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Abstract

In this paper we propose several variants to perform the independence test be-
tween two random elements based on recurrence rates. We will show how to calculate
the test statistic in each one of these cases. From simulations we obtain that in high
dimension, our test clearly outperforms, in almost all cases, the other widely used
competitors. The test was performed on two data sets including small and large
sample sizes and we show that in both cases the application of the test allows us to
obtain interesting conclusions.
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1 Introduction

Let (X1, Y1) , (X2, Y2) , ..., (Xn, Yn) be an i.i.d. sample of (X,Y ) , X ∈ SX and Y ∈ SY ,
where SX and SY are metric spaces. Consider the hypothesis H0 which asserts that
X and Y are independent random elements: this is the so called independence test.
Independence tests were developed at first for the case of SX = SY = R, based on the
pioneering work of Galton [7] and Pearson [19] (this is the famous correlation test, which
is widely used today). The limitations of this hypothesis test are well known and have
motivated several different proposals in this topic, such as the classical rank test (e.g.
Spearman, [22], Kendall, [16], and Blomqvist, [4]). The independence of random vectors
was addressed for the first time in Wilks [26]. Several independence tests between random
vectors have been proposed by now, see, for example, [8], [17], [3] and [2]. Gretton et
al. [10] propose a universally consistent test based on Hilbert–Schmidt norms. This
test has become very popular, and works well for random vectors in high dimensions.
Another consistent and very popular test for random vectors is proposed by Székely et
al. [24, 25], which defines the concept of distance covariance. It has been used and has
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had a considerable impact from the moment that it was proposed. This test has been
adapted to work in high dimensions. Not many independence test have been developed
for random elements where X and Y lie in an arbitrary metric space. Recently, in [14],
an independence test based on recurrence rates was proposed. This test is based on the
following simple idea: if X and Y are independent, then dX(X1, X2) and dY (Y1, Y2) are
independent for all i.i.d. (X1, Y1), (X2, Y2) with the same distribution as (X,Y ), where
dX and dY are the distance functions between elements of SX and SY , respectively. The
authors proposed working with an L2-Cramér–von Mises functional. On the one hand,
from the theoretical point of view, this test is interesting because it does not need any
assumptions on the topological structure of the metric spaces (e.g. assuming that they
are Banach spaces), and in [14] can be found the first study where the mathematical
properties of the recurrence rates were established. Marwan [18] gives a historical review
of recurrence plots techniques, together with everything developed from them. However,
the potential of these techniques has not yet been studied in depth from the point of
view of mathematical statistics. On the other hand, from the practical point of view, this
test is interesting because it can be used for X and Y lying in spaces of any dimension,
and in [14] a power comparison shows the very good performance of this test compared
to others widely used for random variables and random vectors.

In the present paper we will show, using a power comparison, that the independence
test of recurrence rates in high dimension outperforms the other competing tests in
almost all cases, and we will study the incidence of the distance functions considered
(dX and dY ) in the performance of the test. As expected, we will show that the test
statistic in high dimension has some sensitivity to the choice of the distance function, dX
or dY . Also, we will propose and compare other functionals to be taken into account, such
as an L1-Cramér–von Mises functional and a Kolmogorov–Smirnov functional, and we
will show how to compute the statistic in each case. Lastly, we will present applications
of the test to two real data sets.

The rest of this paper is organized as follows. In Section 2 we define the procedure
to test H0 vs H1 proposed in [14] and we present the definition of the test statistics
based on a functional of the L1-Cramér–von Mises type, and the statistics based on
a functional of the Kolmogorov–Smirnov type, and three different distances to use in
SX and SY . In Section 3, we show how to compute the different statistics presented
in Section 2. In Section 4 we present a simulation study that compares, under several
alternatives, the powers of the different tests of recurrence rates when varying the test
statistics and the distance functions. In Section 5, we compare the performance of the
recurrence test of independence with others in high dimension and we show that our test
clearly outperforms the rest in almost all cases. In Section 6, we present two applications
of the recurrence test of independence to meteorological data, one of them with small
sample size and the second on involving a huge data set, and we show the ability of
the recurrence rate test to obtain interesting conclusions. Some concluding remarks are
given in Section 7 and the proof of the validity of the formulas established in Section 3
can be found in Section 8.
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2 Test Approach and Different Statistics to Consider

Let (X1, Y1) , (X2, Y2) , ..., (Xn, Yn) be i.i.d. samples of (X,Y ) where X ∈ SX , Y ∈ SY ,
SX and SY are metric spaces, and suppose given r, s > 0. To simplify the notation and
without risk of confusion, we will use the same letter d for the distance function on both
metric spaces, SX and SY .

We define the recurrence rate for the sample of X and Y as

RRXn (r) :=
1

n2 − n
∑
i 6=j

1{d(Xi,Xj)<r}, RRYn (s) :=
1

n2 − n
∑
i 6=j

1{d(Yi,Yj)<s},

respectively, and the joint recurrence rate for (X,Y ) as

RRX,Yn (r, s) :=
1

n2 − n
∑
i 6=j

1{d(Xi,Xj)<r , d(Yi,Yj)<s}.

If we define pX(r) := P (d (X1, X2) < r) the probability that the distance between any
two elements of the sampleX is less than r and pX,Y (r, s) := P (d (X1, X2) < r, d (Y1, Y2) < s)
the joint probability that the distance between any two elements of the sample X is less
than r and any two elements of the sample Y is less than s, the strong law of large
numbers for U -statistics ([11]) allows us to affirm that for any r, s > 0,

RRXn (r)
a.s.→ pX(r), RRYn (s)

a.s.→ pY (s) and RRX,Yn (r, s)
a.s.→ pX,Y (r, s). (1)

We want to test H0 : X and Y are independent, against H1 : H0 does not hold.

