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Matsumoto and Yor have recently discovered an interesting transfor-
mation which preserves a bivariate probability measure which is a product
of the generalized inverse Gaussian (GIG) and gamma distributions. This
paper is devoted to a detailed study of this phenomenon. Let X and Y be
two independent positive random variables. We prove (Theorem 4.1) that
U = �X + Y�−1 and V = X−1 − �X + Y�−1 are independent if and only
if there exists p�a� b > 0 such that Y is gamma distributed with shape
parameter p and scale parameter 2a−1, and such that X has a GIG distri-
bution with parameters −p�a and b (the direct part for a = b was obtained
in Matsumoto and Yor). The result is partially extended (Theorem 5.1) to
the case where X and Y are valued in the cone V+ of symmetric positive
definite �r� r� real matrices as follows: under a hypothesis of smoothness
of densities, we prove that U = �X + Y�−1 and V = X−1 − �X + Y�−1

are independent if and only if there exists p > �r − 1�/2 and a and b
in V+ such that Y is Wishart distributed with shape parameter p and
scale parameter 2a−1, and such that X has a matrix GIG distribution
with parameters −p�a and b. The direct result is also extended to singu-
lar Wishart distributions (Theorem 3.1).

1. Introduction. If p�a and b are positive numbers, consider two inde-
pendent positive random variables X and Y with respective distributions

µ−p�a� b�dx� = C1x
−p−1 exp

(− 1
2�ax+ bx−1�)1�0�+∞��x�dx�(1.1)

γp�2a−1�dy� = C2y
p−1 exp

(− 1
2ay

)
1�0�+∞��y�dy�(1.2)

Thus, the distribution of X is the generalized inverse Gaussian distribution
(GIG) with parameters �−p�a� b� and the distribution of Y is the gamma
distribution with shape parameter p and scale parameter 2a−1.

Denote U = �X + Y�−1 and V = X−1 − �X + Y�−1. The present paper is
motivated by the recent observation due to Matsumoto and Yor (1998) (see
Proposition 9.1 in their paper) in the case a = b, which is that �X/Y�1/X� =d

�X/Y�X+Y� (where =d means identically distributed). The fact that 1/X =d

X + Y has already been used by Letac and Seshadri (1983) to characterize
the GIG law as the distribution of a random continued fraction whose entries
are i.i.d. gamma random variables.

In terms ofU andV, the above result of Matsumoto and Yor can be reformu-
lated by saying that �X/Y�1/X� =d �U/V�1/U�, or, applying the
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transformation �x�y� �→ �1/y� xy�, by saying that �X�Y� =d �U�V�. Under
this last form, the result can be extended to the case where a and b are not
necessarily equal. This extension is given by the following statement: U and
V are independent with respective distributions µ−p� b� a�dx� and γp�2b−1�dy�.
We skip its proof, which is easily obtained by computing a Jacobian: we let
r = 1 in the first proof of Theorem 3.1 below to obtain the complete details.

What is especially remarkable in the above statement is the independence
of U and V. The first aim of the present paper is to prove the converse: if
U and V are independent, then X and Y are, respectively, GIG and gamma.
This is proved in Theorem 4.1 below, using a simple differential equation to
characterize the gamma distribution, but relying on the characterization of the
GIG distribution by Letac and Seshadri (1983) to get the second part of this
simultaneous characterization. We thank V. Seshadri for several comments
about this problem.

A second aim is to extend the Matsumoto–Yor result to the symmetric
matrices, as suggested by these authors in their Section 11. Actually, a nat-
ural frame for considering the GIG distribution and the gamma distribu-
tion is rather the cone of positive definite matrices (and more generally a
symmetric cone). For gamma, it is a classical fact that the Wishart distri-
butions are the natural extension of the one-dimensional gamma distribu-
tions: see Massam (1994), Casalis and Letac (1996) and Letac and Massam
(1998). For the matrix GIG laws, an important paper is the monumental
work of Bernadac (1995), who has extended the characterization of Letac
and Seshadri (1983) to random continued fractions on these cones [by con-
sidering Y1�Y1 +Y−1

