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Abstract. In a previous work, the authors introduced the notion of
‘coherent tangent bundle’, which is useful for giving a treatment of singularities
of smooth maps without ambient spaces. Two different types of Gauss–Bonnet
formulas on coherent tangent bundles on 2-dimensional manifolds were proven,
and several applications to surface theory were given.

Let Mn (n ≥ 2) be an oriented compact n-manifold without boundary
and TMn its tangent bundle. Let E be a vector bundle of rank n over Mn,
and ϕ : TMn → E an oriented vector bundle homomorphism. In this paper,
we show that one of these two Gauss–Bonnet formulas can be generalized to
an index formula for the bundle homomorphism ϕ under the assumption that
ϕ admits only certain kinds of generic singularities.

We shall give several applications to hypersurface theory. Moreover, as
an application for intrinsic geometry, we also give a characterization of the
class of positive semi-definite metrics (called Kossowski metrics) which can be
realized as the induced metrics of the coherent tangent bundles.

1. Introduction.

Let Mn be an oriented closed n-manifold and (E , 〈 , 〉 , D) an oriented vector bundle

of rank n having inner product 〈 , 〉 and a metric connection D, that is

X 〈ξ1, ξ2〉 = 〈DXξ1, ξ2〉+ 〈ξ1, DXξ2〉

holds, where ξi (i = 1, 2) are sections of Mn into E and X is a vector field of Mn. A

bundle homomorphism

ϕ : TMn → (E , 〈 , 〉 , D)

is called a coherent tangent bundle if it satisfies

DXϕ(Y )−DY ϕ(X) = ϕ([X,Y ]) (1.1)
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for any two vector fields X,Y on Mn. When n = 2, the authors proved in [19] and [20]

that the two different types of Gauss–Bonnet formulas (χE is the Euler characteristic of

the oriented vector bundle E)

χE =

(
1

2π

∫
M2

K dÂϕ =

)
χ(M2

+)− χ(M2
−) + S+

ϕ − S−
ϕ , (1.2)

2πχ(M2) =

∫
M2

K dAϕ + 2

∫
Σϕ

κϕ dτϕ, (1.3)

under the assumption that the singular set of ϕ consists of A2-points and A3-points, where

K is the Gaussian curvature of the induced metric ds2ϕ = ϕ∗ 〈 , 〉, the two subsets M2
± are

defined in (2.23), dτϕ is the length element on the ϕ-singular set with respect to ds2ϕ, and

S±
ϕ are the numbers of positive and negative A3-points of ϕ, respectively. If f : M2 → R3

is a wave front, and (ϕ :=)df : TM2 → E is the bundle homomorphism induced by f ,

then A2-points (resp. A3-points) correspond to cuspidal edges (resp. swallowtails). The

precise definition of A2 or A3-points are given in Section 2. The authors gave several

applications of this formula in [23] and [24] for surfaces in R3.

We remark that the second formula (1.3) depends on the metric connection D, but

the first formula (1.2) does not need information about the inner product. So it is

natural to expect that one can extend the formula (1.2) to higher dimensional cases.

The purpose of this paper is to accomplish this for even dimensional manifolds without

assuming condition (1.1) as follows: let ϕ : TMn → E be a homomorphism between the

tangent bundle TMn and an oriented vector bundle E of rank n on Mn. Suppose that

ϕ admits only Ak-singular points (the definition of Ak-singular points (k = 2, . . . , n) is

given in Section 2). We denote by Ak (k = 2, . . . , n) the set of Ak-singular points. When

k is odd, we can define the positivity and negativity of Ak-points (see Section 3). We

denote by A+
k (resp. by A−

k ) the set of positive (resp. negative) Ak-singular points. When

n = 2m is an even number, the Euler characteristic χE of the vector bundle E satisfies

the following formula

χE = χ(Mn
+)− χ(Mn

−) +
m∑
j=1

(
χ(A+

2j+1)− χ(A−
2j+1)

)
, (1.4)

where χ(Mn
+) (resp. χ(Mn

−)) is the Euler characteristic of the subset Mn
+ (resp. Mn

−)
of Mn at which the co-orientation induced by ϕ is (resp. is not) compatible with the

orientation of TMn (cf. (2.23)), the number χ(A+
2j+1) (resp. χ(A−

2j+1)) is the Euler

characteristic of A+
2j+1 (resp. A−

2j+1). In particular, χ(A+
2m+1) (resp. χ(A

−
2m+1)) is equal

to the number #A+
2m+1 (resp. #A−

2m+1) of positive (resp. negative) A2m+1-points (cf.

