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ABSTRACT

The annual ‘‘State of the Climate’’ report, published in the Bulletin of the AmericanMeteorological Society

(BAMS), has included a supplement since 2011 composed of brief analyses of the human influence on recent

major extreme weather events. There are now several dozen extreme weather events examined in these

supplements, but these studies have all differed in their data sources as well as their approaches to defining the

events, analyzing the events, and the consideration of the role of anthropogenic emissions. This study re-

examines most of these events using a single analytical approach and a single set of climate model and ob-

servational data sources. In response to recent studies recommending the importance of using multiple

methods for extreme weather event attribution, results are compared from these analyses to those reported in

the BAMS supplements collectively, with the aim of characterizing the degree to which the lack of a common

methodological frameworkmay or may not influence overall conclusions. Results are broadly similar to those

reported earlier for extreme temperature events but disagree for a number of extreme precipitation events.

Based on this, it is advised that the lack of comprehensive uncertainty analysis in recent extreme weather

attribution studies is important and should be considered when interpreting results, but as yet it has not

introduced a systematic bias across these studies.

1. Introduction

In each year since 2012, a supplement has been pub-

lished along with the annual ‘‘State of the Climate’’ re-

port in the Bulletin of the American Meteorological

Society (BAMS) (Peterson et al. 2012, 2013; Herring

et al. 2014, 2015). Each supplement has consisted of a

collection of studies by different author teams that

looked at extreme weather events that occurred during

the previous year, with the underlying question being

how their properties, including their occurrence, may

have changed as a consequence of anthropogenic cli-

mate change. The BAMS supplements have grown in

size with the first, second, and third supplements con-

sisting of 6, 19, and 22 studies, respectively (this study

was conducted before the fourth supplement was pub-

lished in 2015). A few of these studies have looked at

multiple individual events—for example, one study ex-

amined six different rainfall extremes over the United

States (Knutson et al. 2014b). Given this, we count the

total number of event analyses in these three supple-

ments to be 63. It should be noted, however, that in four

cases more than one paper examines the same event.

These event analyses are listed in Tables S1–S3 in the

supplemental material.

Supplemental information related to this paper is available

at the Journals Online website: http://dx.doi.org/10.1175/JCLI-

D-16-0077.s1.
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There are a number of aspects of extreme weather in

which an anthropogenic role may be discerned (Stott

et al. 2013). Since attribution statements may be sensi-

tive to methods used and data sources (Otto et al. 2012)

[also see studies 33 (Swain et al. 2014), 34 (Wang and

Schubert 2014), and 35 (Funk et al. 2014) in Table S3 in

the supplemental material], this study aims to identify if

the published BAMS attribution results would differ if a

common methodological and data framework were ap-

plied across all events. Understanding the importance of

this sensitivity has been identified as a major priority in

event attribution research (Stott et al. 2013; Titley et al.

2016). To highlight this, the Titley et al. (2016, p. 11)

report specifically mentions that ‘‘bringing multiple

scientifically appropriate approaches together, including

multiple models and multiple studies helps distinguish

results that are robust from those that are much more

sensitive to how the question is posed and the approach

taken.’’ We adopt the attribution concept described in

Stone and Allen (2005) as implemented by Pall et al.

(2011) and D. Stone and P. Pall (2016, unpublished

manuscript). Along with being popular in recent years,

this approach is straightforward to apply on the rela-

tively large number of events being examined here. It

involves the comparison of the probability of extreme

weather under a factual scenario of conditions that oc-

curred around the time of the event (e.g., greenhouse

gas concentrations and ocean temperatures) against the

probability under a counterfactual scenario in which

anthropogenic emissions had never occurred.

To facilitate a systematic investigation, we restrict our

analyses to temperature and precipitation extremes of

one ormore calendar months in length. Both the climate

model used in this study (see section 2) and available

observationally based products may not be applicable

for some events, such as subdaily storms. This reduces

the total number of events considered from 63 to 48. We

further exclude events either where the multiple ob-

servational datasets we use indicate the event was in fact

not extreme (defined here as an anomalous magnitude

having been equaled or exceeded more than 10 times

during the 1961–2010 period) or where our climate

model poorly (what constitutes a poor fit is detailed in

the methods section) simulates the frequencies of ex-

treme temperature or precipitation over the specified

spatial and temporal scales relating to the event. These

additional constraints further reduce the total number of

events for which attribution statements are calculated to

36, as indicated in Tables S1–S3 in the supplemental

material.