If H0 is true, then pX,Y (r, s) = pX(r)pY (s) for all r, s > 0, and we expect that if n is

large, RRX,Yn (r, s) ∼= RRXn (r)RRYn (s) for any r, s > 0. In [14] it is proposed to reject H0

when Tn > c, where

Tn := n

∫ +∞

0

∫ +∞

0

(
RRX,Yn (r, s)−RRXn (r)RRYn (s)

)2
dG(r, s), (2)

where c is a constant and G is a properly chosen distribution function. Observe that Tn
is a functional of the L2 Cramér–von Mises type applied to the process {En(r, s)}r,s>0

where
En(r, s) :=

√
n
(
RRX,Yn (r, s)−RRXn (r)RRYn (s)

)
. (3)

The theoretical results established in [14] about the process defined in (3), are valid
for any distance functions dX and dY , and remains valid if we consider other continuous
functionals such as an L1-Cramér–von Mises type or one of Kolmogorov–Smirnov type.

If (X1, Y1) , (X2, Y2) , ..., (Xn, Yn) are i.i.d. in SX×SY , we will compare the Tn statistic

proposed in [14], which we will call T
(2)
n , defined by

T (2)
n := n

∫ +∞

0

∫ +∞

0

(
RRX,Yn (r, s)−RRXn (r)RRYn (s)

)2
dG(r, s)
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with the statistics defined as

T (1)
n :=

√
n

∫ +∞

0

∫ +∞

0

∣∣RRX,Yn (r, s)−RRXn (r)RRYn (s)
∣∣ dG(r, s)

and
T (∞)
n :=

√
n sup
r,s>0

∣∣RRX,Yn (r, s)−RRXn (r)RRYn (s)
∣∣ .

Observe that in the general case in which X and Y lie in metric spaces (SX , dX) and

(SY , dY ), the statistics T
(1)
n , T

(2)
n and T

(∞)
n depend on the distance functions dX and dY .

In Section 4 we will compare the power under several alternative tests based on T
(1)
n , T

(2)
n

and T
(∞)
n for different distance functions dX and dY .

In the case in which X and Y are discrete time series, we will use the classical l1, l2

and l∞ distances, that is, dX (x, x′) =
∑

n≥1 |xn − x′n| , dX (x, x′) =
√∑

n≥1 (xn − x′n)2

and dX (x, x′) = supn≥1 |xn − x′n| and analogously for dY . Analogously, when X and
Y are continuous time series, we will use the classical L1, L2, L∞ distances, that is,

dX (x, x′) =
∫ +∞
−∞ |x(t)− x′(t)| dt, dX (x, x′) =

√∫ +∞
−∞ (x(t)− x′(t))2 dt and dX (x, x′) =

supt∈R |x(t)− x′(t)| . We will use the notation T
(i,j)
n where i, j = 1, 2,∞ for the statistic

T
(i)
n where the distance functions used are the lj

(
or Lj

)
distance.

In all cases, as proposed in [14], we will use a weight function G such that dG(r, s) =

g1(r)g2(s)drds where g1 and g2 are g1 (z) = ϕ
(
z−µX
σX

)
with ϕ being the density function

of an N (0, 1) random variable and µX = E (d (X1, X2)) , σ
2
X = V (d (X1, X2)) being

X1, X2 independent random variables with the same distribution as X. Analogously,

g2 (t) = ϕ
(
t−µY
σY

)
. In practice µX and σX are unknown, but they can be estimated

naturally by µ̂X = 1
N

∑
i 6=j d (Xi, Xj) and σ̂2X = 1

N

∑
i 6=j (d (Xi, Xj)− µ̂X)2 where N =

n(n− 1), and analogously with µ̂Y and σ̂2Y .

3 Computing the Statistics

Given (X1, Y1) , (X2, Y2) , ..., (Xn, Yn) i.i.d. in SX×SY , and choosen the weight functions

g1, g2 to be used, the statistic T
(1)
n , T

(2)
n and T

(∞)
n can be computed in the steps that

indicated the following three propositions.

Proposition 1. Calculation of T
(2)
n .

Step 1. Compute d (Xi, Xj) and d (Yi, Yj) for all i, j ∈ {1, 2, 3, ..., n} where i 6= j and
put N = n(n− 1).

Step 2. Re-order {d (Xi, Xj)}i 6=j as Z1, Z2, ..., ZN such that Z1 < Z2 < ... < ZN
and {d (Yi, Yj)}i 6=j as T1, T2, ..., TN maintaining the same indexing as Z ′s (that is, if
d (Xi, Xj) = Zh then d (Yi, Yj) = Th).

Step 3. Compute the order statistics for T ′s, that is, T ∗1 < T ∗2 < ... < T ∗N .

4



Step 4. Compute

An =
1

N2

N∑
i=1

N∑
j=1

(1−G1 (max {Zi, Zj})) (1−G2 (max {Ti, Tj})) ,

Bn =

(
1− 1

N2

N∑
i=1

(2i− 1)G1 (Zi)

)(
1− 1

N2

N∑
i=1

(2i− 1)G2 (T ∗i )

)
,

Cn =
1

N3

N∑
i=1

N∑
j=1

N∑
k=1

(1−G1 (max {Zi, Zj})) (1−G2 (max {Ti, Tk})) .

Step 5. Compute
T (2)
n = n(An +Bn − 2Cn).

Proposition 2. Calculation of T
(1)
n .

Step 1. Compute d (Xi, Xj) and d (Yi, Yj) for all i, j ∈ {1, 2, 3, ..., n} where i 6= j and
put N = n(n− 1).

Step 2. Re-order {d (Xi, Xj)}i 6=j as Z1, Z2, ..., ZN such that Z1 < Z2 < ... < ZN
and {d (Yi, Yj)}i 6=j as T1, T2, ..., TN maintaining the same indexing as Z ′s (that is, if
d (Xi, Xj) = Zh then d (Yi, Yj) = Th).

Step 3. Compute the order statistics for T ′s, that is, T ∗1 < T ∗2 < ... < T ∗N .

