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Abstract. Previous fixed point indexes defined for a set-valued

map in an infinite-dimensional space have required the values of

this map to be convex sets. The corresponding assumption of this

paper is that the values be (co-)acyclic sets, i.e., that the reduced

Alexander cohomology group of each of these sets be trivial in

each dimension.

Other assumptions are that the space is locally convex and that

the map is compact and upper semicontinuous with no fixed points

on the boundary of its domain.

The index is defined, proved to be homotopy invariant, and

proved to vanish in case there are no fixed points. The main methods

used are finite-dimensional approximation and the Vietoris-Begle

mapping theorem.

1. Introduction. Let L denote a Hausdorff locally convex linear

topological space (this generality is required since the compactness

condition made later is too strong in infinite-dimensional spaces unless

weak topologies are used). Let B denote a convex open neighborhood of

the origin 0, and suppose that B C\S is bounded for every finite-dimensional

subspace S of L.

Let F be a multi-valued (or set-valued) map on B, that is, for each

xeB let F(x) be a nonempty subset of L. Assume that F is upper semi-

continuous, that is, whenever generalized sequences xx (olgA) and ya

(oleA) converge to x and y respectively with xa, xeB, yxeF(xx) for every

a in a directed set A, then yeF(x). (Thus, in particular, each set F(x) is

closed. If F happens to be single-valued, i.e., each F(x) is a set consisting

of a single point, this is just the assumption that Pis continuous.) Assume

that F is compact, i.e., that cl(F(B))=cl(\Jxeß F(x)) is compact. Assume

that for each xeB the set F(x) is (co-)acyclic, i.e., for each integer

we have Hk(F(x); Z)={0}, where Hk(F(x);Z) denotes the reduced

Alexander cohomology group of F(x) in dimension k with integer coeffi-

cients. (See E. Spanier [7, p. 240, p. 306 ff]. Spanier uses a bar and a

tilde to distinguish this cohomology group. Our notation for the

(unreduced) Alexander cohomology group will be Hk, the same as his.)
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Finally, assume that x^F(x) for every xedB, the boundary of B. These

assumptions are to remain in force for the remainder of this paper.

Many of the details in definition of the fixed point index and proof of

its properties are motivated by the works of A. Granas and J. W.

Jaworowski [4] and Jaworowski [5] who established the corresponding

results for finite-dimensional L. They use homology theory where this

paper uses cohomology theory however, and their coefficient group is

the rationals or the integrals modm, m^.2, whereas this paper uses the

integers, the usual coefficient group for discussions of topological index.

A. Cellina [1], A. Cellina and A. Lasota [2], A. Granas [3], and T.

Ma [6] have proved results related to those of this paper for infinite-

dimensional L in case each set F(x) is convex.1

2. Definition of the index. First we show that C=\Jx<EdB (x—F(x)) is

a closed set. Let cx=xx— yx {a.eA) be a generalized sequence converging

to c, where xxedB, yxeF(xa) for each a in some directed set A. Since

cl(F(B)) is compact we may assume (by selecting a generalized subsequence

if necessary) that yx converges to some point y. But then xx=cx+yx

converges to x=c+y. By the upper semicontinuity of F, yeF(x) and thus

c=x—yeC, so C is closed.

The origin O^C since x$F(x) for any xedB. Let K be any open symmetric

(i.e., K=—K) convex neighborhood of 0 which is disjoint from C. Let

S be any finite-dimensional subspace of L of dimension k^.2 such that

cl(F(B))^S+K={s+k;seS,k(=K}. Finally, let P:cl(F(B))-+S be con-
tinuous with Py—yeK for every yecl(F(B)).

For any X^B, let ^(X)={(x,y)eLxL; xeXandyeF(x)}. Let B(~\S=

B' and dBC\S=dB'. From the upper semicontinuity of fit is immediate

that ^(dB') is closed in LxL. Since dB' and c\(F(B)) are compact, it

follows that @(BB') is compact.

In the space LxL let px and p2 be the projections onto the first and

second factors respectively. The map px has a restriction p:@(dB')—>dB'.

Clearly p is onto, and since ^{dB') is compact, clearly p is a closed map.

For each xedB' and each integer «^0, Hn(p-l(x); Z)=Hn({x} x F(x); Z)^

Hn(F(x); Z) = {0} by assumption. Therefore by the Vietoris-Begle mapping

theorem [7, p. 344] the induced mappingp*: Hn(dB'; Z)-+Hn(&(dB'); Z)

is an isomorphism for each integer h^O. The symbol Z will be omitted for

the remainder of the paper with the understanding that all cohomology

groups are to be taken with integer coefficients.