It should be stressed that our analyses are comple-

mentary to those performed within the BAMS supple-

ments. However, our systematic approachmay overlook

some issues that are often studied explicitly within

BAMS supplement contributions, such as confirmation

that the dynamics of the extreme events in our climate

model simulations resemble the dynamics of observed

events. Disagreement between our result and that pub-

lished in a BAMS supplement may reflect shortcomings

of either analysis (or both) or the differences in the way

the attribution question was framed (Otto et al. 2015).

The primary aim of this study is to identify event types

for which attribution conclusions may be sensitive to

choice of methodology.

2. Data

Two ensembles of 390 independently and identically

distributed realizations of the period from January 2010

to December 2013 have been constructed using the

CommunityAtmosphereModel, version 5.1 (CAM5.1), a

numerical model of the atmosphere–land system repre-

senting phenomena larger than;18 in longitude–latitude

(Neale et al. 2012). Each realizationwithin an ensemble is

driven by the same external boundary conditions but

starts from a different initial weather state such that each

ensemble represents a spread of possible weather tra-

jectories given the external boundary conditions. The first

ensemble is driven by a factual ‘‘real world’’ (RW) sce-

nario simulating weather that might have occurred under

observed historical boundary conditions. These boundary

conditions include changing greenhouse gas, tropo-

spheric aerosol (prescribed burdens), volcanic aerosol,

and ozone concentrations; solar luminosity; sea surface

temperatures; sea ice coverage; and land cover. The

second ensemble is a counterfactual ‘‘natural’’ (NAT)

scenario, in which emissions from human activities had

not interfered with the climate system. In the NAT sce-

nario, greenhouse gases, tropospheric aerosols, and

ozone have been altered to estimated preindustrial (circa

1855) levels, while ocean temperatures have been cooled

and sea ice coverage expanded according to an estimate

based on output from the international CMIP5 climate

modeling effort (D. Stone and P. Pall 2016, unpublished

manuscript). This adjustment to ocean surface conditions

preserves month-to-month and year-to-year variability,

such as variability related to the El Niño–Southern Os-

cillation phenomenon. It should be noted that, because of

the way in which sea ice concentrations have been im-

posed, the runs in the NAT scenario cool off with time.

Mean temperature differences (RW minus NAT) in

CAM5.1 do not stand out from those in two other

AGCMs (MIROC5 and HadGEM3-A-N216) for the

periods and latitudes over which the examined extremes

occurred (figure not shown). Such an artifact should

only influence attribution statements for temperature
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extremes occurring over polar regions. These CAM5.1

simulations have been produced under the international

Climate of the 20th Century Plus (C20C1) Detection and

Attribution Project (http://portal.nersc.gov/c20c; Folland

et al. 2014; the data can be accessed at http://portal.nersc.

gov/c20c/data.html). All analyses in this paper are based

onmonthly mean output of precipitation and near-surface

air temperature averaged over the regional domains in-

dicated in Figs. S1–S3 in the supplemental material.

Monthly observational data have been obtained from

the Climatic Research Unit Time Series, version 3.22

(CRU TS 3.22; Harris et al. 2014); NOAA Precipita-

tion Reconstruction over Land (PREC/L) on a 2.58

longitude–latitude grid (Chen et al. 2002);GPCC, version

6 (Schneider et al. 2014); and GPCP, version 2.2 (Adler

et al. 2003), products for precipitation; and CRU TS 3.22

and GISTEMP (Hansen et al. 2010) products for 2-m air

temperature. These data are compared against output

from50of theRWsimulations over the 1961–2010 (1979–

2010 for GPCP, version 2.2) period in order to assess the

climate model’s ability to reproduce the type of extreme

weather being analyzed.