Step 4. For each h, j ∈ {1, 2, 3, ..., N − 1} compute c(h, j) =
∑h

i=1 1{Ti<T ∗
j+1}, that

is, the number of elements of the vector (T1, T2, ..., Th) that are less than T ∗j+1 for h, j =
1, 2, 3, ..., N − 1.

Step 5. Compute

T (1)
n =

√
n

N

N−1∑
h,j=1

(G1 (Zh+1)−G1 (Zh))
(
G2

(
T ∗j+1

)
−G2

(
T ∗j
)) ∣∣∣∣c(h, j)− jh

N

∣∣∣∣ .
Proposition 3. Calculation of T

(∞)
n .

Step 1. Compute d (Xi, Xj) and d (Yi, Yj) for all i, j ∈ {1, 2, 3, ..., n} where i 6= j and
put N = n(n− 1).

Step 2. Re-order {d (Xi, Xj)}i 6=j as Z1, Z2, ..., ZN such that Z1 < Z2 < ... < ZN
and {d (Yi, Yj)}i 6=j as T1, T2, ..., TN maintaining the same indexing as Z ′s (that is, if
d (Xi, Xj) = Zh then d (Yi, Yj) = Th).

Step 3. Compute the order statistics for T ′s, that is, T ∗1 < T ∗2 < ... < T ∗N .
Step 4. Compute the (N − 1)× (N − 1) matrix C such that

Cij =

∣∣∣∣∣
N∑
k=1

1{Zk≤Zi, Tk≤T ∗
j } −

ij

N

∣∣∣∣∣ .
Step 5. Compute

T (∞)
n =

√
n

N
max
i,j

Cij .
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4 Simulation Study

When X and Y lie in high dimensional spaces, it is interesting to analyse the performance

of the test statistics T
(1)
n , T

(2)
n and T

(∞)
n for different distance functions dX and dY . In

this section we will compare the power of the 9 test statistics T
(i,j)
n for i, j = 1, 2,∞

in the cases in which X and Y are discrete and continuous time series under several
alternatives. In all cases we will use the same distance function for X and Y , that is, if
X and Y are discrete time series, then we will use lj for both X and Y for j = 1, 2,∞,
and analogously in the case in which X and Y are continuous time series. In all cases,
X and Y are time series of length 100 and the power (due to the computational cost)
was calculated at the 5% level from 500 replications. Every p-value was calculated by a
permutation method (as suggested in [14]) for 100 replications.

4.1 The discrete case

We analyse two scenarios for X: one of them is when X is AR(1) where φ = 0.1, which
we call simply AR(0.1) and the second case, is when X is ARMA(2, 1) with parameters
φ = (0.2, 0.5) and θ = 0.2. In both cases we consider three possible Y : Y1 = X2 + 3ε,
Y2 =

√
|X| + σε where σ2 means the variance of

√
|X| and Y3 = εX. In all cases, ε is

a standard Gaussian white noise (N(0, 1)) independent of X. In Table 1 and Table 2
we show the power for n = 30 and n = 50, respectively, in the case in which X is an
AR(0.1) process for the 9 tests considered. Similarly Table 3 and Table 4 show the power
for the case in which X is an ARMA(2, 1) process. Tables 1–4 do not show important

differences between using T
(2)
n , T

(1)
n or T

(∞)
n . In Figure 1 we show the power as a function

of sample size, where the statistic considered is T
(2)
n , that is T

(2,1)
n , T

(2,2)
n and T

(2,∞)
n .

The behaviour of T
(1)
n and T

(2)
n is similar. Figure 1 suggest that the power increases as

the distance function considered goes from d∞ (l∞ distance) to d1 (l1 distance). Also for
the alternative Y = Y2, the statistic based on the l∞ distance has difficulties in detecting
the dependence between X and Y (which grows very slowly as n increases), while for
n = 60 the power of the test based on l1 or l2 distances is near unity.

Table 1: Comparison of powers, at the 5% level, for the different tests, where X is
AR(0.1) and Y1 = X2 + 3ε, Y2 =

√
|X|+ σε, Y3 = εX for sample size of n = 30.

n = 30 T
(1,1)
n T

(1,2)
n T

(1,∞)
n T

(2,1)
n T

(2,2)
n T

(2,∞)
n T

(∞,1)
n T

(∞,2)
n T

(∞,∞)
n

Y = Y1 0.39 0.40 0.29 0.39 0.40 0.24 0.32 0.28 0.16
Y = Y2 0.45 0.22 0.10 0.71 0.52 0.11 0.69 0.19 0.05
Y = Y3 0.91 0.79 0.28 0.87 0.77 0.34 0.92 0.77 0.27

4.2 The continuous case

In this subsection, we will takeX to be a fractional Brownian motion with σ = 1 observed
in [0, 1] (at times 0, 1/100, 2/100, ..., 99/100) for H = 0.5 (standard Brownian motion)
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Table 2: Comparison of powers, at the 5% level, for the different tests, where X is
AR(0.1) and Y1 = X2 + 3ε, Y2 =

√
|X|+ σε, Y3 = εX for sample size of n = 50.

n = 50 T
(1,1)
n T

(1,2)
n T

(1,∞)
n T

(2,1)
n T

(2,2)
n T

(2,∞)
n T

(∞,1)
n T

(∞,2)
n T

(∞,∞)
n

Y = Y1 0.90 0.92 0.74 0.54 0.59 0.47 0.49 0.57 0.34
Y = Y2 0.34 0.50 0.38 0.97 0.81 0.16 0.92 0.89 0.79
Y = Y3 1.00 0.94 0.64 1.00 0.94 0.61 0.99 0.92 0.57

Table 3: Comparison of powers, at the 5% level, for the different tests, where X is
ARMA(2, 1) and Y1 = X2 + 3ε, Y2 =

√
|X|+ σε, Y3 = εX for sample size of n = 30.