Definition 2.2). For example, the formulas for n = 2, 4 are given by

χE = χ(M2
+)− χ(M2

−) + #A+
3 −#A−

3 , (1.5)

χE = χ(M4
+)− χ(M4

−) + χ(A+
3 )− χ(A−

3 ) + #A+
5 −#A−

5 . (1.6)

Formula (1.5) is a generalization of (1.2). As pointed out by Saeki and Sakuma in

[18], any closed orientable 4-manifold with vanishing signature admits C∞-maps into
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R4 having only fold or cusp singularities. The Z2-version of our formula (1.4) was given

by Levine [11] (see [17, Remark 3.12]). If we set ϕ to be the derivative of a Morin map

f : Mn → Nn, then we get (6.1), which is proved by Nakai [15] and Dutertre–Fukui

[4]. Index formulas in Z2-coefficients for globally defined Morin maps f : Mn → Np

(n ≥ p) are given by Fukuda [6] and Saeki [17], and formula (1.4) is a generalization

of them. Our proof is independent of those in [15] and [4]. More precisely, we apply

the Poincaré–Hopf index formula for sections of oriented vector bundles. (In [15] and

[4], Viro’s integral calculus [25] is applied.) Our index formula does not rely on ambient

spaces, and we can give applications even for a case without ambient space (cf. Section

7).

In fact, one of the important applications of (1.4) is for a certain class of positive

semi-definite metrics. We define a class of positive semi-definite metrics on manifolds

called ‘Kossowski metrics’ which was originally defined by Kossowski [10] for 2-manifolds.

The induced metrics of wave fronts in Rn+1 which admit only Ak+1-singularities (k =

1, . . . , n) are all Kossowski metrics. Conversely, Kossowski [10] showed that germs of real

analytic generic Kossowski metrics on 2-manifolds can be realized as the first fundamental

forms of wave fronts in R3.

Let (E , ϕ, 〈 , 〉 , D) be a coherent tangent bundle over an n-manifold Mn then the

pull-back of 〈 , 〉 by ϕ gives a Kossowski metric on Mn whenever ϕ admits only non-

degenerate singular points (Proposition 7.7). The converse assertion for n = 2 was proved

in [7]. In this paper, we generalize this for n ≥ 3, namely, we show that each Kossowski

metric ds2 induces a coherent tangent bundle (E , ϕ, 〈 , 〉 , D) such that ds2 = ϕ∗ 〈 , 〉
and the pull-back of the connection D by ϕ coincides with the Levi–Civita connection on

the regular set of ϕ (cf. Theorem 7.9). We then get an index formula (cf. Corollary 7.12)

for Kossowski metrics on compact manifolds admitting only Ak+1-singularities (k =

1, . . . , n).

To give other applications of formula (1.4), the case of E = TMn is important. An

arbitrarily given bundle automorphism ϕ : TMn → TMn can be identified with the set

of (1, 1)-tensors on Mn (n = 2m), and (1.4) reduces to the following identity:

2χ(Mn
−) =

m∑
j=1

(
χ(A+

2j+1)− χ(A−
2j+1)

)
. (1.7)

In Section 6, we give several applications of (1.4) and (1.7) for geometry of hypersurfaces.

The paper is organized as follows: in Section 2, we give a precise definition of Ak-

singularities. In Section 3, the well-definedness of the positivity and negativity of odd

order A2k+1-singular points is shown. Moreover, we define characteristic vector fields

with respect to the homomorphism ϕ : TMn → E and show the existence of such a

vector field X defined on Mn. It is well-known that the sum of all indices of zeros of

a generic section Y of E is equal to the Euler characteristic χE of the oriented vector

bundle E . Since the section Y := ϕ(X) of E has finitely many zeros, it holds that

χE =
∑

p∈Mn\Σn−1

indp(Y ) +
∑
p∈A2

indp(Y ) + · · ·+
∑

p∈An+1

indp(Y ), (1.8)



420 K. Saji, M. Umehara and K. Yamada

where

Σn−1 := A2 ∪ · · · ∪ An+1

is the singular set of ϕ. Using this, we prove (1.4) in Sections 4 and 5. In Section 6,

we prove Theorems 6.3 and 6.6. Several other applications are given in Section 6 and

Section 7.

2. Preliminaries.

Let Mn be an oriented n-manifold and ϕ : TMn → E a bundle homomorphism

between the tangent bundle TMn and a vector bundle E of rank n on Mn. Then a point

p ∈ Mn is called a singular point if the linear map ϕp : TpM
n → Ep has a non-trivial

kernel, where Ep is the fiber of E at p. Since Mn is oriented, we can take a non-vanishing

n-form Ω defined on Mn which is compatible with the orientation of Mn. We call Ω an

orientation of Mn.

On the other hand, E is locally oriented, that is, there is a non-vanishing section

μ of the determinant line bundle of the dual bundle E∗ of E defined on a neighborhood

U(⊂Mn) of a given point p ∈Mn. We call μ a local orientation of E .
Then there is a (unique) C∞-function λ : U → R such that

ϕ∗μ = λΩ, (2.1)

on U , where ϕ∗μ is the pull-back of μ by ϕ. A point q ∈ U is a singular point if and only

if λ(q) = 0. A singular point q ∈ Mn is called non-degenerate if the exterior derivative

dλ does not vanish at q. The bundle homomorphism ϕ is called non-degenerate if all the

singular points are non-degenerate. If ϕ is non-degenerate, the singular set

Σn−1 := {q ∈Mn ; Ker(ϕq) 	= {0}}

is an embedded hypersurface of Mn, where Ker(ϕq) is the kernel of the linear mapping

ϕq : TqM
n → Eq.