3. Methods

The analysis consists of two main steps. The first step

[see the examples in Fig. 1 or Figs. S1–S3 (center) in the

supplemental material for all 48 events] tests the model’s

ability to realistically simulate temperature or pre-

cipitation extremes over the same temporal and spatial

domain as was previously examined in the BAMS sup-

plements. For example, the red curve in Fig. 1d is ob-

tained from 50 RW realizations of the January–February

mean monthly rainfall over California from 1961 to 2010,

sorted in descending order and plotted logarithmically to

focus on the tail of the distribution in which we are in-

terested (in this case, the minimum). The resulting curve

estimates the return values for all possible exceedance

probabilities. The remaining solid curves are similarly

constructed from the two observational temperature

products. We adjust for systematic mean bias in tem-

peratures between the simulations and each of the ob-

servational products by adding to the observations the

difference between the 1961–2010 average of the simu-

lations and of the respective observations; for pre-

cipitation the observations are multiplied by the ratio of

the averages. We bias correct the observations to the

model and not the otherway around becausewe have one

model and multiple observations. As the choice does not

influence exceedance probabilities, this is the favored

approach owing to its relative simplicity.

The uncertainty bars on the model (red) curve are pre-

diction intervals for the return value curve, calculated at a

discrete set of exceedance probabilities as the 5th and 95th

percentiles of the return values estimated separately from

each of the 50 ensemblemembers. If themodel reasonably

characterizes the behavior of extremes, we would expect

the line characterizing a given observational dataset to fall

within approximately 90% of the intervals. Since we are

primarily interested in the model’s ability to simulate ex-

tremes, we consider the prediction intervals for events

rarer than the 30% exceedance probability. The model

passes our ‘‘fit for purpose’’ test if at least 70% of those

intervals include the values from the observation-based

curves. This percentage of intervals, representing how

closely the tail of the model distributions corresponds to

the tails of the observed distributions, is depicted on the

legends in Fig. 1 following the fitness test (FT). If themodel

passes our fitness test and at least one of the observational

products indicates the eventwas indeed extreme (defined as

exceeding the tenthwarmest/coldest/wettest/driest event for

its season and region during the 1961–2010 period), then

analysis for the given event enters the second step wherein

we formulate an attribution statement.

In the second step we calculate the probability ratio

(PR)—a metric characterizing the anthropogenic contri-

bution to the occurrence of the extreme (often also

termed the risk ratio). In this study, PR is defined as the

probability of occurrence in the real world PRW divided

by the probability in the natural world PNAT. If PR . 1,

anthropogenic activities have increased the chance of the

event, while if PR, 1 they have decreased the chance of

the event. Event probabilities are estimated from theRW

and NAT simulations for the year of the event. To define

an extreme event, we construct three different sets of

thresholds. The first set of thresholds is determined by the

magnitude of the actual events according to the obser-

vational datasets. As the multiple observational products

differ from each other, this set comprises multiple cred-

ible thresholds. The second set of thresholds [1in20(c) in

Fig. 2] is determined by the 5th or 95th percentile (1-in-

20-yr event) of the 50-member RW ensemble of 1961–

2010 simulations. As this ensemble has a clear trend

toward warmer temperatures as time evolves, we

construct a third set of thresholds (1in20 in Fig. 2) by

determining the 5th or 95th percentile of the 390 event

realizations for the year of each event from the 2010–13

RW runs—thus, here we define PRW to be 5%.

We estimate PNAT (for all thresholds) and PRW [for

the observationally based and 1in20(c) thresholds] using

only the 390 realizations available for the month/season

and year of the event. Estimation is done in one of two

ways. In most cases, the threshold is either above the

80th or below the 20th percentile of the simulations. In

this case, the peaks-over-threshold (POT) extreme

value statistical methodology (described further below)
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is used to fit a distribution to the tail of the entire sample

of simulations; from this fitted distribution we calculate

the probabilities of the event of interest. However, it is

possible for a threshold to not be that extreme in one set

of simulations (i.e., to be between the 20th and 80th

percentiles). In this case, PRW or PNAT is expressed

simply as the percentage of realizations that exceed the

threshold. This latter situation was encountered in some

estimates of PNAT where a rare cold event in the RW

simulations was common in the NAT simulations.