n = 30 T
(1,1)
n T

(1,2)
n T

(1,∞)
n T

(2,1)
n T

(2,2)
n T

(2,∞)
n T

(∞,1)
n T

(∞,2)
n T

(∞,∞)
n

Y = Y1 0.85 0.82 0.53 0.83 0.78 0.57 0.77 0.85 0.47
Y = Y2 0.56 0.27 0.08 0.84 0.78 0.34 0.49 0.34 0.08
Y = Y3 1.00 1.00 0.93 0.99 0.93 0.50 0.96 0.88 0.23

and H = 0.7. We consider 7 dependence cases between X and Y . The first three are for
the case in which X is a standard Brownian motion (Bm) and the dependence is defined
by Y1 = X2+3ε, Y2 =

√
|X|+ε, Y3 = εX+3ε′ where ε and ε′ are Gaussian white noises

with σ = 1 such that X, ε and ε′ are independent. In the last 4 alternatives, we explore
the power when Y is a linear functional of X. More explicitly, we will consider the case
in which Y is a fractional Ornstein–Uhlenbeck process driven by a Brownian motion (X)
for H = 0.5 (Bm) and fractional Brownian motion for H = 0.7 (fBm), which we call
the OU and FOU processes, respectively. A particular, a linear combination of FOU ,
which we call FOU(2), and whose definition, theoretical development and simulations
are found in [13] and [12], is a particular case of the models proposed in [1]. More
explicitly, the FOU process is defined by Yt = σ

∫ t
−∞ e

−λ(t−s)dXs (where X = {Xt}

is an fBm), and the FOU(2) process is defined by Yt =
λ1

λ1 − λ2
σ
∫ t
−∞ e

−λ1(t−s)dXs +

λ2
λ2 − λ1

σ
∫ t
−∞ e

−λ2(t−s)dXs (where X = {Xt} is an fBm). When H = 0.5, we will call

them simply the OU and OU(2) processes, as defined in [1]. Tables 5 and 6 gives us
the power for n = 30 and n = 50, respectively, for the 7 alternatives. In these tables,
Y4 means an OU process driven by X with parameters σ = 1, λ = 0.3. Similarly Y5 is
an FOU process with parameters σ = 1, H = 0.7, λ = 0.3, Y6 ∼ OU(2) with parameters
σ = 1, λ1 = 0.3, λ2 = 0.8 and Y7 ∼ FOU(2) with parameters σ = 1, H = 0.7, λ1 =
0.3, λ2 = 0.8. In this paper we do not present the performance of the test for other
choices of the parameters, because the behaviour is similar. As expected, for values of
σ larger than 1, the dependence between X and Y is more difficult to detect, and we
need to increase the sample size. The same occurs if we take λ1 near to λ2 in OU(2)
and FOU(2). Tables 5 and 6 show, as in the discrete case, no substantial differences

between the performance of the three statistics (T
(1)
n , T

(2)
n or T

(∞)
n ). With respect to

which distance between elements of X and Y is more appropriate, Table 5 and Table
6 show that the L∞ distance performs poorly under the alternatives Y1, Y2 and Y3, but

7



Table 4: Comparison of powers, at the 5% level, for the different tests, where X is
ARMA(2, 1) and Y1 = X2 + 3ε, Y2 =

√
|X|+ σε, Y3 = εX for sample size of n = 50.

n = 50 T
(1,1)
n T

(1,2)
n T

(1,∞)
n T

(2,1)
n T

(2,2)
n T

(2,∞)
n T

(∞,1)
n T

(∞,2)
n T

(∞,∞)
n

Y = Y1 0.98 0.98 0.82 0.96 0.97 0.82 0.96 0.96 0.82
Y = Y2 0.76 0.48 0.04 0.98 0.98 0.43 0.65 0.43 0.03
Y = Y3 1.00 1.00 0.74 1.00 1.00 0.77 1.00 1.00 0.75

Figure 1: Power at 5% level under several alternatives for the statistic T
(2)
n using Manhat-

tan distance (T
(2,1)
n in black), Euclidean distance (T

(2,2)
n in blue) and maximum distance

(T
(2,∞)
n in red). Y1, Y2 and Y3 are defined in Tables 1–4.

better under alternatives Y4, Y5, Y6 and Y7. The performance of the L1 and L2 distances
is similar throughout the 7 alternatives. Figure 2 expands the information given in
Table 5 and Table 6 for the cases Y1, Y2 and Y3 because it shows us the power for the
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statistics T
(i,j)
n for i, j = 1, 2,∞ for sample sizes of n = 10 to n = 50. Figure 2 show

clearly that the L∞ distance has a poorer performance than the L1 and L2 distances.

Figure 3 shows the power as a function of sample size for the statistic T
(2)
n in the cases

Y4, Y5, Y6 and Y7. The behaviour of the statistics T
(1)
n and T

(2)
n is similar. Contrary to

what happened in the cases Y1, Y2 and Y3, the L∞ distance performs clearly better than

the L1 and L2 distances. Also, Figure 3 show that the performance of the T
(2)
n statistic

increases as we move from the use of the L1 distance to the use of the L∞ distance.
On the other hand, Figure 3 shows that the power in the case of the OU alternative is
higher than for the OU(2) alternative (and the same for FOU versus FOU(2)), which is
reasonable, because the dependence between X and Y is simpler in the OU (FOU) case
than in the OU(2) (FOU(2)) case. Also, the power in the OU (OU(2)) case is higher
than in the FOU (FOU(2)) case, which is to be expected because when H = 0.7, the
fractional Brownian motion has a long range dependence, therefore it is reasonable that
the dependence between X and Y is more difficult to detect.
To conclude this section, observe that the test of independence based on recurrence rates

has a power that grows as n grows for the 9 statistics considered, T
(i,j)
n for i, j = 1, 2,∞

(as expected according to the theory developed in [14]) in all the alternatives considered
for both the discrete and the continuous cases. In most of the cases, the test has a
power near to unity for moderately small sample sizes. Taking into account what was
observed in this section, it can be said that there is no preference to use the test based

on T
(1)
n , T

(2)
n or T

(∞)
n , but in the three cases, in general the performance is better as the

function distance goes from the L1 (l1) distance to the L∞ (l∞) distance in some cases,
and in the opposite direction for other cases. Therefore, it can be suggested that one
use the test statistic using the L1 (l1) or L2 (l2) distance and the L∞ (l∞) distance to
cover both possibilities.