Definition 2.1. Let U be an open subset of Mn. A function h : U → R is called

a ϕ-function if there exists a C∞-function σ : U → R \ {0} such that

h = σλ (2.2)

on U , where λ is the function as in (2.1).

Needless to say, λ itself is a ϕ-function. However, λ depends on the choice of Ω and

μ, and this ambiguity is just corresponding to the choice of ϕ-functions. In the following

discussion, we may replace λ by an arbitrarily fixed ϕ-function.

Suppose that ϕ is non-degenerate. Then the kernel of ϕ at each singular point

p ∈ Σn−1 is of dimension 1. In particular, there exists a smooth vector field η̃ defined on

a sufficiently small neighborhood U(⊂Mn) of p such that the restriction

η := η̃|U∩Σn−1
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has the property that ηq is the generator of the kernel of ϕq for each q ∈ U ∩ Σn−1. We

call η a null vector field and η̃ an extended null vector field (cf. [21, p. 733]). For a given

extended null vector field η̃, we often denote by η the restriction of η̃ to Σn−1. We set

η̃λ := dλ(η̃), η̃η̃λ(= η̃2λ) := d
(
η̃λ

)
(η̃), (2.3)

and

η̃k+1λ := d
(
η̃kλ

)
(η̃) (k = 0, 1, 2, . . . ), (2.4)

inductively. As a convention, we set η̃0λ := λ.

Definition 2.2. Let ϕ : TMn → E be a non-degenerate bundle homomorphism

and Σn−1 its singular set. A point p ∈ Σn−1 is an Ak+1-point (1 ≤ k ≤ n) if

(1) λ(p) = η̃λ(p) = · · · = η̃k−1λ(p) = 0, η̃kλ(p) 	= 0, and

(2) the Jacobi matrix of the Rk-valued C∞-function

Λ := (λ, η̃λ, . . . , η̃k−1λ)

is of rank k at p.

We denote by Ak+1 the set of Ak+1-points on Mn.

Suppose that ϕ : TMn → E is a non-degenerate bundle homomorphism. If k =

1 (namely, for A2-points), then dΛ = dλ and the condition (2) of Definition 2.2 is

automatically satisfied. Moreover, if k = 2, the condition (2) also follows from (1). In

fact, the two differential forms dλ and d(η̃λ) are linearly independent at p, since dλ(p) 	=
0, η̃λ(p) = 0 and η̃2λ(p) 	= 0. In other words, the second condition of Definition 2.2

comes into effect only for k ≥ 3 if ϕ is non-degenerate.

Let ϕ : TMn → E be a bundle homomorphism. Suppose that ϕ : TMn → E is

non-degenerate and the singular set Σn−1 is non-empty. Then the map

ϕ̂ : TΣn−1 → Ê := ϕ(TMn|Σn−1) (2.5)

is induced.

Proposition 2.3. In this situation, Ê is a vector bundle of rank n − 1 on Σn−1,

and ϕ̂ : TΣn−1 → Ê is a bundle homomorphism.

We call ϕ̂ the reduction of ϕ. By Proposition 2.3, Ê is a subbundle of codimension

one of E .

Proof. We fix a point p ∈ Σn−1 arbitrarily. It is sufficient to show the existence

of linearly independent local sections s1, . . . , sn−1 of Ê defined on a neighborhood of p in

Σn−1. Since ϕ is non-degenerate, there exists an extended null vector field η̃ defined on a

local coordinate neighborhood (U ;x1, . . . , xn) centered at p. Without loss of generality,
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we may assume that η = ∂/∂xn holds at p. Since the kernel of ϕ is one dimensional,

sj := ϕ (∂/∂xj) (j = 1, . . . , n− 1) has the desired property. �

The following two assertions (cf. Theorems 2.4 and 2.5) gives fundamental properties

of the reduction homomorphism.

Theorem 2.4. Let Σn−1 be the singular set of a non-degenerate bundle homomor-

phism ϕ : TMn → E. Let λ : U → R and η̃ be a ϕ-function and an extended null vector

field defined on an open subset U(⊂ Mn), respectively. Then the following assertions

hold :

(1) The singular set Σn−2 ∩ U of ϕ̂|U satisfies

Σn−2 ∩ U = {q ∈ Σn−1 ∩ U ; η̃q ∈ TqΣ
n−1} = {q ∈ Σn−1 ∩ U ; λ = η̃λ = 0}.

(2) η̃λ is a ϕ̂-function defined on Σn−1 ∩ U .

Proof. It can be easily checked that η̃q ∈ TqΣ
n−1 if and only if q ∈ Σn−2 for each

q ∈ Σn−1 ∩ U . Thus, we get the equality

Σn−2 ∩ U = {q ∈ Σn−1 ∩ U ; η̃q ∈ TqΣ
n−1} = {q ∈ Σn−1 ∩ U ; η̃λ(q) = 0},

proving the assertion (1).