The peaks-over-threshold analysis fits a distribution

to all the exceedances over a high cutoff using a point

process model, as in Tomassini and Jacob (2009) and

Cooley and Sain (2010). (Note that we use the term

‘‘cutoff’’ rather than ‘‘threshold’’ to distinguish the value

used to define exceedances in the POT analysis from the

value used to define extreme events.) We use a cutoff of

the 80th percentile, for hot/wet events, or the 20th per-

centile, for cold/dry events, of the 390 realizations

available for each scenario for a given event. This point

process approach is equivalent to fitting a generalized

Pareto distribution for excesses over a cutoff and is

consistent with the generalized extreme value (GEV)

distribution for block maxima. The basic parameters of

the point process model can be expressed in terms of

those of a GEV distribution. Using these parameter

FIG. 1. Distributions of simulated and observed historical (1961–2010) climatological data corresponding to

a selection of four of the events: (a) analysis 47 (Lewis and Karoly 2014), concerning a hot event; (b) analysis 63

(Christidis et al. 2014), concerning a cold event; (c) analysis 21 (Dong et al. 2013), concerning a wet event; and

(d) analysis 34 (Wang and Schubert 2014), concerning a dry event. This figure illustrates the first step of the analysis

procedure in which it is determined whether the model simulations (red curve) reasonably match the observations

(the remaining curves). The value following FT represents the percentage of observationally estimated return

values that fall within the prediction intervals (see section 3 for details). The dashed lines are the observed event

magnitudes from a selection of observational datasets. If the binary following the extreme test (ET) is 1 then the

observed event magnitude is deemed extreme, while a 0 denotes that it is not extreme. The distributions for all

events analyzed in this paper are shown in Figs. S1–S3 (center) in the supplemental material. Details of the events

are listed in Tables S1–S3 in the supplemental material.
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estimates, standard calculations provide the estimated

probabilities of exceeding the various event thresholds

(Coles 2001). Uncertainty bars on the best estimate (BE)

of the PRs are calculated by generating 1000 bootstrap

datasets of the RW and NAT realizations. For each

dataset the corresponding PR is calculated (on the log

scale) per the procedures discussed above. This gives a

sample of 1000 log(PR) values that characterize the sam-

pling distribution of the PR estimate. To quantify un-

certainty in the estimated log(PR), we used the basic

bootstrap confidence interval procedure, bywhich lower and

upper uncertainty bars are calculated by BE2 (E95 2 BE)

and BE 2 (E05 2 BE), respectively, where E95 and E05

represent the 95th and 5th percentiles of the 1000

bootstrapped log(PR) values (Davison andHinkley 1997).

4. Results

Frequency distributions of weather for the specified

month/season and year of the event are shown in Fig. 3

as blue (NAT) and red (RW) histograms [see Figs. S1–S3

(right) for all events] for the same selection of events as

in Fig. 1. Also as in Fig. 1, dashed lines in Fig. 3 are the

bias-adjusted observed event magnitudes, as well as the

simulation-based thresholds (see section 3).

PRs for all events found to in fact be extreme in the

observational record, and for which our model is deemed

suitable for the task, are shown in Fig. 2. If the event only

met the extreme requirement for some of the observa-

tional products, then results are only shown for those

products. If none of the observational products meet the

extreme requirement or the model fit is poor—for ex-

ample, in the cases of events 2 and 3 (Funk 2012), re-

spectively (the 2011 East African droughts)—then the

attribution step is not performed. Results for hot, cold,

wet, and dry events are shown in Figs. 2a, 2b, 2c, and 2d,

respectively. For reference, the solid line represents a PR

of unity, meaning the event likelihood is unchanged as a

consequence of anthropogenic emissions. Markers above

or below this line indicate that human activity increased

FIG. 2. PRs (PRW/PNAT) plotted on a logarithmic scale for extremely (a) hot, (b) cold, (c) wet, and (d) dry events.