Table 5: Comparison of powers, at the 5% level, of the different tests, where X ∼ Bm
in alternatives Y1, Y2, Y3, Y4, Y6 and X ∼ fBm with H = 0.7 in alternatives Y5, Y7 where
Y1 = X2 + 3ε, Y2 =

√
|X| + ε, Y3 = εX + 3ε′, Y4 = OU, Y5 = FOU, Y6 = OU(2), and

Y7 = FOU(2) for sample size of n = 30.

n = 30 T
(1,1)
n T

(1,2)
n T

(1,∞)
n T

(2,1)
n T

(2,2)
n T

(2,∞)
n T

(∞,1)
n T

(∞,2)
n T

(∞,∞)
n

Y = Y1 0.70 0.58 0.38 0.79 0.76 0.57 0.66 0.83 0.47
Y = Y2 0.44 0.43 0.27 0.51 0.52 0.22 0.51 0.54 0.22
Y = Y3 0.33 0.42 0.29 0.42 0.41 0.19 0.39 0.37 0.20
Y = Y4 0.69 0.79 0.92 0.58 0.67 0.96 0.43 0.56 0.54
Y = Y5 0.30 0.37 0.53 0.30 0.46 0.81 0.54 0.56 0.25
Y = Y6 0.16 0.21 0.15 0.31 0.38 0.74 0.17 0.16 0.18
Y = Y7 0.07 0.15 0.95 0.18 0.21 0.43 0.07 0.11 0.02
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Table 6: Comparison of powers, at the 5% level, of the different tests, where X ∼ Bm
in alternatives Y1, Y2, Y3, Y4, Y6 and X ∼ fBm with H = 0.7 in alternatives Y5, Y7 where
Y1 = X2 + 3ε, Y2 =

√
|X| + ε, Y3 = εX + 3ε′, Y4 = OU, Y5 = FOU, Y6 = OU(2), and

Y7 = FOU(2) for sample size of n = 50.

n = 50 T
(1,1)
n T

(1,2)
n T

(1,∞)
n T

(2,1)
n T

(2,2)
n T

(2,∞)
n T

(∞,1)
n T

(∞,2)
n T

(∞,∞)
n

Y = Y1 0.90 0.91 0.90 0.93 0.95 0.84 0.89 0.92 0.79
Y = Y2 0.70 0.78 0.46 0.82 0.80 0.44 0.63 0.85 0.33
Y = Y3 0.68 0.67 0.41 0.51 0.62 0.44 0.61 0.67 0.38

Y = Y4 1.00 0.86 1.00 0.75 0.92 0.99 0.74 0.70 0.31
Y = Y5 0.33 0.46 0.97 0.36 0.58 0.98 0.70 0.64 0.29
Y = Y6 0.40 0.48 0.46 0.39 0.58 0.95 0.46 0.55 0.78
Y = Y7 0.06 0.30 1.00 0.22 0.33 0.72 0.17 0.21 0.32

5 Comparison with Other Tests in High Dimension

In [14] the very good performance of the recurrence rates test for random variables and
random vectors was shown. In this section, we will compare our test when X and Y lie
in high dimensional spaces. According to what was shown in the previous section, we

have considered the test using the T
(2,2)
n and T

(2,∞)
n statistics. We will consider three

competitors: the well known distance covariance test proposed in [24] and adapted to
perform better in high dimensions in [23], the Hilbert–Schmidt Information Criterion
proposed in [9], and that proposed more recently in [6] based on random projections.
Basically, this test is based on the idea of choosing K pairs of random directions, and
observing that if X and Y are independent, then the projections of X and Y in each one
of K pairs of directions are independent. This test is universally consistent. To perform
this test, it is necessary to previously choose the number of pairs of projections (K), and
then K independence hypothesis tests are performed. If at least one of these tests rejects
the hypotheses of independence, then H0 is rejected. To work at the 5%level, in [6] it is
proposed to use a Bonferroni correction, that is, to compute the proportion of p-values
smaller than 0.05/K to perform each one of the K uni-dimensional tests. We will call
the RPK test. In Table 7 we present a power comparison at the 5% level, when X is
a realization of a discrete time series of length 100 in three possible scenarios, where
there are three alternatives for Y in each scenario. The performance of RPK is very
bad in these cases, and the power using the Bonferroni correction is 0. For this reason
we present in Table 7 the power of the RPK test using 0.05/4 instead of 0.05/K for

K = 100 random projections. Table 7 shows that our test based on T
(2,2)
n outperforms

the other tests in the 9 cases considered. Table 8 shows a comparison at the 5% level, of
the powers in 12 scenarios in which X and Y are realizations of a continuous time series
viewed at 100 equispaced points in [0, 1]. In this table, we have considered the RPK test
for K = 5 random projections and we have used the Bonferroni correction. We chose
K = 5 projections because this is the value of K for which the power of the RPK test

reaches its maximum. Table 8 shows that our test based on T
(2,2)
n or T

(2,∞)
n outperforms
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Figure 2: Comparison of powers, at the 5% level, where X is a standard Brownian mo-

tion, under several alternatives for the statistics T
(1)
n , T

(2)
n and T

(∞)
n using the Manhattan

distance (T
(i,1)
n in black), Euclidean distance (T

(i,2)
n in blue) and maximum (T

(i,∞)
n in

red) for i = 1, 2,∞. Y1, Y2 and Y3 are defined as in Tables 5 and 6.

the other competitors in 6 scenarios, and the HSIC, DCOV and RPK tests have the best
performance in two cases each.
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Figure 3: Power at the 5% level, under several alternatives for the statistic T
(2)
n using the

Manhattan distance (T
(2,1)
n in black), Euclidean distance (T

(2,2)
n in blue) and maximum

(T
(2,∞)
n in red).

