-

lections is not new and there has been much research on

incremental updating of the index for web-scale text collec-

tions in the domain of text-IR [12][13][28]. However, the

main focus of these algorithms are low level issues related

to incremental indexing like storage memory and I/O [29].

In terms of incremental model update, incremental clustering

algorithms have been proposed as well [30][31][32]. Mention

must also be made of the open-source tools like Terrier4,

Lemur5 and Lucene6 for IR-based research. These tools vary in

the support they provide for incrementally updating the index

and the model [33].
In the context of retrieval from software repositories, there

are a few contributions that explore the efficiency aspect of

these tools. One such contribution is the Incremental Latent

Semantic Indexing (LSI) algorithm for search based automatic

traceability link recovery proposed by Jiang et al. [34]. In

this paper, the authors propose an incremental approach based

on LSA model to update the links between the source code

files and the documentation as they both evolve. However,

their algorithm ignores information that is added in terms of

new terms and new source files. Additionally, their analysis

is limited to a dataset built from 2 consecutive releases of

candidate software systems. Canfora et al. [35] have also

studied the the use of incremental indexing for impact analysis

in development process. The authors demonstrate improve-

ments in retrieval of code entities related to a Change Request

(CR) by using code entities impacted by similar past change

requests.

X. CONCLUSION

In this paper we have proposed an incremental approach to

bug localization that achieves reduced query latency without

compromising on the retrieval accuracy achieved by current

IR techniques. With our incremental framework, the index and

model can be efficiently updated to reflect the changes in the

software repositories within a few seconds at each commit.

4http://terrier.org/
5http://www.lemurproject.org/
6http://lucene.apache.org/
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We have demonstrated based on extensive empirical evalua-

tion using two software repositories, AspectJ and JodaTime

modeled with VSM and SUM, that the query latency reduces

from several minutes to a fraction of a second. For future

work, we plan to add to the proposed framework incremental

model update algorithms for sophisticated models like Latent

Semantic Analysis (LSA) and Latent Dirichlet Allocation

(LDA). The proposed incremental update framework can also

be used for other software engineering problems that have to

deal with dynamically evolving software repositories.
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