Markers vary by the threshold used to define the event, with those derived from observational products only shown

if the event passed the ‘‘extremeness’’ test with those products. Framedmarkers indicate the PR is greater than 100

or less than 0.01, which includes cases where the threshold is never exceeded in the natural world simulations. The

90% confidence intervals are calculated using the basic bootstrap technique for the 1in20(c) event definitions (see

section 3). PRs between dashed (PRs of 3/4 and 4/3) horizontal lines (and thus near unity) suggest a neutral at-

tribution conclusion.
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or decreased the event likelihood, respectively. Framed

markers indicate a PR of infinity; that is, PNAT is esti-

mated as zero from the available simulations. Un-

certainty bars have been calculated on the 1in20(c)

markers except for those with best estimates of infinity or

near infinity since in these cases the bootstrap procedure

fails. For these infinity and near-infinity cases, the fraction

of RW realizations exceeding the thresholds lies between

21/390 and 42/390, depending on the event, meaning that

the conclusion of a PR much greater than unity is robust

to the uncertainty in the near-zero PNAT. Uncertainty is

larger for thresholds based on actual events (not shown)

because these thresholds are almost alwaysmore extreme

than the simulation-based thresholds. For example, for

event 33, a low rain event, there are only two RW and

zero NAT values below the CRU TS 3.22 value.

To test whether results are robust to common as-

sumptions regarding the fitted distributions, Fig. S4 in

the supplemental material depicts PRs calculated as-

suming all RW and NAT distributions are Gaussian.

Since we are looking at events with greater than or equal

to one month duration, the aggregation of daily tem-

perature or rainfall data results in a distribution con-

verging on a Gaussian distribution (except possibly for

some low-precipitation events). This assumption may

introduce significant errors in estimating the probability

of the more extreme thresholds. However, assuming

Gaussianity means the fitted curves are unbounded;

thus, a nonzero probability of exceedance is calculated

in every case. This means markers that would otherwise

have been found to be infinity in Fig. 2 now have ex-

tremely high or low, but finite, PRs. Uncertainty has

FIG. 3. Histograms of temperature or precipitation simulated for the specified year, season, and region for

a selection of four of the events: (a) analysis 47 (Lewis and Karoly 2014), concerning a hot event; (b) analysis 63

(Christidis et al. 2014), concerning a cold event; (c) analysis 21 (Dong et al. 2013), concerning a wet event; and

(d) analysis 34 (Wang and Schubert 2014), concerning a dry event. The red and blue histograms consist of 390 RW

and NAT weather realizations specific to the event variable and spatial and temporal domains, respectively. The

colored dashed lines are the observationally based thresholds based on the occurrence of the event, while the black

dashed and dotted lines are the model-based thresholds defined in the text. The histograms for all events analyzed

in this paper are shown in Figs. S1–S3 (right) in the supplemental material. Details of the events are listed in Tables

S1–S3 in the supplemental material.
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been calculated in the same way as in Fig. 2. Given the

similarity between Fig. S4 in the supplemental material

and Fig. 2, we conclude that results are qualitatively

robust to our assumptions concerning the tails of these

distributions.

In Table 1 we summarize all the PRs for each event in

Fig. 2 and the corresponding attribution conclusions

from the BAMS supplement studies into three cate-

gories: the event likelihood increased, decreased, or

hardly changed as a consequence of human activity. The

BAMS supplement published in 2014 (Herring et al.

2014) included a table describing the conclusions of all

of the studies using these categories. The earlier BAMS

supplements (Peterson et al. 2012, 2013) did not include

such a table, however, so we determined the categori-

zation based on the conclusions stated in the papers.

Given the existence of the summary table in Herring

et al. (2014), we believe the BAMS supplements are

intended to be interpreted according to these categories.

Some papers in the earlier supplements expressed con-

clusions in terms of a relation to a long-term warming

over a large area of the ocean, for instance, rather than

anthropogenic emissions of greenhouse gases; in these

cases we referred to the confident detection of human

influence on large-scale warming (Bindoff et al. 2013)

and interpreted the studies as relevant for assessing the

role of human activity. Attribution statements in this

study are conditional on SSTs at the time of the event,

which, for example, may have occurred during an El

Niño or La Niña event. On the contrary, ‘‘general at-

tribution’’ refers to attribution statements not condi-

tional on observed SSTs during the time of the event.

We argue, however, that the boundary conditions are

only one aspect attribution results in a study might be

conditional on. For example, different physics and pa-

rameterizations in models can result in different attri-

bution statements, regardless of whether the models

used are coupled atmosphere and ocean GCMs

or AGCMs.