2 �Y1 + �Y2 +Y−1
3 �−1� � � � where the random matrices Yj

are independent and Wishart distributed]. For a recent work on the GIG dis-
tributions and some bibliography about it, see Butler (1998). We prove the
Matsumoto–Yor result mentioned above and its extension for different a and
b in the space of symmetric matrices (Theorem 3.1). We also offer a partial
converse in Theorem 5.1 with a hypothesis of smoothness. Clearly, this is not
the best result, since Theorem 3.1 shows that the direct result is also true
with singular Wishart distributions. Section 5 contains also some comments
about the difficulty in extending the proof of Theorem 4.1 to symmetric matri-
ces. Finally, Theorems 3.1 and 5.1 are more generally true for any of the five
types of symmetric cones [see Faraut and Koranyi (1994) for a detailed study
of the five types]. We have, however, refrained from giving the proof in the
framework of the Euclidean Jordan algebras: the chosen notation is probably
enough to allow their aficionados to do it by themselves. To keep the paper
easier to read, Section 2 proves everything needed here about the GIG and
the Bessel functions on symmetric matrices. Readers interested only in the
real case must rush to Section 4.

2. The generalized inverse Gaussian distribution. Let us describe
first the generalized inverse Gaussian distribution (GIG) on the cone V+ of
symmetric positive definite �r� r� real matrices. We equip the linear space V
of real symmetric �r� r� matrices with the Euclidean structure defined by the
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scalar product 	a� b
 = traceab. This induces on V the Lebesgue measure
dx which gives mass 1 to the unit cube of V. For p real and s ∈ V+, define
Kp�s� ∈ �0�+∞� by

Kp�s� = 1
2

∫
V+

�detx�p−�1/2��r+1� exp
(− 1

2	s� x+ x−1
)dx�(2.1)

Similarly, for p real and a and b in V+, define Kp�a� b� by

Kp�a� b� = 1
2

∫
V+

�detx�p−�1/2��r+1� exp
(− 1

2�	a� x
 + 	b� x−1
�)dx�(2.2)

The functions Kp belong to the Bessel-like functions which have been intro-
duced by Herz (1956). The only properties of Kp�s� and Kp�a� b� that we shall
need are the following.

Proposition 2.1.

(i) Kp�s� is finite for all �p� s� ∈ R×V+ and Kp�s� =K−p�s�.
(ii) Kp�a� b� is finite for all �p�a� b� ∈ R × V+ × V+ and Kp�a� b� =

K−p�b� a�.
(iii) If s�a� b� =

√
b1/2ab1/2, then

Kp�a� b� = �deta�−p/2�det b�p/2Kp�s�a� b���(2.3)

(iv) For any �p�a� b� ∈ R×V+ ×V+

Kp�a� b��deta�p =Kp�b� a��det b�p�(2.4)

For convenience we give a proof of the proposition which relies on the fol-
lowing lemma.

Lemma 2.2. Let c be a real �r� r�matrix and let c∗ be the transposed matrix.
Denote by gc the endomorphism of the linear space V of real symmetric �r� r�
matrices defined by x �→ cxc∗. Then the absolute value of the determinant of
gc is �det c�r+1.

Proof. Suppose first that c is diagonal, with c = diag�c1� � � � � cr�. For 1 ≤
i ≤ j ≤ r, define eij ∈ V as the matrix whose entries �i� j� and �j� i� are 1
and other entries 0. If x = �xij�, clearly gc�x� = �cixijcj�, thus the eij are
eigenvectors of gc associated to the eigenvalues cicj. Thus if c is diagonal,

detgc =
∏

1≤i≤j≤r
cicj = �c1 · · · cr�r+1 = �det c�r+1�

Suppose now that c is an orthogonal matrix. Then, with the Euclidean struc-
ture on V given by the scalar product 	a� b
 = traceab, since cc∗ = Ir and
trace xy = traceyx, it is easily verified that

	gc�a�� gc�b�
 = trace cac∗cbc∗ = traceab = 	a� b
�
This means that gc is an orthogonal transformation of V and has determinant
±1. Hence �detgc� = 1 and the lemma is still true in this case.
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In the general case, we use polar decomposition and we write c = udvwhere
u and v are orthogonal �r� r� matrices and d is diagonal with nonnegative
coefficients. We use also the fact that gcc′ �x� = gc�gc′ �x��, which implies that
detgcc′ = detgcdetgc′ . Thus with the polar decomposition,

