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Abstract

A project named PERSISTAH (Projetos de Escolas Resilientes aos SISmos no Território

do Algarve e de Huelva, in Portuguese) is being developed. It aims to cooperatively assess

and improve the seismic vulnerability of primary schools in the Algarve (Portugal) and

Huelva (Spain). A large number of schools have to be analysed. In order to determine

which seismic retrofitting technique is optimal, an index-based method is presented in this

paper. It considers three parameters: first, the efficiency of the seismic retrofitting technique

in relation to the structural improvement obtained; second, the cost of the implementation of

the retrofitting technique; and third, the architectural impact. It should be mentioned that a

specific measurement for each solution according to its geometry has been performed.

Also, coefficients to consider the singularities of each analysis and the importance of the

parameters (number of buildings, typology, available funds, etc.) in the study are consid-

ered. The most representative primary school of Huelva has been chosen to test the index-

based method. The most suitable retrofitting techniques for this type of buildings have been

tested. The retrofitting technique which most increased the seismic performance has been

the addition of X and V bracings within the building’s bays. Furthermore, the analyses have

revealed that adding the retrofitting elements in the most vulnerable direction of the building

provides a high efficiency. The results have also shown that implementing techniques of

lower architectural impact gives acceptable results. The analysis of the mean damage level

index has shown that the building would experiment a severe damage. All the retrofitting

techniques applied have reduced it, at least, up to moderate damage. Finally, it should be

noted that the position of the retrofitting elements is also paramount for providing an optimal

retrofitting.
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Introduction

A European research project named PERSISTAH (Projetos de Escolas Resilientes aos SISmos no

Território do Algarve e de Huelva, in Portuguese) is under development [1]. It aims to coopera-

tively assess and improve the seismic vulnerability of the primary schools located in the region

of the Algarve (Portugal) and Huelva (Spain). The region is characterised by large earthquakes

(Mw�6) of long-return periods [2]. This is due to the convergence between the Eurasian and

African tectonic plates, and to the proximity of the acquainted Gibraltar-Azores fault [3].

In Spain and Portugal, schools’ buildings are very vulnerable as well the Italian Schools

described in [4]. This is due to the buildings’ configurations and to their low adult/child ratio.

Their configuration is characterized by the presence of short columns, soft storeys at ground

floors or plan irregularities. These vulnerabilities resulted in much damage in numerous RC

buildings after the 2011 Lorca (Spain) earthquake (Mw = 5.1) and even in collapse [5]. More-

over, most of them were constructed with Reinforced Concrete (RC) frames during the seven-

ties. Therefore, they were mainly built prior to the current seismic codes. These characteristics

make the Algarve-Huelva’s schools considerably vulnerable to earthquakes. In the case of

Huelva, several typologies of buildings have been identified: linear (77 buildings), compact

(88), intersecting (50), juxtaposition (4), sports (10) and prism (16) [1]. They share the same

characteristics regarding the structural elements and the bays’ dimensions, the number of sto-

reys and their height as well as the distribution in plan.

Several policies and agreements have been developed to address the seismic vulnerability of

schools. Generally, they highlight they key role that schools play in creating resilient communi-

ties [6]. Such is the case of the Hyogo [7] and Sendai [8] agreements. In these, it is pointed out

that solutions must be provided to strengthen schools by retrofitting. Moreover, these analyses

must take into account the economic, structural and environmental impact of the solutions

proposed.

There are several retrofitting techniques to improve the seismic behaviour of RC buildings.

In the ATC-40 [9], a classification of these strategies was presented (Fig 1). Among them, the

most implemented strategies are based on the strengthening and stiffening systems and the

enhancing of the building’s deformation capacity. The reduction of the earthquake demand

has also been widely studied. This is based on the addition of base-isolation devices. However,

their implementation is mainly recommended in multi-storey buildings and it is very complex

Fig 1. Retrofitting strategies published in the ATC-40.

https://doi.org/10.1371/journal.pone.0215120.g001
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[10]. Therefore, in this paper, they have not been considered since the Huelva’s schools are of

one to two storeys.

The strengthening and stiffening strategy is essentially based on the addition of shear walls,

bracings and vertical frames within the building’s bays. The effects of adding steel bracings was

experimentally tested in [11][12]. In the latter, the tests results were compared with those from

nonlinear time history analyses of a building’s prototype with bracings. In [13], a comparison

between the effects of implementing shear walls and bracings was carried out. It resulted in

higher values of capacity for the models with bracings rather than the models with walls.

In most studies, an energy dissipation system (damper) is included within the bracings or

the vertical steel frames. The effects of the different damper types have been analysed in differ-

ent studies: fluid viscous in [14], friction in [15] or yield. The latter can be divided according

to the dissipation element: steel plates [16], steel rounds [17], honeycombs [18] or slits [19].

The results of these analyses showed that these systems could provide a considerable improve-

ment in the buildings’ seismic behaviour. A major part of these studies mainly performed

experimental analyses.