If ϕ̂ has no singular points on Σn−1 ∩ U , then η̃q 	∈ TqΣ
n−1 for all q ∈ Σn−1 ∩ U ,

and thus η̃λ has no zeros, so the assertion (2) is trivially true. So we may assume that

the singular set Σn−2 ∩ U of ϕ̂ is not empty.

We now fix a point p ∈ Σn−2 ∩U , and take a local coordinate system (V ; y1, . . . , yn)

centered at p such that V ⊂ U . Since ϕ is non-degenerate, we may assume that ∂λ/∂y1 	=
0 at p. By the implicit function theorem, there exists a function y1(y2, . . . , yn) such that

y1(0, . . . , 0) = 0 and

λ
(
y1(y2, . . . , yn), y2, . . . , yn

)
= 0.

If we set

x1 := λ, xj := yj (j = 2, . . . , n), (2.6)

then (W ;x1, . . . , xn) gives a new local coordinate system at p if we choose W (⊂ V )

sufficiently small. We can write

η̃ = b∂1 +

n∑
j=2

cj∂j (2.7)

on Σn−1 ∩W , where we set

∂j := ∂/∂xj (j = 1, 2, . . . , n).

Then we have that
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b(q) = η̃λ(q) (q ∈ Σn−1 ∩W ). (2.8)

Since η̃λ(p) = 0 and η̃(p) 	= 0, we may assume that c2(p) 	= 0 without loss of generality.

If we set ei := ϕ(∂i) (i = 1, 2, . . . , n), then

e2 = − η̃λ

c2
e1 −

n∑
j=3

cj
c2

ej (2.9)

holds on Σn−1 ∩W for a sufficiently small W . We fix an inner product 〈 , 〉 on E . We

can take a local unit section u of E defined on Σn−1 ∩W such that u is orthogonal to

e1, . . . , en. Then Ê defined by (2.5) is equal to the subbundle of E which is orthogonal

to u. Let μ be a local orientation of E on W . It is obvious that u, e1, e3, . . . , en are

linearly independent on Σn−1 ∩W , and so we may assume that

δ := μ(u, e1, e3, . . . , en)

is a positive valued function on Σn−1 ∩ W . Since Ê is the subbundle of E which is

orthogonal to u,

μ̂(v1, . . . ,vn−1) := μ(uq,v1, . . . ,vn−1) (v1, . . . ,vn−1 ∈ Êq, q ∈W )

gives a local orientation of Ê , and a ϕ̂-function λ̂ : W → R of Ê is given by

λ̂ := μ̂(e2, . . . , en) = μ(u, e2, . . . , en)

= − η̃λ

c2
μ(u, e1, e3, . . . , en) = −

δ

c2
η̃λ,

which proves the assertion (2), since p is an arbitrarily fixed point of Σn−1 ∩ U . �

Moreover, the following assertion holds.

Theorem 2.5. Let k be an integer satisfying 1 ≤ k ≤ n. Under the same assump-

tions as in Theorem 2.4, p ∈ U is an Ak+1-point of ϕ if and only if p (is a non-degenerate

singular point of ϕ̂ and) is an Ak-point of ϕ̂, where A1-points mean regular points.

The restriction of the null vector field η̃ to Σn−1 is not tangent to Σn−1 in general.

To prove Theorem 2.5, we now construct an extended null vector field ζ̃ as a modification

of η̃ as follows: as in the proof of Theorem 2.4, we fix a point p. Let (W ;x1, . . . , xn) be

the local coordinate system centered at p given in the proof of Theorem 2.4. By (2.7)

and (2.8),

ζ̃ = η̃ − (η̃λ)∂1

⎛
⎝=

n∑
j=2

cj∂j

⎞
⎠ (2.10)

gives an extended null vector field of ϕ̂ on Σn−1 ∩W . Let μ1, . . . , μr be fixed smooth

functions on W . For two C∞-functions f , g on W , we write
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f ≡ g mod (μ1, . . . , μr)

if there exist C∞-functions h1, . . . , hr defined on W such that

f − g = h1μ1 + · · ·+ hrμr.

The following lemma is obvious:

Lemma 2.6. If f ≡ g mod (μ1, . . . , μr), then it holds that

η̃f ≡ η̃g mod (μ1, . . . , μr, η̃μ1, . . . , η̃μr).

We prove the following assertion.

Proposition 2.7. The equalities

η̃j+1λ ≡ ζ̃j(η̃λ) mod (η̃λ, . . . , η̃jλ) (j = 1, . . . , k − 1) (2.11)

hold on W .

Proof. We prove the assertion by induction on j. If j = 1, we have that (cf.

(2.10))

ζ̃(η̃λ) =
(
η̃ − (η̃λ)∂1

)
(η̃λ) = η̃(η̃λ)− η̃λ(η̃λ)x1

≡ η̃2λ mod (η̃λ).

So we now assume that (2.11) holds and consider the case of j + 1. It holds that

ζ̃j+1(η̃λ) = ζ̃(ζ̃j(η̃λ)) = η̃(ζ̃j(η̃λ))− η̃λ(ζ̃j(η̃λ))x1
.