�detgc� = �detgu� �detgd� �detgv� = �detd�r+1 = �det c�r+1� ✷

Proof of Proposition 2.1.. (i) If p > �r − 1�/2, then Kp�s� is less than
the integral

1
2

∫
V+

�detx�p−�1/2��r+1� exp
(− 1

2	s� x

)
dx�

which is known to be convergent from the theory of Wishart distributions [see,
e.g., Muirhead (1982)]. On the other hand if p < −�r−1�/2 then Kp�s� is less
than

1
2

∫
v+
�detx�p−�1/2��r+1� exp

(− 1
2	s� x−1
)dx

= 1
2

∫
V+

�detx�−p−�1/2��r+1� exp
(− 1

2	s� x

)
dx�

since the differential of x �→ x−1 is the linear endomorphism of V defined by
h �→ −x−1hx−1 whose determinant is �detx�−r−1 from Lemma 2.2.

Since for fixed s in V+ the function p �→ Kp�s� is a Laplace transform of
a positive measure, its domain of existence is an interval. Since this interval
contains the two half lines ��r−1�/2�+∞� and �−∞�−�r−1�/2�, the interval
is R.

The formula Kp�s� = K−p�s� is proved easily by the change of variable
x = y−1 (which has been done in the last formula) in Kp and applying again
Lemma 2.2.

(ii) It follows, by applying step by step the argument used in the proof
of (1).

(iii) Denote s = s�a� b� for a while. We have

	a� x
 + 	b� x−1
 = 	b−1/2s2b−1/2� x
 + 	b� x−1

= 	s� s1/2b−1/2xb−1/2s1/2
 + 	s� �s1/2b−1/2xb−1/2s1/2�−1
�

We now make the change of variable y = s1/2b−1/2xb−1/2s1/2 in the integral
Kp�a� b�. The determinant of s1/2b−1/2 is �det s2�1/4�det b�−1/2 = �deta�1/4
�det b�−1/4, and the application of Lemma 2.2 leads to the desired formula
(2.3).

(iv) To prove (2.4) we start from (2.3) and subsequently apply (i), then again
(2.3) and finally (ii):

Kp�a� b� = �deta�−p/2�det b�p/2K−p�s�a� b�� = �deta�−p�det b�pK−p�a� b�
= �deta�−p�det b�pK−p�a� b� = �deta�−p�det b�pKp�b� a�� ✷
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We are now in a position to define the GIG distribution. For p in R, a and
b in V+ this is the probability measure on V+ defined by

µp�a� b�dx� =
1

Kp�a� b�
�detx�p−�1/2��r+1�

× exp
(
−1

2
�	a� x
 + 	b� x−1
�

)
1V+�x�dx�

(2.5)

We point out right now the following remarkable integral.

Proposition 2.3. For θ and σ in V such that a−2θ and b−2σ are in V+,
we have ∫

V+
exp�	θ� x
 + 	σ� x−1
�µp�a� b�dx� =

Kp�a− 2θ� b− 2σ�
Kp�a� b�

�(2.6)

Furthermore, X has the distribution µp�a� b�dx� if and only if X−1 has distri-
bution the µ−p� b� a�dx�.

The proof follows immediately from Proposition 2.1(ii) with a change of the
variable x �→ x−1. ✷

3. An independence property. For p in the following set:

! =
{

1
2
�
2
2
�
3
2
� � � � �

r− 1
2

}
∪
(
r− 1

2
+∞

)

and a in V+, define the Wishart distribution γp�2a−1 on the closed cone V+ of
positive symmetric matrices by its Laplace transform,

∫
V+

e	θ� y
γp�2a−1�dy� = �deta�p
�det �a− 2θ��p �(3.1)

If p is in the singular part of !, namely
{ 1

2 �
2
2 �

3
2 � � � � � �r−1�/2}, then γp�2a−1

is concentrated on the boundary of V+ which consists of the singular positive
symmetric matrices. If p > �r− 1�/2 then

γp�2a−1�dy� = 1
"r�p�

(
det

a

2

)p

�dety�p−�1/2��r+1�

× exp
(
−1

2
	a�y


)
1V+�y�dy�

(3.2)

where "r�p� is the multivariate gamma function; see Muirhead (1982),
page 61.