Numerous other approaches have been proposed to enhance the buildings’ deformation

capacity. In [20], the effects of the addition of RC jackets and Fibre Reinforced Polymer (FRP)

wrapping in columns were assessed. Nonlinear analyses and experimental tests were carried

out. The effects were compared with those derived from the addition of steel bracings and

shear walls. The results showed that nonlinear static analyses could be considered as a valuable

tool to assess the retrofitting interventions added to existing RC buildings. The effects of the

RC jackets in columns were also experimentally compared with those from the addition of

Carbon Fibre Reinforced Polymer (CFRP) in [21][22][23]. It was pointed out that the position

of these measures is outstanding in order not to generate unfavourable torsional effects.

The seismic retrofitting of schools has been reported in a few studies. In [24], a new algo-

rithm was presented to optimally obtain the amount and the position in which the FRP was

needed. In [25], a fluid viscous damper bracing system was incorporated in a school. It resulted

in an improvement of the seismic behaviour of up to 30%. Moreover, the authors strongly

highlighted the importance of the seismic retrofitting of schools. In addition, a few studies can

be found on the seismic vulnerability of schools. Most of them have been performed in Medi-

terranean countries i.e. Italy, Greece and Turkey. Generally, they were based on probabilistic

analyses as in [26] and [27]. Also, projects focused on the performance of schools during real

earthquakes have been carried out [28]. However, there is a lack of projects that aim to analyse

accurately the seismic vulnerability of schools.

Regarding the construction costs, in the HAZUS [29] method, they can be considered when

improving the seismic behaviour of buildings. Yet, those analyses were not as exhaustive and

accurate as the analyses carried out in this work. Only standard solutions were considered in

HAZUS while in this work, a specific measurement of each solution according to its geometry

has been performed. Also, the construction costs have been taken into account in [30]. The

authors experimentally tested a new slit damper added to RC frames.

For all the aforementioned, it can be observed that there is a lack of papers showing the effi-

ciency of the different seismic retrofitting techniques. Moreover, despite the high amount of

studies on the improvement of the seismic behaviour of RC buildings, their effects in terms of

efficiency, cost and architectural impact have not been obtained and compared. Therefore, a

new index-based method is proposed to obtain the most profitable solution taking into

account these factors. This is especially important when evaluating a large number of

buildings.

As part of the PERSISTAH research project, this paper is focused on the development of an

index-based method for evaluating different seismic retrofitting techniques. It must be taken
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into account that there are many primary schools to evaluate in the PERSISTAH project.

Therefore, this index is proposed to weigh the efficiency, the cost and the architectural impact

of each retrofitting solution. In order to test the index, it is applied to a RC primary school

located in Huelva. The school selected is intended to be representative of the typical primary

schools located in Huelva. The effects of each retrofitting solution added to the school have

been assessed. Therefore, the method will be in compliance with the requirements stablished

in the Hyogo and Sendai agreements. Nonlinear static analyses have been carried out to deter-

mine the efficiency of each solution. Then, the cost has been obtained by measuring the con-

struction costs of the solutions using a database. It should be mentioned that a specific

measurement of each solution according to its geometry has been performed. Finally, each

technique has been classified according to its architectural impact on the school. The results of

this study allow obtaining the most profitable technique that would be the one with the highest

score. The main novelty of this paper is that it aims to obtain a reproducible seismic retrofit-

ting method to assess each technique in terms of efficiency, cost and architectural impact. It

can be applied to assess any building and any retrofitting technique.

Methodology

In this section, the fundamentals that support the methodology proposed in this paper are

exposed. First, the seismic Retrofitting Index is presented (RI). Then, the parameters in which

this index is based on are shown as well as the method of obtaining them. Next, the selected

building’s configuration is presented. Finally, the seismic retrofitting techniques evaluated in

this paper are discussed, including the modelling procedure and characteristics.

The seismic retrofitting index

The RI proposed in this work is based on the assessment of the efficiency, cost and architec-

tural impact of any seismic retrofitting technique for any building. It is focused on the most

outstanding aspects that affect the buildings. The goal is to achieve the most profitable solu-

tion. This is obtained through Eq (1) and it is based on the following parameters: the Efficiency

Index (EI), the Cost Index (CI) and the Architectural impact Index (AI).

1: RI ¼ a
1
dEI þ a

2
bCI þ a

3
gAI ð1Þ

The δ, β and γ coefficients modify the main indexes according to the singularities of each

situation. The procedure to obtain them is shown in the corresponding section of each index.

The α1, α2 and α3 coefficients are the importance factors and are explained in detail later.

The efficiency index (EI). The EI represents the ratio between the basal shear force

resisted by the school with the retrofitting solution and the one resisted without retrofitting.

The δ coefficient represents the ratio between the displacement of the building with the retro-

fitting and the original displacement without retrofitting. The values of shear force and dis-

placements are obtained from the Performance Point (PP) of each situation. The performance

point is based on the capacity-demand spectrum method [31] which provides the seismic per-

formance of the buildings. This point is obtained through the intersection of the building’s

capacity curve and its response spectrum as stabilised in the ATC-40 [9].