Based on our calculated PRs, the existence of a human

role is assignedwhen the 1in20(c) error bars and four out

of five (for precipitation; two out of three for tempera-

ture) of the other best-estimate values fall outside a

near-unity PR range of 3/4–4/3 (indicated by the dashed

lines in Fig. 2). We discuss this definition of near unity

further below. Figure 4 shows the allocation of attribu-

tion statements from the BAMS supplements into the

three categories, with the area of the pie charts being

proportional to the number of positive, negative, or

neutral conclusions per event type. The area of each pie

chart filled with gray or white represents the relative

agreement or disagreement between our statements and

those found in the BAMS supplements, respectively.

Usage of a less strict criterion of the 1in20(c) error bars

and three out of five of the other best-estimate values for

precipitation yields a similar result, with two attribution

statements [13 (Rupp et al. 2013) and 30 (King et al.

2013)] switching from neutral to positive.

The comparison in Fig. 4 between the conclusions of

the BAMS supplement studies and our analysis suggests

some sensitivity to the choice of methodology. All but

one (Cattiaux and Yiou 2013) of the discrepancies

concern rainfall events. The influence of emissions on

temperature extremes appears to now be strong enough

that it is robust to the choice of methodology, data

sources, and other factors (Christidis et al. 2012a,b;

Angélil et al. 2014; Fischer and Knutti 2015). The dis-

crepancies between our results and the BAMS conclu-

sions run both ways, with either the respective BAMS

supplement study concluding that human emissions

have played a substantial role whereas we conclude that

they have not, or vice versa.

A crucial element of the comparison between our

conclusions and those of the BAMS supplement studies

displayed in Fig. 4 is the definition of the boundary be-

tween the neutral and nonneutral categories. There is

still no accepted value of the PR for which emissions

should be deemed to have played an important role, and

selection of such a value may well be context specific.

For instance, while a near-zero border may be relevant

for general monitoring of human influence on climate,

civil court casesmay prefer a doubling (Grossman 2003).

Our choice of a 3/4–4/3 range for the neutral category

has in fact been selected in part because it provides a

good overall match to the conclusions of the BAMS

supplement studies; a narrow neutral range alsomatches

the definition of nonneutral in the summary table of

Herring et al. (2014), which effectively uses an in-

finitesimal range for papers that use the PR measure.

Use of a larger 2/3–3/2 neutral range only converts one

dry-positive agreed case to disagreement (Fig. S5 in the

supplemental material). However, a 1/2–2/1 range,

which might be considered the widest range plausibly

labeled neutral, results in complete agreement for all

wet and dry cases concluded to be neutral in the BAMS

supplements but almost complete disagreement for wet

and dry cases concluded to be positive in the BAMS

supplements (Fig. S5 in the supplemental material). The

PR for the temperature-related events are far enough

from unity to be insensitive to these choices.

5. Discussion

The analysis conducted here should not be

considered a full, comprehensive, and unbiased assess-

ment of the role of anthropogenic emissions in extreme
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weather generally. For instance, attribution results in

approximately half of studies reexamined are not con-

ditional on the SSTs at the time of the event while in this

study results are. This study additionally uses a single

estimate of change in SSTs associated with anthropo-

genic greenhouse gas emissions. SST warming patterns

tend to vary betweenmodels leading to large differences

in attribution statements (Lewis and Karoly 2015;

Shiogama et al. 2016). This source of uncertainty is not

accounted for in this study.

Also, the selection of events in this analysis is far from

unbiased. For one thing, the locations of events examined

in the three BAMS supplements correlate strongly with

the authors’ proximity to the event. Another selection

factor may be the degree of anticipated media and public

interest. Both factors may be involved in the strong focus

on Europe, the United States, and Australia (49 of 63

events). An aggravating factor is that researchers are

usually cautious in their analyses for regions where ob-

servational records are known to be poor, but the tight

schedule of the BAMS supplement submission process

hinders that degree of caution. In areas with poor moni-

toring, it becomes imperative to ensure that observational

data or observationally based data are adequate for char-

acterizing the event (e.g., was the event even extreme?)

and either for assessing long-term trends or for evaluating/

calibrating climate models that are used for the assess-

ments. However, even if such biases in the originalBAMS

supplements did not exist, our selection criteria of extreme

and fit for purpose tests may have imposed biases.