In particular

ζ̃j+1(η̃λ) ≡ η̃(ζ̃j(η̃λ)) mod (η̃λ). (2.12)

On the other hand, applying Lemma 2.6 to (2.11), we have

η̃(ζ̃j(η̃λ)) ≡ η̃(η̃j+1λ) mod (η̃λ, . . . , η̃j+1λ). (2.13)

By (2.12) and (2.13), we get the assertion for j + 1. �

Proof of Theorem 2.5. By (1) of Theorem 2.4, p ∈ Σn−1 is an A2-point if and

only if η̃λ(p) 	= 0. By (2) of Theorem 2.4, η̃λ is a ϕ̂-function, and thus η̃λ(p) 	= 0 if and

only if p is a regular point of ϕ̂. This proves the assertion for k = 1. So we now consider

the case that k ≥ 2. We set λ1 := η̃λ. Since k ≥ 2, we have

λ(p) = λ1(p) = 0. (2.14)

Under this assumption (2.14), p satisfies (1) of Definition 2.2 if and only if

η̃λ1(p) = · · · = η̃k−2λ1(p) = 0, η̃k−1λ1(p) 	= 0. (2.15)
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By Proposition 2.7, this is equivalent to the condition

ζ̃λ1(p) = · · · = ζ̃k−2λ1(p) = 0, ζ̃k−1λ1(p) 	= 0. (2.16)

On the other hand, we can take a local coordinate system (x1, . . . , xn) centered at p such

that (cf. (2.6))

(1) λx1(p) 	= 0 and λx2(p) = · · · = λxn(p) = 0,

(2) (x2, . . . , xn) gives a local coordinate system of Σn−1 at p.

The existence of this coordinate system yields that p satisfies (2) of Definition 2.2 if and

only if the Jacobi matrix of the Rk−1-valued C∞-function

Λ1 := (η̃λ, . . . , η̃k−1λ) = (λ1, η̃λ1, . . . , η̃
k−2λ1)

is of rank k − 1 at p. By Proposition 2.7, Λ1 has the same rank as the function

Λ̂1 := (λ1, ζ̃λ1, . . . , ζ̃
k−2λ1)

at p. Together with (2.16), we get the assertion. �

For the sake of simplicity, we denote η̃λ as in (2.3) by λ̇, and

λ̇ := η̃λ, λ̈ := η̃2λ, . . . , λ(k) := η̃kλ (2.17)

from now on.

Let p be an Ak+1-point of a non-degenerate homomorphism ϕ : TMn → E . We

fix an extended null vector field η̃ defined on a neighborhood U of p. Then for each

j = 1, . . . , k − 1, it holds that (cf. Definition 2.14)

(1-j) λ(p) = λ̇(p) = · · · = λ(j−1)(p) = 0, and

(2-j) the Jacobi matrix of the Rj-valued C∞-map Λ := (λ, λ̇, . . . , λ(j−1)) is of rank j at

p.

By the implicit function theorem, there exists a neighborhood Vj(⊂ U) of p and an

(n− j)-dimensional submanifold Sn−j such that

Sn−j = {q ∈ Vj ; λ(q) = λ̇(q) = · · · = λ(j−1)(q) = 0}. (2.18)

So we set V :=
⋂k

j=1 Vj .

Lemma 2.8. The restriction ϕ|V : TV → E|V of ϕ induces the j-th non-degenerate

reduction homomorphism

(ϕ|V )(j) : TΣn−j
V −→ E(j) (j = 1, . . . , k)

such that the singular set Σn−j−1
V of (ϕ|V )(j) satisfies

Σn−j−1
V = Sn−j−1 (2.19)
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and λ(j) : V → R gives a (ϕ|V )(j)-function, where Σn−j
V is the singular set of (ϕ|V )(j−1).

Proof. When j = 1, Theorem 2.4 implies the assertion. We show the assertion

inductively. We assume that the (j − 1)-th reduction (ϕ|V )(j−1) : TΣn−j+1
V → E(j−1)

exists and the equality

Σn−j
V = Sn−j (2.20)

holds and λ(j−1) is a (ϕ|V )(j−1)-function. Since p is an Ak+1-point, Theorem 2.5 yields

that p is an Ak−j+2-point of (ϕ|V )(j−1). Since k ≥ j, the reduction

(ϕ|V )(j) : TΣn−j
V −→ E(j),

is non-degenerate if we choose a sufficiently small V , where Σn−j−1
V is the singular set of

(ϕ|V )(j). Then (1) of Theorem 2.4 implies that

Σn−j−1
V := {q ∈ Σn−j

V ; ηq ∈ TqΣ
n−j
V }.

Since ηq ∈ TqΣ
n−j
V holds if and only if

λ(j)(q) = dλ(j−1)(ηq) = 0,

we have that

Σn−j−1
V = {q ∈ Σn−j

V ; ηq ∈ TqΣ
n−j
V } = {q ∈ Σn−j

V ; λ(j)(q) = 0}.