The capacity curves have been obtained through nonlinear static analyses in the two

orthogonal directions of the building. Pushover analysis is reasonably successful for low and

medium rise frames buildings [32]. Since the primary schools located in Huelva are of one to

two storeys, this type of analysis is recommendable. Nevertheless, it is subjected to an adequate

modelling of the structure and a careful selection of the lateral load distribution [33]. There-

fore, as established in the EC-8 [34] and the FEMA-273 [35], two loads patterns have been

An index-based method for evaluating seismic retrofitting techniques

PLOSONE | https://doi.org/10.1371/journal.pone.0215120 April 10, 2019 4 / 17

https://doi.org/10.1371/journal.pone.0215120


considered, named pseudo-triangular and modal. The first pattern is based on lateral forces

that are proportional to the total mass and the height product of each building storey. The lat-

ter pattern is based on lateral forces that are equivalent to the displacements of the predomi-

nant mode of vibration. The analyses have been carried out using the SAP2000 v.19 software

[36].

RC elements nonlinear behaviour has been simulated by defining plastic hinges within the

frames. As recommended in [32], default plastic hinges have been added according to the

ASCE-41-13 [37]. The fracture of the frames has been considered brittle since the frames’

transverse reinforcement is not enough to represent a rigid joint. Similarly to [32][38],

PM2M3 plastic hinges have been introduced in the columns while the M3 type has been used

in the beams. PM2M3 plastic hinges consider the axial force and the biaxial moments while

M3 plastic hinges take into account the bending moment [39]. They were introduced at the

ends of the beams and the columns as in [40] and as recommended in the EC-8. Likewise, the

rigid diaphragm effect of the slabs has been considered as in [41]. The contribution of the infill

walls has not been considered as in [42]. By neglecting the contribution of the infills, conserva-

tive capacity curves and performance points have been obtained.

The response spectra have come from the EC-8 and the correspondent Spanish annex [43].

The agr (reference peak ground acceleration on type A ground) has been selected according to

the Spanish update of the values established in [44]. Since the selected school (which will be

described in detail later) is located in Almonte, the agr is 0.1g. The type of soil has been

obtained from the Spanish seismic construction code of buildings (NCSE-02) [45], which con-

siders for the location of the studied building type III. It corresponds to the type of soil C

according to the EC-8. It should be noted that, according to the EC-8, schools are classified as

important class III and their importance factor is 1.3. The importance factor multiplies the

seismic action.

In this research, the criterion to stablish the best capacity curve has been according to the

increase of the shear force resisted by the building with the seismic retrofitting technique. This

criterion has been selected among others due to its simplicity and applicability. The displace-

ment used to compare the increase of the capacity curve has been that of the original un-retro-

fitted building. Other criteria to establish the most efficient solution can be related to the

reduction of the damage level or the displacement of the limit state, the decrease of the tor-

sional effects, and the increase of the stiffness or the ductility.

The construction cost index (CI). The CI represents the ratio between the construction

cost of the cheapest retrofitting solution and the cost of the assessed one. The costs have come

from the measurement of each solution using a Spanish construction costs database [46] and

the “Arquímedes” software [47]. It should be mentioned that a specific measurement of each

solution according to its geometry has been performed. Moreover, the database considered is

sensitive to the workmanship costs. The β coefficient is intended to reflect the importance of

the cost considering the number of buildings to be retrofitted. In this case, a value of one has

been used for the coefficient since only one school has been examined. The value of this

parameter must be chosen carefully when a considerable number of buildings are planned to

be retrofitted.

The architectural impact index (AI). The AI represents the architectural impact that

each retrofitting solution may have on the building. Therefore, a classification is proposed to

establish the different levels of impact (Fig 2). The classification is divided into five, ranging

from 1.0 for the highest architectural impact to a maximum of 1.4 for the lowest impact. The γ
coefficient is related to the importance of the building in terms of protection. If the architec-

tural impact stands out from the other two parameters (efficiency and cost), the value should

be higher. That is the case of heritage buildings where the architectural impact is mandatory.

An index-based method for evaluating seismic retrofitting techniques
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In this case, the school is not protected by any standard; therefore, the selected coefficient has

been one.

The importance factor. The α1, α2 and α3 coefficients are related to the importance that

each index may have for each study. In this paper, they are proposed to sum 1.0. These values

depend on the type of building, the available funds, the number of buildings or the repercus-

sion that the intervention may have. Each expert must define these values according to the spe-

cific situation. In this case, the index-method has been applied to evaluate different retrofitting

techniques to improve the seismic behaviour of RC schools. In this paper, owing to the seismic

hazard of the area and the noticeable number of buildings, the efficiency has been considered

the most important factor. Therefore, the values of α1, α2 and α3 coefficients are 0.6, 0.2 and

0.2, respectively.