Theorem 3.1. Let p be in ! and a and b in V+. Let X and Y be indepen-
dent random variables inV+ andV+ with respective distributions µ−p�a� b and
γp�2a−1 . Then the random variables U = �X+Y�−1 and V =X−1 − �X+Y�−1

are independent with respective distributions µ−p� b� a and γp�2b−1 .
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We give two proofs. The first one is only a partial one since it is restricted
to the absolutely continuous case p > �r − 1�/2 and consequently uses the
Jacobian. We give it because it is rather representative of the method that we
shall use in the proof of the converse in Theorem 5.1. The second proof gives
the result in full generality and is based on applying Laplace transforms.

Proof of Theorem 3.1 (partial, by the Jacobian). Let f�V+×V+ → V+×
V+ be defined by

f�x�y� = �u� v� = ��x+ y�−1� x−1 − �x+ y�−1��
Note that f is involutive, that is, f�f�x�y�� = �x�y�. Hence �x�y� = ��u +
v�−1� u−1 − �u + v�−1�, and it becomes easy to compute dxdy with respect to
dudv. For this we use once again the fact that the differential of x �→ x−1 is
h �→ −x−1hx−1, or with more convenient notations dx �→ −x−1�dx�x−1. Thus
we get

dx = −�u+ v�−1�du��u+ v�−1 − �u+ v�−1�dv��u+ v�−1�

dy = −u−1�du�u−1 + �u+ v�−1�du+ dv��u+ v�−1�

For simplicity let us introduce the notation

��x�� V→ V� h �→ ��x��h� = xhx�

Thus the differential of the map �u� v� �→ �x�y� from V+ ×V+ to itself is a
linear endomorphism of V×V which is conveniently written by blocks,(

du
dv

)
�→

(
dx
dy

)
=

[−��x� −��x�
��x� − ��x+ y� ��x�

](
du
dv

)
�(3.3)

The Jacobian that we want to compute is the determinant of this linear
map. Adding the second row to the first shows that the absolute value of the
Jacobian is det ���x+y��det ���x��. Recall from Lemma 2.2 that det ���x�� =
�detx�r+1. Consequently, the absolute value of the Jacobian equals �det x ×
det �x+ y��r+1 = �detudet �u+ v��−�r+1�.

Now it suffices to check the factorization property for the densities of X� Y�
U� V denoted respectively by fX� fY� fU� fV,

fU�u�fV�v� = �detudet �u+ v��−�r+1�fX��u+ v�−1�
×fY�u−1 − �u+ v�−1�(3.4)

for any �u� v� ∈ V+×V+. This is quite a standard calculation in the univariate
case. Since we use matrix variates some details will be presented.

Since the joint density of �X�Y� on V+ ×V+ is proportional to

�detx�−p−�1/2��r+1��dety�p−�1/2��r+1� exp
(
− 1

2	a� x+ y
 − 1
2	b� x−1


)
�

we replace x and y by their expression in u and v. The argument of the
exponential becomes

− 1
2	a�u−1
 − 1

2	b�u+ v
 = − 1
2�	a�u−1
 + 	b�u
� − 1

2	b� v
�
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To compute the remainder of the expression of the density, suitably multiplied
by the Jacobian, observe first that

det �u−1 − �u+ v�−1� = det �u−1u�u−1 − �u+ v�−1��u+ v��u+ v�−1�

= det �u−1v�u+ v�−1� = det v
detu det �u+ v� �

Finally, after simplification, the remaining part of the expression becomes

�detu�−p−�1/2��r+1��det v�p−�1/2��r+1�

and the product of this and of the exponential yields the required density. ✷

Remark. Observe that the above factorization property is not valid if
� �X� = µ−p1� a� b

and � �Y� = γp2�2a−1 with p1 �= p2, consequently U and
V are not independent in this case.

Before we proceed to the general proof of Theorem 3.1, we give an auxiliary
result, which will be used later.

Lemma 3.2. Let �Z�T� be a random variable on V+ × V+. For �θ� σ� in
V+ ×V+, define

MZ�T�θ� σ� = Ɛ�exp�	θ�Z+T
 + 	σ�Z−1
���
Then MZ�T determines the distribution of �Z�T�.