For computational tractability, climate models in-

clude approximations to the physical equations

governing the climate system, and differences in

approximations made across climate models can lead to

differences in the climate described by the models. For

instance, Angélil et al. (2014) find that PR estimates for

1-in-1-yr hot and cold extremes could differ between two

climate models by a factor of 2. Bellprat and Doblas-

Reyes (2016) additionally show that the use of a single

climate model for event attribution statements can lead

to overestimated attribution statements. We therefore

stress the importance of using multiple models for

probabilistic event attribution. Additionally, only one

estimate of the attributable ocean warming due to

emissions was used in calculating the sea surface tem-

peratures for the NAT scenario, but there may be a

strong sensitivity to uncertainty in this estimate (Pall

et al. 2011; Shiogama et al. 2014). Accounting for these

uncertainties requires the production of new climate

model data products, as for instance currently un-

derway within the international C20C1 Detection and

Attribution Project (Folland et al. 2014) (and of which

the CAM5.1 simulations used here are a first sub-

mission) and the weather@home project (Massey

et al. 2015).

One of the reasons for our selection of the Pall et al.

(2011) approach has been that it can be applied sys-

tematically across a wide range of event types; some

other approaches require analyses tailored to each

event, such as those performed in Cattiaux and Yiou

(2012, 2013). Our analysis has compared results derived

from one approach against results obtained using a va-

riety of attribution concepts and analysis methods [in-

cluding the Pall et al. (2011) approach itself in some

cases], and although some recent studies have used

multiple attribution frameworks (King et al. 2015), this

study constitutes the first large-scale assessment of the

sensitivity of conclusions regarding the role of emissions

from human activities in the occurrence of extreme

weather events to the choice of methodology. Such an

approach to extreme event attribution has recently been

emphasized in Titley et al. (2016). Titley et al. (2016)

additionally advise the use of multiple observational

and/or reanalysis products for model evaluation. The

suggestion corresponds to recommendations in Angélil

et al. (2016), who find large uncertainty around ex-

ceedance probabilities for rainfall and temperature ex-

tremes among many of the current-generation products

used to evaluate GCMs. It should be briefly noted that

this study does not examine individual events but rather

classes of events, defined by those that exceed (or fall

below for cold events) the observed magnitude of

the event.

FIG. 4. Comparison of trinomial attribution statements (nega-

tive, neutral, or positive) from the BAMS papers, with our state-

ments. The areas of the pie charts are proportional to the number

of BAMS events analyzed in each category shown. A positive or

negative statement among our statements is definedwhen the 1in20

(c) error bars and at least four out of five (rainfall) or two out of

three (temperature) of the remaining BE PRs fall outside a near-

unity range of PR (3/4 and 4/3).
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While the Pall et al. (2011) approach has become

popular in recent years, there remain different views on

what constitutes the concept of attribution (Stott et al.

2013). For example, Titley et al. (2016) and Shepherd

(2016) both identify different concepts of attribution.

The ‘‘storyline’’ concept is one that examines the role of

various factors contributing to the event as it occurred,

while the ‘‘risk based’’ concept answers the question

probabilistically (Shepherd 2016). While these concepts

can be broadly considered as addressing attribution,

they are not identical. Similarly Hannart et al. (2016)

note that current attribution work focuses on the suffi-

ciency aspect but could equally focus on the necessity

aspect. Similarly, while our analysis benefits from su-

perior and more numerous data sources than can be

afforded by most studies on the tight schedule of the

BAMS supplements, the more targeted nature of the

BAMS supplement studies may permit a more thorough

evaluation of the adequacy of the data sources and of the

confidence in conclusions. Thus, the conclusions in our

analysis for each event could be considered similarly

plausible to those in the BAMS supplement studies. In

that sense, discrepancies between our conclusions and

those in the BAMS supplements indicate that un-

certainties in analysis methods have yet to be adequately

considered, particularly concerning precipitation

events. However, considering that disagreements are in

both positive–neutral and neutral–positive directions,

we find no evidence that the selection of methodology

represents a systematic bias in favor of a particular event

attribution conclusion.
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