6 Applications to Real Data

In this section we will see a couple of applications to meteorological data. Two applica-
tions to economic data can be found in [15].

6.1 Temperature, humidity, wind and evaporation

In this subsection we consider the meteorological data given in Table 7.2 of [20]. The data
are 46 observations grouped into 11 variables defined as follows: Y1 =“maximum daily
air temperature”, Y2 =“minimum daily air temperature”, Y3 =“integrated area under
daily air temperature curve”, Y4 =“maximum daily soil temperature”, Y5 =“minimum

12



Table 7: Comparison at the 5% level of the powers of the 4 independence tests considered
in the case of discrete time series and different sample sizes. The parameters in the case
ARMA(2, 1) are φ = (0.2, 0.5) and θ = 0.2. The parameter σ in Y =

√
|X|+σε denotes

the standard deviation of
√
|X|. ε denotes a white noise with σ = 1, independent of X.

X ∼ ARMA(2,1) n RPK HSIC DCOV T
(2,2)
n T

(2,∞)
n

Y = X2 + 3ε 30 0.533 0.324 0.282 0.785 0.566
50 0.570 0.381 0.313 0.975 0.825
100 0.660 0.537 0.377 1.000 0.994

Y =
√
|X|+ σε 30 0.549 0.294 0.240 0.779 0.341

50 0.592 0.364 0.270 0.976 0.427
100 0.702 0.572 0.373 0.921 0.860

Y = εX 30 0.466 0.501 0.467 0.925 0.498
50 0.468 0.583 0.535 0.996 0.778
100 0.473 0.674 0.567 1.000 0.984

X ∼ AR(0.1) n RPK HSIC DCOV T
(2,2)
n T

(2,∞)
n

Y = X2 + 3ε 30 0.484 0.134 0.114 0.398 0.236
50 0.487 0.132 0.134 0.592 0.465
100 0.950 0.162 0.131 0.999 0.834

Y =
√
|X|+ σε 30 0.518 0.207 0.182 0.523 0.114

50 0.508 0.222 0.184 0.810 0.157
100 0.509 0.273 0.217 0.698 0.504

Y = εX 30 0.474 0.349 0.331 0.772 0.345
50 0.486 0.380 0.354 0.945 0.613
100 0.507 0.404 0.372 1.000 0.938

X ∼ AR(0.9) n RPK HSIC DCOV T
(2,2)
n T

(2,∞)
n

Y = X2 + 3ε 30 0.886 0.997 0.949 1.000 0.992
50 0.978 1.000 0.993 1.000 1.000
100 1.000 1.000 1.000 1.000 1.000

Y =
√
|X|+ σε 30 0.785 0.887 0.649 0.903 0.778

50 0.924 0.992 0.838 0.998 0.978
100 1.000 1.000 0.993 1.000 1.000

Y = εX 30 0.560 0.933 0.870 1.000 0.948
50 0.562 0.983 0.945 1.000 1.000
100 0.570 1.000 0.985 1.000 1.000

daily soil temperature”, Y6 =“integrated area under daily soil temperature curve”,
Y7 =“maximum daily relative humidity”, Y8 =“minimum daily relative humidity”,
Y9 =“integrated area under daily humidity curve”, Y10 =“total wind (in miles per day)”
and Y11 =“evaporation”. We consider the vectors Z1 = (Y1, Y2, Y3), Z2 = (Y4, Y5, Y6),
Z3 = (Y7, Y8, Y9) and the variables Z4 = Y10 and Z5 = Y11. Taking into account what
was seen in the previous section, that there are no important differences between the use
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Table 8: Comparison at the 5% level of the powers of the 4 independence tests con-
sidered in the case of continuous time series and different sample sizes. Bm and fBm
denote a Brownian motion and fractional Brownian motion with H = 0.7. ε and ε′ are
independent white noises with σ = 1 (and independent of X).

X ∼ Bm n RPK HSIC DCOV T
(2,2)
n T

(2,∞)
n

Y = X2 + 3ε 30 0.767 0.815 0.596 0.757 0.570
50 0.951 0.977 0.829 0.947 0.836
80 0.999 1.000 0.977 0.994 0.968

Y =
√
|X|+ ε 30 0.954 0.906 0.550 0.519 0.224

50 0.998 0.996 0.862 0.802 0.416
80 1.000 1.000 0.992 0.923 0.834

Y = εX + 3ε′ 30 0.054 0.099 0.118 0.421 0.185
50 0.050 0.119 0.125 0.619 0.437
80 0.056 0.128 0.126 0.839 0.648

Y ∼ OU 30 0.765 0.770 0.826 0.651 0.956
50 0.927 0.977 0.988 0.906 1.000
80 0.992 1.000 1.000 0.986 1.000

Y ∼ OU(2) 30 0.574 0.965 0.961 0.374 0.744
50 0.790 1.000 1.000 0.584 0.947
80 0.938 1.000 1.000 0.880 0.998

X ∼ fBm n RPK HSIC DCOV T
(2,2)
n T

(2,∞)
n

Y = X2 + 3ε 30 0.742 0.728 0.544 0.732 0.546
50 0.962 0.946 0.814 0.883 0.758
80 0.997 0.998 0.970 0.987 0.922

Y =
√
|X|+ ε 30 0.962 0.925 0.579 0.580 0.266

50 1.000 0.999 0.902 0.830 0.440
80 1.000 1.000 1.000 0.930 0.680

Y = εX + 3ε′ 30 0.054 0.109 0.125 0.366 0.246
50 0.053 0.098 0.131 0.586 0.404
80 0.062 0.119 0.132 0.804 0.634

Y ∼ FOU 30 0.585 0.394 0.509 0.460 0.806
50 0.760 0.705 0.801 0.581 0.978
80 0.913 0.956 0.984 0.707 1.000

Y ∼ FOU(2) 30 0.443 0.847 0.909 0.206 0.426
50 0.665 0.987 0.996 0.326 0.722
80 0.820 1.000 1.000 0.542 0.928

X ∼ OU(λ1) 30 0.509 0.445 0.462 0.304 0.672
Y ∼ OU(λ2) 50 0.717 0.777 0.769 0.448 0.888

80 0.889 0.978 0.965 0.582 0.980

X ∼ FOU(λ1) 30 0.305 0.180 0.175 0.106 0.332
Y ∼ FOU(λ2) 50 0.475 0.299 0.313 0.204 0.524

80 0.644 0.596 0.574 0.210 0.738
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Table 9: p-values for the test between couples of the Z’s.