Proof. If �Z1�T1� is valued in V+ × V+, suppose that on V+ × V+ we
have

MZ�T =MZ1�T1
�

Then, since the Laplace transforms coincide, we have

� �Z+T�Z−1� = � �Z1 +T1�Z
−1
1 ��

Taking the images of these random variables by g�x�y� = �y−1� x − y−1�
mapping V+ ×V+ into V+ ×V we get � �Z�T� = � �Z1�T1�.

Proof of Theorem 3.1. Observe that from the definition of U and V we
have

MU�V�θ� σ� = Ɛ
(
exp�	σ�X
 + 	θ�X−1
�

)
Ɛ�exp�	σ�Y
���

Consequently, by (2.6), (3.1) and the assumptions of the theorem, one gets

MU�V�θ� σ� =
K−p�a− 2σ� b− 2θ��deta�p
K−p�a� b��det �a− 2σ��p �

Now, to conclude the proof, using Lemma 3.2, it suffices to introduce a ran-
dom variable �U1�V1� with distribution µ−p� b� a ⊗ γp�2b−1 and to show that
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MU�V =MU1�V1
. Using again (2.6) and (3.1) one finds easily that

MU1�V1
�θ� σ� =MU1�U

−1
1
�θ� σ�Ɛ�exp�	θ�V1
��

= K−p�b− 2θ� a− 2σ��det b�p
K−p�b� a��det �b− 2θ��p �

The final result follows immediately from (2.4). ✷

4. Characterization on the real line. We are unable to provide the
converse of Theorem 3.1 in full generality in the matrix case (see Section 5,
where also some of the reasons are indicated). However, in the important
univariate case the complete converse is available. This is the subject of the
present section.

Theorem 4.1. LetX and Y be real positive independent random variables.
Assume thatX orY is non-Dirac and thatU = �X+Y�−1 andV =X−1−�X+
Y�−1 are independent. Then there exist p� a� b > 0 such that � �X� = µ−p�a� b
and � �Y� = γp�2a−1 .

Proof. Observe first that if any one of X and Y is non-Dirac then all four
random variables X� Y� U� V are non-Dirac also.

Let us fix α ≥ 0, θ < 0 and σ < 0. Denote for simplicity,

A = exp�σX+ θX−1�� B = exp�σU−1 + θU��
Using the independence, the fact that Y/X = V/U and noting that all the
expectations exist, we have

Ɛ�YαeσY�Ɛ�X−αA� = Ɛ�VαeθV�Ɛ�U−αB��(4.1)

Take the logarithm of both sides of the above equality and apply ∂2/∂θ∂σ to
them. We get

Ɛ�X−α−1A�Ɛ�X−α+1A�
�Ɛ�X−αA��2 = Ɛ�U−α−1B�Ɛ�U−α+1B�

�Ɛ�U−αB��2 �(4.2)

We now put α = 1 in (4.2). Applying (4.1) successively to α = 0, α = 1 and
α = 2 and carrying it in (4.2) we get for all θ < 0 and σ < 0,

Ɛ�Y2eσY�Ɛ�eσY�
�Ɛ�YeσY��2 = Ɛ�V2eθV�Ɛ�eθV�

�Ɛ�VeθV��2 �(4.3)

From the principle of separation of variables, the two sides of (4.3) are con-
stant. Since Y is not Dirac, the left-hand side of (4.2) is a number 1 + p > 1.
One gets easily from this that the two random variables Y and V are gamma
distributed, with the same shape parameter p: if LY�σ� = Ɛ�eσY�, just solve
the second order equation L′′

YLY = �p + 1�Lr2
Y and do the same for V. We

write � �Y� = γp�2a−1 and � �V� = γp�2b−1 for some a and b > 0.
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To show that X is GIG, we now rely on the characterization of these distri-
butions given in Letac and Seshadri (1983). Introduce a random variable Y′

independent of X and Y with distribution γp�2b−1 . Then we have

X = 1
V+U

d= 1
Y′ +U

= 1

Y′ + 1
Y+X

�

The result of the quoted paper implies that X has distribution µ−p�a� b.
(This part can be also proved directly by repeating the argument used in

the first part of the proof of Theorem 5.1; see Section 5.) ✷

5. Characterization on symmetric matrices. In the general case of
random symmetric positive definite matrices a partial converse to Theorem 3.1
is obtained, with the proof depending on the assumed smoothness of densities.