Moreover, by (2.20),

Σn−j−1
V = {q ∈ Σn−j

V ; λ(j)(q) = 0} = {q ∈ Sn−j ; λ(j)(q) = 0} = Sn−j−1. (2.21)

We fix a (ϕ|V )(j)-function λj : Σn−j
V → R. Since we have shown that (ϕ|V )(j) is non-

degenerate, dλj 	= 0 on Σn−j−1
V . By (2.21), the zeros of λ(j) coincide with those of λj .

Then the division property of C∞-functions yields that there exists a C∞-function germ

σ on Σn−j
V such that

λ(j) = σλj .

Since dλ(j)(p) 	= 0 by (2) of Definition 2.2 we have σ(p) 	= 0, namely λ(j) is also a

(ϕ|V )(j)-function. Thus we proved the j-th step of the induction procedure. �

Since the singular set of the j-th reduction ϕ(j) does not depend on the choice of λ

and η̃, we get the following assertion.

Proposition 2.9. Let p be an Ak+1-point of a non-degenerate homomorphism

ϕ : TMn → E, and η̃ an extended null vector field defined on a neighborhood U of p.

Then there exists a neighborhood V (⊂ U) of p such that

Σn−j
V : = {q ∈ V ; λ(q) = · · · = λ(j−1)(q) = 0}
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= {q ∈ Σn−j+1
V ; η̃q ∈ TqΣ

n−j+1
V } (j = 1, . . . , k)

is an (n − j)-dimensional submanifold of V . Moreover, each Σn−j
V does not depend on

the choice of λ and η̃. Furthermore, the following equalities hold

A2 ∩ V = Σn−1
V \ Σn−2

V , . . . ,Ak ∩ V = Σn−k+1
V \ Σn−k

V , Ak+1 ∩ V = Σn−k
V ,

where Aj+1 (j = 1, . . . , k) is the set of Ak-points of ϕ.

In this paper, we mainly discuss on bundle homomorphisms having only Ak+1-

singularities (1 ≤ k ≤ n), so we give the following definition.

Definition 2.10. A non-degenerate homomorphism ϕ : TMn → E is called a

Morin homomorphism if the set of singular points of ϕ consists of Ak-points for k =

2, 3, . . . , n + 1. A Morin homomorphism ϕ is called of depth k if Ak+1-points exist but

there are no Ak+2-points on Mn.

The following assertion follows immediately from the definition of Morin homomor-

phisms.

Proposition 2.11. Let ϕ : TMn → E be a non-degenerate homomorphism and

p ∈Mn an Ak+1-point. Then there exists a neighborhood U of p such that the restriction

of ϕ into U gives a Morin homomorphism.

Proof. Take an extended null vector field η̃ defined on U . Since p is an Ak+1-

point, there exists a neighborhood U of p such that

• λ(k) 	= 0 on U , and

• the Jacobi matrix of Λ as in Definition 2.2 is of rank k on U ,

where λ is a local ϕ-function defined on U . Let q ∈ U be a singular point of ϕ. Then

there exists a positive integer j(≤ k) such that

λ(0)(q) = · · · = λ(j−1)(q) = 0, λ(j)(q) 	= 0.

Then q is an Aj+1-point, proving the assertion. �

Moreover, as a corollary of Theorem 2.5, we get the following assertion.

Proposition 2.12. Let ϕ : TMn → E be a Morin homomorphism of depth k(≥ 2).

Then its reduction ϕ̂ : TΣn−1 → Ê is a Morin homomorphism of depth k − 1.

Suppose that ϕ : TMn → E is a Morin homomorphism of depth k. By Proposition

2.9,

Σn−j := {p ∈Mn ; λ(p) = · · · = λ(j−1)(p) = 0} (j = 1, . . . , k)

does not depend on the choice of a ϕ-function λ and the extended null vector field η̃,

that is, it is well-defined as an (n− j)-dimensional submanifold of Mn, and
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A2 = Σn−1 \ Σn−2 , . . . , Ak = Σn−k+1 \ Σn−k, Ak+1 = Σn−k.

In this case, we give the following conventions

Ak+j+1 = Σn−k−j = ∅ (1 ≤ j ≤ n− k).

We now consider the case that E is orientable. Then, there is a non-vanishing section

μ of the determinant line bundle of the dual bundle E∗ of E defined on Mn. We call μ

an orientation of E . In this case, there is a unique C∞-function λ : Mn → R such that

ϕ∗μ = λΩ, (2.22)

where Ω is an orientation of Mn. We call λ the ϕ-function associated to μ and Ω defined

on Mn. We set

Mn
+ := {p ∈Mn ; λ(p) > 0}, Mn

− := {p ∈Mn ; λ(p) < 0}. (2.23)

Then Σn−1 coincides with the boundary ∂Mn
+ = ∂Mn

−.

Definition 2.13. Let ϕ : TMn → E be a non-degenerate bundle homomorphism

and λ a ϕ-function associated to μ and Ω. A ϕ-function τ : U → R defined on an open

subset U(⊂Mn) is called an oriented ϕ-function if there exists a positive valued function

σ ∈ C∞(U) such that τ = σλ on U .