Building’s configuration

A two-storey RC frames and ribbed slabs building has been selected to be analysed (Fig 3A). It

was constructed during the seventies and, therefore, designed only for gravitational loads. The

school has been selected as representative of the primary schools located in Huelva. This is due

to a huge amount of buildings in this area sharing the same linear typology, and similar struc-

tural and constructive characteristics i.e. 77 buildings [1]. In Fig 3B, design details of the build-

ing are provided. The RC frames characteristics are shown in Table 1. The thickness of the

Fig 2. Classification of the AI.

https://doi.org/10.1371/journal.pone.0215120.g002

An index-based method for evaluating seismic retrofitting techniques

PLOSONE | https://doi.org/10.1371/journal.pone.0215120 April 10, 2019 6 / 17

https://doi.org/10.1371/journal.pone.0215120.g002
https://doi.org/10.1371/journal.pone.0215120


slabs is 30 cm and the load bearing direction of the all the ribbed slabs is the Y direction

(Fig 4).

The values of the structural materials have been obtained from the school’s original project,

the Spanish technical code of buildings (CTE) [48] and the Spanish reinforced concrete code

(EHE-08) [49]. The designation of the structural materials refers to the old Spanish RC codes.

The RC is designated as HA-175 and the steel rebar as AEH-400. The unit weights are 24.51

kN/m3 and 76.47 kN/m3, respectively. The modulus of elasticity (Ec) are 25,000 MPa and

200,000 MPa, respectively. The RC compressive strength (fck) is 17.5 MPa while the steel mini-

mum yield stress (Fy) is 420 MPa.

Gravitational loads (GL) have also been obtained from the school’s data and the CTE. They

were combined according to the seismic combinations and coefficients established in the

NCSE-02 [45] as shown in Eq (2).

GL ¼ Wþ DLþ 0:3Q ð2Þ

Where W is the weight of the structural elements -i.e., RC beams and columns- DL are the

dead loads -i.e., the weight of the RC ribbed slabs (3.0 kPa), the internal partitions (1 kPa), the

ceiling (0.5 kPa), the ceramic flooring (1 kPa) and the infills (10 kN/m)- and Q is the live load

for public spaces (3 kPa).

Retrofitting techniques

Six different retrofitting techniques have been assessed in this paper and their rehabilitation

indexes have been obtained. The techniques are based on the addition of: steel braces in X and

V positions, shear walls, single steel braces in the beam-column joints, and steel and RC jackets

Table 1. Characteristics of the RC frames.

Characteristic Columns Load beams Tied beams

Dimensions 30x30 cm 60x30 cm 30x30 cm

Longitudinal rebar 4Ø12 mm Top: 2Ø12 mm Top: 2Ø12 mm

Lower: 5Ø16 mm Lower: 2Ø12 mm

Transversal rebar Ø6 mm/15 cm Ø6 mm/20 cm Ø6 mm/20 cm

https://doi.org/10.1371/journal.pone.0215120.t001

Fig 3. School’s distribution in plan and façade (dimensions in metres) (a) and design details (b): column-wide
beam joint reinforcement detailing (superior) and insulating suspended ground floor (inferior).

https://doi.org/10.1371/journal.pone.0215120.g003
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in the columns (Fig 5). These techniques have been selected since they have been widely tested

in numerous studies as has been shown in the state-of-the-art Section. Notwithstanding, their

efficiency has never been compared and neither have their construction costs nor their archi-

tectural impact previously been obtained. The addition of dampers has not been analysed in

this work due to their higher costs.

Fig 4. School’s configuration (dimensions in metres).

https://doi.org/10.1371/journal.pone.0215120.g004

Fig 5. Constructive details of the retrofitting solutions proposed.

https://doi.org/10.1371/journal.pone.0215120.g005
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For each technique, several models have been developed varying the position and the num-

ber of the retrofitting elements. They have been added in only one or in both buildings’ direc-

tions, in one or both storeys or in 25%, 50% or 100% of the columns in the case of the single

braces and jackets. The RI of each solution has been obtained and compared. The total amount

of models and, therefore, RI is 40: 11 models for the case of steel bracings in the X position, 8

models for the V position; 3 for the shear walls, 8 for the single steel braces, 6 for the steel jack-

ets and 4 for the RC jackets (the designation of the models will be shown later).

The dimension of all the steel braces isØ16 mm. The structural steel is S275. Its unit weight

is 76.98 kN/m3, the Ec is 210,000 MPa and the Fy is 275 MPa. The simulation of the addition

of the RC jackets has been carried out by increasing the section of the columns along their

entire length and the steel rebar’s dimension by 30%. The steel jackets addition has been per-

formed by simulating the effects of a steel plate of 30x30x0.5 cm.

The designation of the models has been determined according to the following procedure.