Theorem 5.1. Let X and Y be two independent random variables valued
in the cone V+ of symmetric positive definite real �r� r� matrices, with strictly
positive densities of class C2. Let us assume that U = �X + Y�−1 and V =
X−1 − �X+Y�−1 are independent. Then there exist p > �r− 1�/2, and a� b in
V+ such that � �X� = µ−p�a� b and � �Y� = γp�2a−1 .

Before we give the proof of this theorem we present two results which will
be used in the proof. The first is in the linear algebra framework.

Proposition 5.2. The space V being equipped with its Euclidean struc-
ture, denote by Ls�V� the linear space of symmetric endomorphisms of V. If
B in Ls�V� commutes with ��x� for all x in V+, then B is a multiple of the
identity idV.

Proof. Recall that ��x� ∈ Ls�V� is defined by ��x��v� = xvx for any
v ∈ V. We denote by e the identity in V. By the assumptions it follows that

B�xhx� = xB�h�x(5.1)

for any x ∈ V+ and any h ∈ V. Putting then h = e in (5.1) we get B�x2� = xcx,
for c = B�e� ∈ V. Consequently, the polarization procedure leads to

xcy+ ycx = B�xy+ yx�
for any x�y ∈ V+. Upon inserting in this formula y = e, for any x ∈ V+, we
arrive at

B�x� = �cx+ xc�/2�(5.2)

Carrying it back to (5.1) and inserting then h = c one gets

�xc− cx�cx− xc�xc− cx� = 0

for any x ∈ V+. Consequently, since trace�cx2c� = trace�xc2x�, we get

trace��xc− cx��xc− cx�∗� = 0�
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Hence for any x ∈ V+

xc = cx�(5.3)

which, via (5.2), leads to B�x� = cx for any x ∈ V+.
Now insert in (5.3) x = xij = idV + εeij for any i� j ∈ �1�2� � � � � r�, where

eij are defined in the proof of Lemma 2.2, and ε > 0 is small enough to have
xij ∈ V+. Then it follows immediately that cik = cjk = 0 for any k �= i� j and
cii = cjj. Since the above observation is valid for any i and j it follows that c
is a multiple of e, which ends the proof. ✷

The next result presents the solution of a second-order differential equa-
tion, which while being of independent interest, will be also a tool in proving
Theorem 5.1.

Proposition 5.3. Let g� V+ → R be a C2 function such that there exists a
linear endomorphism B of V such that for all y in V+ one has

g′′�y���y� = B�

Then there exists λ in � such that B = λidV, and there exist a in V and C in
� such that

g�y� = C− 1
2	a�y
 − λ log dety�

Proof. Recall first that the differential of y �→ log dety is y−1, and that
the differential of y �→ y−1 is −��y−1�. Since g′′�y� is in the space Ls�V�,
putting in the differential equation y = e shows that B = g′′�e� is also symm-
teric. Thus since ��y−1� = ��y�−1, we have

B��y� = g′′�y−1���y−1���y� = g′′�y−1� = �g′′�y−1��∗

= �g′′�y−1���y−1���y��∗ = �B��y��∗ = ��y�B∗ = ��y�B�
Now Proposition 5.2 implies that B = λidV. Thus g′′�y� = λ��y−1�, the dif-
ferential of y �→ g′�y� + λy−1 is zero on the connected open set V+ and this
implies the existence of a in V such that g′�y� + λy−1 = −a. In turn, the
differential of y �→ g�y� − λ log dety− 1

2	a�y
 on V+ is zero and the function
is a constant C. This ends the proof. ✷

Now we are ready to prove the main result of this section.

Proof of Theorem 5.1. Let us assume first that � �Y� = γp1�2a−1 and
� �V�= γp2�2b−1 . Change now �u� v� into �v�u� in (3.4). The resulting equation
compared with (3.4) leads at once to

fU�u�fV�v��detu�r+1fY�v−1 − �u+ v�−1�
= fU�v�fV�u��det v�r+1fY�u−1 − �u+ v�−1�
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for any �u� v� ∈ V+ × V+. Now inserting the proper versions of (3.2) for fY
and fV in the above identity we get (after fixing the v = v0) for any u ∈ V+,

fU�u��detu�2p2−p1+�r+1�/2e→ exp �	b� u
 + 	a� u−1
�/2 = const�

By comparing with (2.5), we see that � �U� = µp1−2p2� b� a
. As a dual � �X� =

µp2−2p1� a� b
. Now, by the remark following the proof of Theorem 3.1 we get

2p1 − p2 = p1, and finally p1 = p2 = p.
Hence to conclude the proof it suffices to show that Y is Wishart, since by

duality between Y and V, it will follow immediately that V is also Wishart.