Consider the map c: eS{E)-^>-L defined by c(x,y)=p1(x,y)—P(p2(x,y))=

x—Py for each (x, y)e@(B). Clearly c is continuous. When (x, y)e&(B)

with xedB we have yeF(x) and c(x,y)=x—Py={x—y)—(Py— y). Since

1 The author wishes to thank Dr. C. Rhee for his seminar which introduced the

author to this literature.
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x—yeC while Py—yeK we have c(x, y)^0. Therefore c has a restriction

r:9(dB')-+S~{Qi} and thus r*:Hn(S~{0})^Hn(&(dB')).

Let p be the usual retraction of P~{0} onto dB. Let h:S~{0}—>-dB' be

the restriction of p. Then h*: Hn(dB')^Hn(S~{0}).

The group /Yt-1(9B') is free with one generator, where k is the dimension

of S. Let w„ be a generator. Then (p*)~1r*h*u0 is in ff^idB') and must

therefore be some integer multiple i of u0:(p*)~1r*h*u0=iu0. We define

this integer i=i[F; K, P, S] to be the fixed point index of F.

3. Proof that the index is well denned. First it must be shown that

there are K, S, and P as required above. Then it must be shown that the

index does not depend on the particular choice of these objects.

The existence of a set K as required follows from the local convexity

of L. Since the open covering {x+K; xecl(F(B))} of the compact set

c\(F(B)) has a finite subcovering xx+K, ■ • • , xn+K, we may take S to be

the linear span of x1; • • • , x„, enlarging S if necessary to insure that its

dimension

For any xeL, let/(x)=inf{w>0; xemK} and let r(u)=l — u for O^w^l

with r(u)=0 for 1 rSw. Then r(f(x)) is a continuous function on L which is

0 if and only if x$K. Then define

Py = 2 rf(y - xAxJ 2 rf(y - xX
!=1 / i=l

For yec\(F(B)) the denominator is never zero and clearly PyeS. Moreover

n In

Py - y = 2 rf(y - x,X*< - y)  I rf(y -
1=1 / t=l

and unless xt— yeK, rf(y—x{)=0. Thus Py— y is a convex linear combi-

nation of elements of A" and thus Py—yeK. This completes the proof that

it is always possible to find suitable K, S, and P.

Let S? be a subspace of L which contains S and has dimension k+1.

We will now prove the crucial fact that i[F; K, P, S] = i[F; K, P, SF]. Let

3S=BC\Sf and dSS=dBr\£P. Let &>+ and £f- be the two closed half-
spaces in Sf determined by S. Then define e+=d&        and sr=dSSr\Sf-.

Consider the commuting diagram

Rk\dB') —    R"-\^{dB'))    *-       Rk-\S~{0})       — ffk-\dB')

X X I I
#*(£-, dB') -* Hk($(E-), 10{dB')) +- Rk(Sf- ~ {0}, S ~ {0}) — #*(<>-,

t t TT
Rk(d@, £+)    Rk{<S(jd®), 3?(£+)) *. i/*(^ ~ {0}, y+ ~ {0}) m £+)

i- -i ■Li'
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The vertical arrows from row one to row two and from row three to row

four come from the exact sequence of a pair [7, p. 308]. The vertical

arrows from row three to row two indicate homomorphisms coinduced by

inclusion maps. The horizontal arrows from column one to column two,

from column three to column two, and from column four to column three

indicate homomorphisms coinduced by the appropriate restrictions of

/>!, c, and p, respectively. Here the fact that c(x,y)^0 for xedB, yeF(x)

and the fact that c(x, y)=x—Pyex+S are crucial in verifying, for

example, that c(^(e+))£^+~{0}.

Standard considerations show that for fe>2, Hk-1{dB')-^Hk{e-, dB'),

Hk(e~, dB')+-Hk(d@, e+), and H\d8ä, e+)^Hk(d&) are all isomor-

phisms.2 The path from right to left along the top row of the diagram

defines the index i[F; K, P, S]. An alternative path with the same endpoints

travels down the right-hand side of the diagram (an isomorphism), along

the bottom (a route defining the index i[F; K, P, SP]), and up along the

left-hand side (the inverse of the previous isomorphism). Thus

If now Si and S2 are any finite-dimensional subspaces of L with S2,

we may construct a chain of subspaces between Sx and S2, each of codi-

mension one in the next, and apply the above result several times to prove

that i[F; K, P, S1] = i[F; K, P, S2].

Now let i[F; Ku P±, Sy] and i[F; K2, P2, S2] be any two indexes of F.

Let K=Klr\Ki. Let S be any finite-dimensional subspace containing

Sx and S2 such that cl(F(B))^S+K, and finally let a continuous

P:cl(F(B))-+S be chosen such that Py-yeK for every y<=cl(F(B)).