First, the type of retrofitting element is established: steel braces in X (X) or V (V) position,

shear Walls (W), Single Braces (SB), Steel (SJ) and RC Jackets (RCJ). In the case of the three

first techniques, the type is followed by the number of retrofitting elements in the X or Y build-

ing’s direction as well as their position: corner (c) and middle (m). In the case of the SB and

the jackets, the types’ names are followed by the percentage of columns that have been retrofit-

ted. These are followed by the designation of the direction of the retrofitting adding X or Y

after each percentage. All the names are ended with the position of the retrofitting in the sto-

reys. These can be added only in the first floor (F1) or in both storeys (F12).

Results

In this section, the most relevant results obtained from the models analysed are shown. First,

the capacity curves for each situation are displayed. In this work, a total amount of 160 capacity

curves has been obtained. The comparison percentages have been established according to the

shear force of each capacity curve for the displacement of the original performance point. This

is 0.06 m and 0.09 m in the X and Y direction, respectively. Then, the indexes obtained for

each retrofitting technique have been established.

The best capacity curves obtained for each retrofitting technique are shown in Fig 6. In all

of them, the retrofitting elements were added in both storeys. In the case of the X direction, it

can be observed that the most efficient solution was the addition of RC jackets in 50% of the

columns. This improved the capacity curve by up to 75%. Nonetheless, it only improved the

capacity in the Y direction by 31%. The second best solution is the addition of two shear walls

in the middle of the X direction and four in the corners of the Y direction. Furthermore, this is

the most efficient solution in the Y direction. Its implementation resulted in a considerable

improvement of 50% and 103% in the X and Y direction, respectively. In the case of the Y

direction, the second most efficient solution is adding X braces in the same position as the pre-

vious shear walls’ technique. All the same, it only improved the capacity curve in 12.5% and

110% in the X and Y direction, respectively.

In Fig 7, the capacity curves of the models that added retrofitting techniques of minimum

(Fig 7A) and maximum (Fig 7B) architectural impact are plotted. First, in Fig 7A, solutions

that added the retrofitting elements in the same percentage (25%) have been selected to be

compared. The most efficient solutions of minimum architectural impact have been those that

added RCJ and SB in both storeys. These resulted in an improvement of 15% and 9% in the X

direction and of 18% and 5% in the Y direction, respectively. The rest of solutions have not

generated a significant improvement.

An index-based method for evaluating seismic retrofitting techniques
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Then, in Fig 7B, models that added a similar number of retrofitting elements of maximum

architectural impact have been selected. Furthermore, the intention has been to obtain the dif-

ferences between adding the bracings in only one or in the two storeys. The most efficient solu-

tion has been the addition of two X braces in the middle of the X direction and in both storeys.

An improvement of 18% has been obtained in this direction. In the case of the Y direction, the

most efficient solution has been the addition of four X braces in the corner and in both storeys,

resulting in an improvement of 97%.

In Tables 2, 3 and 4, the efficiency, the construction costs and the architectural impact of

each model are listed, respectively. The mean damage level index (DI) has been calculated

according to the EC-8 and to [50] (Table 2). This classification states: (DS0) no damage, (DS1)

slight damage, (DS2) moderate damage, (DS3) severe damage and (DS4) collapse. The DI of

the real building is 3.03 which corresponds to the Damage State 3 (DS3), severe damage.

Fig 6. Capacity curves of the most effective solutions of each retrofitting technique in the X (a) and Y (b) directions.

https://doi.org/10.1371/journal.pone.0215120.g006

Fig 7. Capacity curves of the models adding techniques of minimum (a) and maximum (b) architectural impact in both
directions.

https://doi.org/10.1371/journal.pone.0215120.g007
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The most efficient solution has been the addition of two X braces in the middle of the X

direction and four in the corner of the Y direction in both storeys. By contrast, the least effi-

cient solution has been including two walls in the middle of the X direction in both storeys.

Table 2. The efficiency of each model.

Solution α1 δx EIx δy EIy α1�δ�EI DI Solution α1 δx EIx δy EIy α1�δ�EI DI

X2xm4ycF12 0.60 0.932 1.168 0.761 1.948 0.771 1.87 SB25xyF12 0.60 0.955 1.042 0.994 1.053 0.613 2.72

X4ycF12 0.60 1.008 0.971 0.783 1.985 0.760 2.43 SB25yF12 0.60 0.977 1.010 0.994 1.058 0.612 2.71

V2xm4ycF12 0.60 0.962 1.114 0.939 1.515 0.748 2.45 V2xmF12 0.60 0.955 1.092 0.983 1.007 0.610 2.46

X2xc2ycF12 0.60 0.924 1.152 0.844 1.524 0.705 2.10 SB25yF1 0.60 0.992 0.997 1.011 1.030 0.609 2.78

V4ycF12 0.60 1.000 0.977 0.906 1.489 0.698 2.60 SB25xyF1 0.60 0.970 1.025 0.983 1.028 0.601 2.78

X2xm4ycF1 0.60 0.962 1.052 0.911 1.415 0.690 2.74 X2xcF1 0.60 0.939 1.074 0.989 1.007 0.601 2.61