Upon taking logs of both sides of (3.4) we arrive at the identity

F�x�u� v�� + g�y�u� v�� = h1�u� + h2�v��
for any �u� v� ∈ V+ ×V+, where all the functions in the expression are of the
class C2, g = log�fY� and the exact forms of the remaining functions F�h1
and h2 are not important. Consequently, we get

∂2

∂v∂u
�F�x� �u� v�� + g�y�u� v��� = 0�(5.4)

where the partial differentiation symbol means taking derivatives with respect
to the corresponding matrix variable.

We are now in a position to compute the left-hand side of (5.4). To this end
we will rely on (3.3). For convenience, we evaluate the differential with respect
to u in h and to v in k1 = x−1kx−1. Let us concentrate first on g. Then

∂

∂v
�g�y�u� v����k1� = g′�y����x��k1�� = g′�y��k�

for any k ∈ V. Further,

∂

∂u
�g′�y��k���h� = g′′�y�����x� − ��x+ y���k�� h�

for any �k�h� ∈ V×V. On the other hand the second derivative of F�x�u� v��,
evaluated at the same points, is a bilinear form, say B�x��k�h� in �k�h� ∈
V × V, which depends only on x [see again at (3.3)]. Consequently for any
�k�h� ∈ V×V we get

B�x��k�h� = g′′�y�����x+ y� − ��x���k�� h�
for any �x�y� ∈ V+ ×V+. Observe now that the right-hand side of the above
identity has a limit as x→ 0, hence the left-hand side also converges, and we
have with B = B�0� that for any �k�h� ∈ V×V,

B�k�h� = g′′�y����y��k�� h��
Now recall that since V is Euclidean, the space of (not necessarily symmet-

ric) bilinear forms on V is isomorphic to the space L�V� of endomorphisms
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of V by a �→ Ca where Ca�h�k� = 	h�a�k�
. For this reason, we use the
traditional abuse of notation �a = Ca�, writing

	h�B�k�
 = 	h�g′′�y����y��k��

for any �k�h� ∈ V ×V. Consequently, treating now B and g′′�y���y� as ele-
ments of L�V�, we obtain the identity

g′′�y���y� = B

for any y ∈ V+.
We now apply Proposition 5.3 to claim that there exist a in V and scalars

C2 and λ such that

g�y� = −λ log dety− 1
2	a�y
 +C2�

which implies that Y is a Wishart random matrix. ✷

Comments. Extending the proof of Theorem 4.1 to symmetric matrices
does not seem to be an easy task. It can be compared to the extension to
Wishart distributions of the characterization by Lukacs (1955) of the gamma
distribution. An obscure proof appears in Olkin and Rubin (1962) and neater
ones in Casalis and Letac (1996) and in Letac and Massam (1998). While
the analog of (4.1) is natural [replace Yα by �detY�α], obtaining the analog
of (4.2) by differentiating is difficult. There is some hope in the fact that a
key step in the proof of Theorem 4.1 is the differential equation L′′

YLY =
�p + 1�L′2

Y. Introducing the cumulant generating function kY = logLY, it
is rewritten as k′′

Y = pk′2
Y, which says nothing else than that the variance

function of the natural exponential family generated by the distribution of Y
is VF�m� = m2/p, thus characterizing the gamma distributions with shape
parameter p. This provides a hope for an extension to Wishart, along the lines
of the extension of the Lukacs result mentioned above. Finally, to have the
characterization even in the singular case, one cannot rely on the analog of the
Letac–Seshadri characterization of the GIG distribution given by Bernadac
(1995), since she proves it only for the nonsingular case p > �r−1�/2, with the
help of difficult algebraic identities related to continued fractions in symmetric
matrices and Jordan Algebras.
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