Our definition of Morin homomorphisms is motivated by the existence of the fol-

lowing two typical examples: Let m, n be two positive integers. Two differentiable

map germs fi : (R
m, pi) → (Rn, qi) (i = 1, 2) are right-left equivalent if there exist dif-

feomorphism germs ψ : (Rm, p1) → (Rm, p2) and Ψ : (Rn, q1) → (Rn, q2) such that

Ψ ◦ f1 = f2 ◦ ψ.

Definition 2.14. The Morin-k-singularities (1 ≤ k ≤ n) are map germs which

are right-left equivalent to

f(x1, . . . , xn) =
(
x1xn + x2(xn)

2 + · · ·+ xk−1(xn)
k−1 + (xn)

k+1, x1, . . . , xn−1

)
at the origin. The Morin-0-singularities mean regular points.

Example 2.15. Let Mn and Nn be oriented n-manifolds, and let f : Mn → Nn

be a C∞-map having only Morin singularities. Then the differential df of f canonically

induces a Morin homomorphism (cf. Appendix of [21])

ϕ = df : TMn −→ Ef := f∗TNn.

Let ωMn and μNn be the fundamental n-forms of Mn and Nn, respectively. Then there

exists a C∞-function λ on Mn such that f∗μNn = λωMn , which gives an oriented ϕ-

function. The set Mn
+ (resp.Mn

−) coincides with the set where λ > 0 (resp. λ < 0).

The sign of λ coincides with the sign of the Jacobian of f with respect to oriented
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local coordinate systems of Mn and Nn. In this case, Morin-k-points of the map f are

Ak+1-points of the homomorphism ϕ = df (see [21, Theorem A1]). When (Nn, ds2) is a

Riemannian manifold, then the pull-back bundle f∗TNn on Mn has a canonical coherent

tangent bundle structure (cf. [24]).

Definition 2.16. The Ak+1-type singularity (or Ak+1-front singularity) is a map

germ defined by

X �−→

⎛
⎝(k + 1)tk+2 +

k∑
j=2

(j − 1)tjxj ,−(k + 2)tk+1 −
k∑

j=2

jtj−1xj , X1

⎞
⎠ (2.24)

at the origin, where X = (t, x2, . . . , xn) and X1 = (x2, . . . , xn). Its image coincides with

the discriminant set {F = Ft = 0} ⊂ (Rn+1;u0, . . . , un) of the versal unfolding

F (t, u0, . . . , un) := tk+2 + ukt
k + · · ·+ u1t+ u0. (2.25)

By definition, A1-front singularities are regular points. A 3/2-cusp in a plane is an

A2-front singularity and a swallowtail in R3 is an A3-front singularity.

Example 2.17. Let f : Mn → Rn+1 be a wave front which admits only Ak+1-

type singularities (k = 1, . . . , n). Suppose that f is co-orientable, that is, there exists

a globally defined unit normal vector field ν along f . Let f∗TRn+1 be the pull-back

of TRn+1 by f , and consider the subbundle Ef of f∗TRn+1 whose fiber Ep at p ∈ Mn

is the orthogonal complement of νp. Then the differential df of f induces a bundle

homomorphism

ϕf = df : TMn � v �−→ df(v) ∈ Ef

called the first homomorphism of f as in [22, Section 2], which gives a Morin homomor-

phism (cf. Appendix of [21]). Consider the function

λ := det(fx1
, . . . , fxn

, ν),

where fxi := ∂f/∂xi (i = 1, . . . , n) and (x1, . . . , xn) is an oriented local coordinate system

of Mn. Then λ is an oriented ϕ-function of Ef , and the set Mn
+ (resp. Mn

−) coincides

with the set where λ > 0 (resp. λ < 0). Moreover, Ak+1-front singular points of the map

f are Ak+1-points of the homomorphism ϕ = df (see [21, Corollary 2.5]). As in the case

of the previous example, Ef has a canonical coherent tangent bundle structure (cf. [24]).

Remark 2.18. As seen in Examples 2.15 and 2.17, our definition of Ak-points gives

a unified intrinsic treatment of singularities of both Morin maps of the same dimension

and the Ak-singularities appearing in hypersurfaces in Rn+1. In this intrinsic treatment,

the usual k-th singular points for Morin maps and the Ak+1-points for wave fronts are

both regarded as Ak+1-points of bundle homomorphisms. In other words, the order of

singularities of Morin maps is not synchronized with the order of singularities of the

corresponding bundle homomorphisms. For example, a fold (i.e. a Morin-1-singularity)

and a cusp (i.e. a Morin-2-singularity) induce an A2-point and an A3-point of bundle
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homomorphism, respectively.

3. Characteristic vector fields.

We fix a Morin homomorphism ϕ : TMn → E , where Mn is an oriented compact n-

manifold. We now suppose that E is oriented, and fix an oriented ϕ-function λ : Mn → R.