X2ymF12 0.60 1.000 0.985 0.861 1.524 0.689 2.68 SJ100xyF12 0.60 0.939 1.063 0.994 1.001 0.598 2.79

X4ycF1 0.60 1.000 0.988 0.911 1.412 0.682 2.82 SJ50xyF1 0.60 0.985 1.008 1.000 0.998 0.597 2.92

V2ymF12 0.60 1.000 0.984 0.961 1.266 0.660 2.64 SJ25xyF1 0.60 0.985 1.000 0.994 1.000 0.594 2.79

V2xm4ycF1 0.60 0.970 1.028 0.994 1.206 0.659 2.63 SB25xF12 0.60 0.955 1.040 0.983 1.001 0.593 2.83

V4ycF1 0.60 0.992 0.998 0.983 1.198 0.650 2.75 W2xm4ycF12 0.60 0.689 1.299 0.589 1.830 0.592 2.16

X2ymF1 0.60 0.977 1.005 0.944 1.247 0.648 2.66 RCJ25xyF1 0.60 0.856 1.072 0.928 1.135 0.591 2.68

RCJ50xyF12 0.60 0.682 1.461 0.900 1.238 0.633 2.34 SJ50xyF12 0.60 0.955 1.034 1.000 0.979 0.590 2.91

V2ymF1 0.60 0.985 0.990 1.011 1.118 0.631 2.67 SJ25xyF12 0.60 0.970 1.011 0.989 0.996 0.590 2.85

SB100xyF12 0.60 0.886 1.110 0.894 1.222 0.623 2.57 SB25xF1 0.60 0.970 1.006 0.983 1.003 0.589 2.78

X2xcF12 0.60 0.924 1.151 1.000 1.009 0.622 2.28 SB100xyF1 0.60 0.924 1.015 0.972 1.044 0.586 2.60

X2xmF12 0.60 0.909 1.166 1.000 1.011 0.621 2.41 SJ100xyF1 0.60 0.970 1.005 0.983 0.994 0.586 2.77

V2xmF1 0.60 0.955 1.090 1.006 1.013 0.618 2.55 RCJ25xyF12 0.60 0.795 1.104 0.933 1.140 0.583 2.66

W4ycF12 0.60 0.939 1.062 0.583 1.799 0.614 2.25 RCJ50xyF1 0.60 0.765 1.184 0.839 1.228 0.581 2.40

X2xmF1 0.60 0.955 1.070 1.011 1.012 0.613 2.65 W2xmF12 0.60 0.712 1.230 0.994 1.060 0.579 2.41

https://doi.org/10.1371/journal.pone.0215120.t002

Table 3. The construction cost of each model.

Solution α2 β CI α2�β�CI Solution α2 β CI α2�β�CI

SJ25xyF1 0.20 1.00 1.000 0.200 SB25xyF1 0.20 1.00 0.149 0.030

V2xmF1 0.20 1.00 0.741 0.148 V2xm4ycF1 0.20 1.00 0.144 0.029

X2xmF1 0.20 1.00 0.732 0.146 X2xm4ycF1 0.20 1.00 0.142 0.028

SJ25xyF12 0.20 1.00 0.500 0.100 RCJ25xyF12 0.20 1.00 0.121 0.024

V2xmF12 0.20 1.00 0.371 0.074 SJ100xyF1 0.20 1.00 0.118 0.024

SB25yF1 0.20 1.00 0.370 0.074 SB25xF12 0.20 1.00 0.115 0.023

X2xmF12 0.20 1.00 0.366 0.073 V4ycF12 0.20 1.00 0.089 0.018

V2ymF1 0.20 1.00 0.357 0.071 X4ycF12 0.20 1.00 0.088 0.018

X2ymF1 0.20 1.00 0.351 0.070 X2xc2ycF12 0.20 1.00 0.088 0.018

X2xcF1 0.20 1.00 0.351 0.070 SJ50xyF12 0.20 1.00 0.082 0.016

SB25xF1 0.20 1.00 0.244 0.049 SB25xyF12 0.20 1.00 0.074 0.015

RCJ25xyF1 0.20 1.00 0.242 0.048 SB100xyF1 0.20 1.00 0.072 0.014

W2xmF12 0.20 1.00 0.205 0.041 V2xm4ycF12 0.20 1.00 0.072 0.014

SB25yF12 0.20 1.00 0.185 0.037 X2xm4ycF12 0.20 1.00 0.071 0.014

V4ycF1 0.20 1.00 0.179 0.036 RCJ50xyF1 0.20 1.00 0.061 0.012

V2ymF12 0.20 1.00 0.179 0.036 SJ100xyF12 0.20 1.00 0.059 0.012

X4ycF1 0.20 1.00 0.176 0.035 W4ycF12 0.20 1.00 0.053 0.011

X2ymF12 0.20 1.00 0.176 0.035 W2xm4ycF12 0.20 1.00 0.042 0.008

X2xcF12 0.20 1.00 0.176 0.035 SB100xyF12 0.20 1.00 0.036 0.007

SJ50xyF1 0.20 1.00 0.164 0.033 RCJ50xyF12 0.20 1.00 0.030 0.006

https://doi.org/10.1371/journal.pone.0215120.t003
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Conversely, the cheapest solution has been the addition of SB in 25% of the columns of one

storey. Moreover, it has been also the solution of minimum architectural impact and higher RI

(Table 5). The most expensive solution has been the inclusion of RCJ in 50% of the columns in

Table 4. The architectural impact of each model.