Z2 Z3 Z4 Z5

Z1 0.000 0.000 0.109 0.000

Z2 0.000 0.394 0.000

Z3 0.373 0.000

Z4 0.403

of T
(1)
n , T

(2)
n or T

(∞)
n as a test statistic, we apply our independence test between couples

of Z’s using T
(2,2)
n as the test statistic. In Table 9 we show the p-values of our test in each

case. In Figure 4 we show the dependogram of order 2 of the mutual independence test
of the Z’s, that is, the critical values at 5% and 10% and the value of our statistic. The
approximate p-values and critical values were calculated under m = 1000 replications by
a permutation method as has been suggested in [14]. The test concludes that Z1, Z2, Z3

and Z5 are pairwise independent, but the wind (Z4) does not exhibit any dependence
with any of the other variables. On the one hand, these conclusions are equivalent to
those obtained in [3]. On the other hand, we observe that in the cases in which the test
does not reject H0, the difference between the observed and the critical values is very
large. The largest observed value, is 0.2887, reached in the case Z1, Z2.

6.2 Temperature, westbound wind, eastbound wind

In this subsection we will consider the data set formed by the forecast temperature (T ),
westbound wind (U) and eastbound wind (V ) at 850 hPa (around 1200m above sea level)
from each day from January 2012 to December 2012. There are a total of 341 forecasts
due to the fact that 25 data points are missing. The numerical domain is shown in Figure
5 and consists of a total of 117 × 75 = 8775 geographical points. The time horizon of
the forecasts is 24 hours, and they are for 0:00 GMT hour of each day. The numerical
simulations were obtained using the WRF regional model [21], and the initial and lateral
boundary conditions were obtained from the NCEP Global Forecast System, as in [5]. If
we consider (U1, V1, T1), (U2, V2, T2), ..., (U341, V341, T341) where Ui, Vi, Ti ∈ R8775 for all
i = 1, 2, 3, ..., 341, the p-values for the independence test between U and V is equal to
zero, and so on for the test between U and T , and V and T . This is expected because for
each geographical point i, the variables Ui, Vi and Ti are pairwise dependent. Now we
consider (for each day) every vector U ∈ R8775 to be decomposed as U = (U1, U2, ..., U75)
where Ui ∈ R117. In this form, each Ui represents the forecast of the 117 geographical
points at latitude i and can be seen as a discretization of a curve at latitude i, (U(i)).
Here, i = 1 indicates the southeastern most latitude given in Figure 5 and i = 117 the
northeastern most latitude. We consider the first 30 forecasts, corresponding to January
2012. In this way, we get a sample of 30 curves for each latitude i, and we will test
the mutual independence between Ui and Uj for i = 1, 2, 3, ..., 38 and j = 76 − i. We
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Figure 4: Critical values at 5% (blue), 10% (red) and observed values (black) for the
pairwise independence test between the Z ′s variables.

decompose T and V analogously. It is to be expected that, at least for small values of
i, the variables Ui and Uj would be independent, due to the geographical distance, and
the same for the variables V and T . In Figures 6, 7, 8 and 9 we show the dependograms

for the independence test, using T
(2,1)
n and T

(2,∞)
n statistics, between Ui and U76−i for

each i = 1, 2, ..., 38 and the same for the variables V , T and the other combinations

between U, V and T . In Figure 6, similar results between T
(2,1)
n and T

(2,∞)
n are shown.

However, in the case of Ui and Uj , T
(2,∞)
n detects the dependence in more cases than

T
(2,1)
n . Both tests show that when i and j = 76−i are close, then the variables Ui and Uj

are dependent. The same occurs with Vi, Vj and Ti, Tj . Also the geographical region in
which the vectors are dependent is longer for T than for U and V . Figure 7 shows that

T
(2,1)
n performs better than T

(2,∞)
n because for i ≥ 32 the test based on T

(2,1)
n detects a

dependence for both cases: Ui, Vj and Vi, Uj . Figures 8 and 9 show that the tests based

on T
(2,1)
n and T

(2,∞)
n perform similarly. Also, still being geographically close, the vectors

Ui and Tj are independent. However both tests detect a dependence between T : i and
Uj for i = 21 to i = 27 (Figure 8). Figure 9 shows that in most cases, Ti and Vj are
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dependent, while for Vi and Tj the test does not detect a dependence except for the cases
in which i and j are close.

Figure 5: 117× 75 = 8775 geographical points where the daily forecasts are made.

7 Conclusions

In this paper we have proposed several variants to perform the independence test based
on recurrence rates. We have shown how to calculate the test statistic in each one of
these cases. When X and Y lie in high dimensional spaces, we have shown that the
test performs better as the distance function considered goes from the L1(l1) distance
to the L∞(l∞) distance in some cases and in the opposite direction in other cases.
Therefore, the test statistic using the L1(l1) distance and the L∞(l∞) distances to cover
both possibilities can be suggested. From simulations we obtain that in high dimension,
our test clearly outperforms the competitors and widely used tests in almost all the
alternatives considered. The test was performed on two data sets including small and
large sample sizes and we have shown that in both cases the application of the test allows
us to obtain interesting conclusions. Taking this together with the simulations presented
in [14], we can conclude that the independence test based on recurrence rates has very
good performance for random variables, random vectors, and also for random elements
lying in high dimensional spaces.
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Figure 6: Comparison between dependograms for T
(2,1)
n and T

(2,∞)
n intra U, V and T .