It is clear that i[F; K, P, S] = i[F; Klt P, S] and that i[F; Ku Pu S] =

i[F; A1? Px, Stf. We now show that i[F; Ku P, S] = i[F; A1; Pu S] proving

that i[F; K, P, S] = i[F; Ku Pu Sj]. Similarly we will then have

and thus finally i[F; Ku Pu S1] = j"[F; K2, P2, S2]. The indexes i[F; Ku P, S]

and i[F; Kx, Pu S] are defined using the upper and lower paths of the

diagram

i[F; K, P, SP] = i[F; K, P, S].

i[F; K, P, S] = i[F; K2, P2, S2]

2 The author wishes to thank Dr. C. Doyle for his suggestion of the use of these

isomorphisms to connect 5*~1(3ß') and R\d3$).
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where the notation is as in §2 and rx: @(dB')^>-S~{0} is defined by

r1(x,y)=x-P1y for any (x, y)e&(dB'). But r(x, y) = (x-y) + (y-Py)

and r1(x,y) = (x—y) + (y—Ply) are both in the set (x— y)+K1 which does

not contain 0. Therefore the standard linear homotopy between r and rx

remains in S~{0}. Thus r*=r* and the indexes are the same. Hereafter

we denote the index of F by i[F].

4. Elementary properties of the index. It is clear from the definition

of i[F] that it is an integer and depends only on the values of F on dB.

Theorem 1. If i[F]^0, then there exists a fixed point x0eB, i.e., a

point x0eB for which x0eF(x0).

Proof. Assume that x$F(x) for every xeB. Then since x£F(x) for

every xedB, the set R=\JxeE (x—F(x)) is a closed set which does not

contain the origin. Note that C£ R. Let K be a symmetric convex open

neighborhood of the origin which is disjoint from R. Construct S and P

from K and F as in §3 above. Then consider

*

Hk-\B ns)-^ R*-X&(B n S)) v

1 j \Hk-\S ~ {0})«—Hk~\dB O S)

P*   - /r*
Hk~\dB O S) —> Hk-\<g(dB n S)f

where q is the restriction of />, to @(Br\S), rx is the restriction of c to

^{Br\S), and i and/' are inclusions. By the Vietoris-Begle theorem q* is an

isomorphism (here we use for the only time the fact that Fis (co-)acyclic-

valued on B). The proof that r1{tS(BnS))'^S^{Q} rests on the fact that

r1(x,y)=x—Py=(x—y) — (Py—y) with (x—y)eR and (Py—y)eK. By the

commutativity of the diagram and the fact that /*=0, it follows that

i[F]=0.
Definition. Suppose that Q> :dBx [0, 1]—kL is an upper semicontin-

uous, compact, multi-valued map with <E»(.v, /) (co-)acyclic and x$$>(x, t)

for all (x, t)edBx [0,1]. For z'=0, 1, let F^.B^L satisfy the conditions of

section one for the map F, and suppose that ir0(x) = O(x, 0) and F1(x) =

tf>(x, 1) for every xedB. Whenever there exists a <I> as above we say that

the boundary values of F0 and Fy are (co-)acyclically homotopic.

Theorem 2. If the boundary values of F0 and Fr are (co-)acyclically

homotopic, then i(F0) = i(F1).

Proof. The set T=\J^XJ)edBxl0A1 (x—0(x, /)) is closed and does not

contain the origin so we may select a disjoint symmetric convex open

neighborhood K of the origin. Select a finite-dimensional subspace S of L
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with dimension k^2 such that cl(0(3B, [0, 1]))cS+ä:. Select a continuous

P:cl(®(dB, [0, l]))-+S such that Py-yeK for every yecl(^(dB, [0, 1])).

Let

IS = {(x,y, t) e L x L x R; x e dB n S, t e [0, l]jeO(r, OK

= {(*,    t)eL x L x R;xedB n 5", / = 0,yeO(x, 0).

and

^i = {(*,}', t)eL x L x R;xedB r\ S,t = l,jeO(x, 0>-

Then consider the commutative diagram

a

Hk-\dB n S)-> //^(S?) <-Hk-\S ~ {0}) «-/Y^aß n S)

Hk~\<§f)

where a, a0, and 0! are restrictions of the projection of LxLxR onto its

first factor, where b, b0, and /j, are restrictions of the map defined by

b(x, y, t)=x—Py, where e is the usual retraction of 5~{0} onto 3/3 nS,

and where i and j are inclusions. For any xedBnS the Vietoris-Begle

theorem applies to the map sro^CXH-hD, 1] defined by s(x,y, t) = t for any

(x, j, Oea-1^)- Thus a-1^) is (co-)acyclic and the Vietoris-Begle mapping

theorem applied to a proves that a* is an isomorphism. Clearly i(F0) and

i(Fi) are defined using the upper and lower routes from right to left in the

diagram above. Therefore i(F0) = i(F1).
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