Solution α3 γ AI α3�γ�AI Solution α3 γ AI α3�γ�AI

SJ25xyF1 0.20 1.00 1.400 0.280 SB100xyF12 0.20 1.00 1.225 0.245

RCJ25xyF1 0.20 1.00 1.400 0.280 X4ycF1 0.20 1.00 1.200 0.240

SJ25xyF12 0.20 1.00 1.375 0.275 X2ymF1 0.20 1.00 1.200 0.240

RCJ25xyF12 0.20 1.00 1.375 0.275 X2xmF1 0.20 1.00 1.200 0.240

SB25yF1 0.20 1.00 1.350 0.270 X2xcF1 0.20 1.00 1.200 0.240

SB25xyF1 0.20 1.00 1.350 0.270 V4ycF12 0.20 1.00 1.200 0.240

SB25xF1 0.20 1.00 1.350 0.270 V2ymF12 0.20 1.00 1.200 0.240

SJ50xyF1 0.20 1.00 1.350 0.270 V2xmF12 0.20 1.00 1.200 0.240

RCJ50xyF1 0.20 1.00 1.350 0.270 X4ycF12 0.20 1.00 1.150 0.230

SB25yF12 0.20 1.00 1.325 0.265 X2ymF12 0.20 1.00 1.150 0.230

SB25xyF12 0.20 1.00 1.325 0.265 X2xmF12 0.20 1.00 1.150 0.230

SB25xF12 0.20 1.00 1.325 0.265 X2xcF12 0.20 1.00 1.150 0.230

SJ50xyF12 0.20 1.00 1.325 0.265 V2xm4ycF1 0.20 1.00 1.150 0.230

RCJ50xyF12 0.20 1.00 1.325 0.265 W4ycF12 0.20 1.00 1.150 0.230

SJ100xyF1 0.20 1.00 1.300 0.260 W2xmF12 0.20 1.00 1.150 0.230

SJ100xyF12 0.20 1.00 1.275 0.255 X2xm4ycF1 0.20 1.00 1.100 0.220

V4ycF1 0.20 1.00 1.250 0.250 V2xm4ycF12 0.20 1.00 1.100 0.220

V2ymF1 0.20 1.00 1.250 0.250 W2xm4ycF12 0.20 1.00 1.100 0.220

V2xmF1 0.20 1.00 1.250 0.250 X2xm4ycF12 0.20 1.00 1.050 0.210

SB100xyF1 0.20 1.00 1.250 0.250 X2xc2ycF12 0.20 1.00 1.050 0.210

https://doi.org/10.1371/journal.pone.0215120.t004

Table 5. Rehabilitation index of each model.

Solution RI Solution RI

SJ25xyF1 1.074 V2xm4ycF1 0.917

V2xmF1 1.016 SB25yF12 0.914

X4ycF12 1.008 X2xcF1 0.912

X2xmF1 1.000 SB25xF1 0.907

X2xm4ycF12 0.996 RCJ50xyF12 0.904

V2xm4ycF12 0.983 SB25xyF1 0.901

SJ25xyF12 0.965 SJ50xyF1 0.900

X2ymF1 0.958 SB25xyF12 0.893

X4ycF1 0.958 X2xcF12 0.887

V4ycF12 0.955 RCJ25xyF12 0.882

X2ymF12 0.954 SB25xF12 0.881

SB25yF1 0.953 SB100xyF12 0.875

V2ymF1 0.953 SJ50xyF12 0.871

X2xm4ycF1 0.939 SJ100xyF1 0.870

V4ycF1 0.936 SJ100xyF12 0.865

V2ymF12 0.936 RCJ50xyF1 0.863

X2xc2ycF12 0.933 W4ycF12 0.855

X2xmF12 0.924 SB100xyF1 0.850

V2xmF12 0.924 W2xmF12 0.850

RCJ25xyF1 0.920 W2xm4ycF12 0.820

https://doi.org/10.1371/journal.pone.0215120.t005
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both storeys. The solution of worst architectural impact has been the addition of two X braces

in the corner of both directions and storeys. Finally, the solution of lowest RI has been adding

two walls in the middle of the X direction and four in the corner of the Y direction in both

storeys.

Analysis of the results

In this section, the results from the pushover analyses are analysed and compared. Then, the

values obtained for the efficiency, cost and architectural impact obtained for each solution are

analysed as well as the results obtained for the RI.