8 Proofs

Proof of Proposition 1.

The proof of this proposition is found in [14].

Proof of Proposition 2.

We re-order d (Xi, Xj) with (i, j) ∈ In2 in the form Z1, Z2, ..., Zn. Assume that Z1 <
Z2 < ... < ZN , and we will use T1, T2, ..., TN to denote the values of d (Yi, Yj) using the
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Figure 7: Comparison between dependograms for T
(2,1)
n and T

(2,∞)
n between U and V .

same indexing. We also write T ∗1 , T
∗
2 , ..., T

∗
N for the order statistics of T ′s.∫ +∞

0

∫ +∞

0

∣∣RRX,Yn (r, s)−RRXn (r)RRYn (s)
∣∣ g1 (r) g2 (s) drds =

1

N

∫ +∞

0
g2(s)ds×

∫ +∞

0

∣∣∣∣∣∣
∑
i 6=j

1{d(Xi,Xj)<r, d(Yi,Yj)<s} −
1

N

∑
i 6=j

1{d(Xi,Xj)<r,}
∑
h6=k

1{d(Yh,Yk)<s}

∣∣∣∣∣∣ g1 (r) dr =
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Figure 8: Comparison between dependograms for T
(2,1)
n and T

(2,∞)
n between U and T .

1

N

∫ +∞

0
g2(s)ds

∫ +∞

0

∣∣∣∣∣∣
N∑
i=1

1{Zi<r, Ti<s} −
1

N

N∑
i=1

1{Zi<r}

N∑
j=1

1{Tj<s}

∣∣∣∣∣∣ g1 (r) dr. (4)

Observe that∫ +∞

0

∣∣∣∣∣∣
N∑
i=1

1{Zi<r, Ti<s} −
1

N

N∑
i=1

1{Zi<r}

N∑
j=1

1{Tj<s}

∣∣∣∣∣∣ g1 (r) dr =
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Figure 9: Comparison between dependograms for T
(2,1)
n and T

(2,∞)
n between V and T .

N−1∑
h=1

∫ Zh+1

Zh

∣∣∣∣∣∣
h∑
i=1

1{Ti<s} −
h

N

N∑
j=1

1{Tj<s}

∣∣∣∣∣∣ g1 (r) dr =

N−1∑
h=1

∣∣∣∣∣∣
h∑
i=1

1{Ti<s} −
h

N

N∑
j=1

1{Tj<s}

∣∣∣∣∣∣ (G1 (Zh+1)−G1 (Zh)) .
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Then, (4) is equal to

1

N

N−1∑
h=1

(G1 (Zh+1)−G1 (Zh))

∫ +∞

0

∣∣∣∣∣∣
h∑
i=1

1{Ti<s} −
h

N

N∑
j=1

1{Tj<s}

∣∣∣∣∣∣ g2(s)ds =

1

N

N−1∑
h=1

(G1 (Zh+1)−G1 (Zh))
N−1∑
j=1

∫ T ∗
j+1

T ∗
j

∣∣∣∣∣∣
h∑
i=1

1{Ti<s} −
h

N

N∑
j=1

1{Tj<s}

∣∣∣∣∣∣ g2(s)ds =

1

N

N−1∑
h=1

(G1 (Zh+1)−G1 (Zh))
N−1∑
j=1

∫ T ∗
j+1

T ∗
j

∣∣∣∣c(h, j)− jh

N

∣∣∣∣ g2(s)ds =

1

N

N−1∑
h,j=1

(G1 (Zh+1)−G1 (Zh))
(
G2

(
T ∗j+1

)
−G2

(
T ∗j
)) ∣∣∣∣c(h, j)− jh

N

∣∣∣∣ ,
where c(h, j) =

∑h
i=1 1{Ti<T ∗

j+1} is the number of elements of the vector (T1, T2, ..., Th)

that are less than T ∗j+1 for h, j = 1, 2, 3, ..., N − 1. Thus,

T (1)
n =

√
n

N

N−1∑
h,j=1

(G1 (Zh+1)−G1 (Zh))
(
G2

(
T ∗j+1

)
−G2

(
T ∗j
)) ∣∣∣∣c(h, j)− jh

N

∣∣∣∣ .

Proof of Proposition 3.

In accordance with Steps 1 and 2, we put N = n(n − 1) and re-order {d (Xi, Xj)}i 6=j
as Z1, Z2, ..., ZN such that Z1 < Z2 < ... < ZN and {d (Yi, Yj)}i 6=j as T1, T2, ..., TN
maintaining the same indexing as Z ′s (that is, if d (Xi, Xj) = Zh, then d (Yi, Yj) = Th).

Observe that, to compute T
(∞)
n (r, s) for all r, s > 0 it is enough to compute T

(∞)
n (Zi, T

∗
j )

for every i, j = 1, 2, ..., N. Then, the result follows immediately from Steps 4 and 5.
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[25] G.J. Székely, M.L Rizzo, Brownian distance covariance, The annals of applied statis-
tics, 3(4) (2009) 1236–1265.

[26] S. Wilks, On the independence of k sets of normality distributed statistical variables,
Econometrica, Journal of the Econometric Society, (1935) 309-326.

24


	1 Introduction
	2 Test Approach and Different Statistics to Consider
	3 Computing the Statistics
	4 Simulation Study
	4.1 The discrete case
	4.2 The continuous case

	5 Comparison with Other Tests in High Dimension
	6 Applications to Real Data
	6.1 Temperature, humidity, wind and evaporation
	6.2 Temperature, westbound wind, eastbound wind

	7 Conclusions
	8 Proofs