The results from the pushover analyses have revealed several differences between the capac-

ity curves of the models including the same and different retrofitting techniques. The addition

of both X and V bracings in one direction barely improved the capacity curve in the other

direction. A similar result has been obtained adding jackets, despite being implemented in

both directions. However, adding shear walls in only one direction noticeably improved the

capacity curve in the other direction up to 30%. This may be due to the considerable thickness

of the walls in the other direction. The addition of SJ in the X direction resulted in a noticeable

improvement while adding RCJ has been proved considerably efficient in this direction, attain-

ing up to 75%. In both cases, the behaviour in the Y direction did not improve.

Conversely, several differences can also be observed from implementing the retrofitting ele-

ments in one or in both storeys. This has been outstanding in the case of the X and the V bra-

cings. A maximum 40% of improvement resulted from comparing the effects of adding the

elements in only one and in both storeys. Yet, it has not been noticeable when adding jackets

in one or both storeys. As for the percentage of implementation in columns, these results

revealed that the addition of SB led to capacity curves of acceptable improvement of the capac-

ity curve in the Y direction. Nevertheless, adding SJ and RCJ has been more efficient.

Regarding the efficiency, it can be observed that the most efficient techniques are mainly

the addition of steel bracings in both X and V positions. Notwithstanding, the latter resulted in

lower values of capacity curves and, therefore, efficiency. The number and position of the ret-

rofitting elements have been determining to improve the efficiency. Since the worst direction

of the building has been the Y, the solutions that only added elements in this direction have

had higher values rather than those that included fewer elements in both directions. The next

effective solution has been adding SB in a considerable percentage, the addition of jackets

being the least efficient technique.

In the case of cost, the cheapest techniques have been the implementation of SJ and SB in

columns. Nonetheless, adding V bracings in one or in both storeys and in only one direction

had an acceptable cost, resulting in better results than adding X bracings. Moreover, consider-

able differences can be found when adding the elements in one or in both storeys for the same

configuration.

The solutions of higher AI have been the addition of jackets and SB. The solutions of higher

impact have been those based on the addition of X and V bracings and walls. All the same, the

V bracings have produced lower values of impact than the X bracings.

The aforementioned notes that the solution of higher RI has been the SJ25xyF1. This added

SB in 25% of the columns of one storey. It has been the most profitable solution due to its min-

imum cost and architectural impact, despite not being the most effective solution. It is followed

by models that implemented V and X bracings mainly in the Y direction. This has been due to

the considerable improvement of the capacity curves in that direction. Adding V bracings led

to better results of RI since their cost and architectural impact are lower than the values for the

X bracings. Solutions that added SB in less than 50% of the columns obtained acceptable values
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of RI. Adding jackets has not been proved to be a profitable solution since their efficiency has

not been considerable enough to compensate their high costs. In order to obtain considerable

values of efficiency, they had to be added in a high percentage of columns, therefore, increasing

their costs.

Conclusions

The region of Huelva is relevant due to its seismic hazard. A study of the area’s school build-

ings has revealed that they have one of the most seismically vulnerable building typologies.

Therefore, a solution is necessary to improve their seismic behaviour in case of an earthquake.

In this paper, a new index-based method for assessing different seismic retrofitting techniques

has been presented and applied to a representative school in Huelva. This is based on the effi-

ciency, cost and architectural impact of each solution in order to comply with the Hyogo and

Sendai agreements. It can be reproduced to assess and compare any building’s typology and

any retrofitting technique. The results have shown that this method is robust and has success-

fully achieved the goal proposed.

The nonlinear static analyses have revealed that just adding retrofitting elements in the

most vulnerable direction of the building can lead to higher values of efficiency than including

fewer elements but in both directions. The addition of bracings, jackets and single braces in

only one direction did not improve the behaviour of the other direction. Contrariwise, the

implementation of walls produced improvements in both directions.

The RI values obtained for each solution have been compared and this has resulted in the

most profitable solutions having been the addition of both X and V bracings. Adding single

steel braces has also been proved to be an acceptable technique to be implemented in the retro-

fitting process of buildings. Moreover, it is concluded that the number and position of the ret-

rofitting elements have been determinant in obtaining higher RI values. It is also noticeable

that adding steel and RC jackets have been the least profitable techniques due to their low val-

ues of efficiency and high costs.

It has also been demonstrated that it is not necessary to add the retrofitting elements in

every column or bay of the building. Selecting the most effective positions for the retrofitting

element implementation should be carefully carried out to obtain a profitable improvement.

The analysis of the DI, according the EC-8 and to [50], has shown that the building would

experiment a severe damage (DS3). All the retrofitting techniques applied have reduced it up

to moderate damage (DS2). Moreover, the solution X2xm4ycF12 has reduced it up to DS1

(slight damage), showing a remarkable improvement regarding the DI.

Finally, the authors want to point out that further research could be carried out to deter-

mine the EI considering other factors such as the damage level, the displacement of the limit

state, the torsional effects, the stiffness and the ductility.
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