Then the singular set Σn−j (j = 0, . . . , n) of the (j − 1)-th reduction ϕ(j−1) defined in

the previous section is an orientable submanifold of Mn, unless it is empty.

Proposition 3.1. If k (2 ≤ k ≤ n) is even, then the sign of the function λ(k) does

not depend on the choice of the extended null vector field η̃.

Proof. Even if we change the extended null vector field η̃ to −η̃, the sign of the

function λ(k) on the set Σn−k does not change, since k is even. �

Hence, for each even integer k (2 ≤ k ≤ n), we can set

Σn−k
+ := {p ∈ Σn−k ; λ(k)(p) > 0}, Σn−k

− := {p ∈ Σn−k ; λ(k)(p) < 0}.

As a convention, we define Σn
+ = Mn

+ and Σn
− = Mn

−, where Mn
± are as in (2.23). Also,

the following assertion holds:

Proposition 3.2. Let k be an odd positive integer, and p an Ak+1-point. Then

the scalar multiple λ(k)η of the null vector field η along Σn−k points toward the domain

Σn−k+1
+ at p, where Σn := Mn.

Proof. We now take a Riemannian metric ds2 on Mn. We denote by ds2n−k+1 the

Riemannian metric of Σn−k+1 induced by ds2. Then the hypersurface Σn−k embedded

in Σn−k+1 can be characterized as the level set λ(k−1) = 0. Then we have that

ds2n−k+1

(
η̃p, grad(λ

(k−1))p
)
= dλ(k−1)

p (η̃p) = λ(k)(p),

where “grad” denotes the gradient of the function with respect to the metric ds2n−k+1.

Thus ds2n−k+1

(
λ(k)η̃, grad(λ(k−1))

)
is positive at p. Since grad(λ(k−1)) gives a normal

vector field along Σn−k pointing toward Σn−k+1
+ , the assertion is proven. �

Definition 3.3. Let ϕ : TMn → E be a Morin homomorphism and p an A2k+1-

point. Since the sign of λ(2k)(p) does not depend on the ±-ambiguity of the choice of

extended null vector field η̃ (cf. Proposition 3.1), we call p a positive A2k+1-point (resp.

a negative A2k+1-point) if λ
(2k)(p) is positive (resp. negative).

The set of positive (resp. negative) A2k+1-points is denoted by A+
2k+1 (resp. A−

2k+1).

Then the equalities

A+
2k+1 := {p ∈ A2k+1 ; λ

(2k)(p) > 0} = Σn−2k
+ \ Σn−2k−1,

A−
2k+1 := {p ∈ A2k+1 ; λ

(2k)(p) < 0} = Σn−2k
− \ Σn−2k−1

(3.1)

hold. If n = 2 and f : M2 → R3 is a wave front, then positive (resp. negative) A3-points
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as in Example 2.17 correspond to positive (resp. negative) swallowtails.

Let X be a vector field of Mn which vanishes at p ∈ Mn. Take a local coordinate

system (U ;x1, . . . , xn) at p and write

X = ξ1
∂

∂x1
+ · · ·+ ξn

∂

∂xn
.

Then a zero p of X is called generic if the Jacobian of the map

U � q �−→
(
ξ1(q), . . . , ξn(q)

)
∈ Rn

does not vanish at q = p. A vector field X defined on Mn is called generic if all its zeros

are generic.

Definition 3.4. Let ϕ : TMn → E be a Morin homomorphism of depth k (k =

1, . . . , n). A C∞-vector field X defined on Mn is called a characteristic vector field of ϕ

if it satisfies the following three conditions.

(i) X is a generic vector field on Mn which does not vanish at any point of Σn−1.

(ii) For each j = n − k, . . . , n − 1, there exists a generic tangent vector field Xj of Σj

such that the equality ϕ(X) = ϕ(Xj) holds on Σj and Xj has no zeros on Σj−1.

(iii) For each Al+1-point p (l = 1, . . . , k) (namely, p ∈ Σn−l\Σn−l−1) satisfying ϕ(Xp) =

0, there exists a neighborhood U of p of Mn such that the restriction of X to

U ∩ Σn−l+1 coincides with Xn−l+1 on U ∩ Σn−l+1 (cf. Figure 1). Moreover, if l is

odd, X points into Σn−l+1
+ at p ∈ Σn−l.

Remark 3.5. Let X be a characteristic vector field on Mn. If k = n, then ϕ(X)

must vanish at each An+1-point. (In fact, since any null vector fields are tangent to Σ1

at each An+1-point p, the property (ii) yields that X1 points in the null direction at p,

and X = X1 near p on Σ1 by (iii).)

In this section, we shall construct a characteristic vector field, which will play a

crucial role in proving formula (1.4) in the introduction:

Proposition 3.6. Let Mn be a compact oriented manifold, and ϕ : TMn → E a

Morin homomorphism. Suppose that E is oriented. Then, there exists a characteristic

vector field defined on Mn associated to ϕ.

To prove the assertion, we prepare the following:

Lemma 3.7. Let Mn be a compact orientable manifold, and ϕ : TMn → E (n ≥ 1)

a Morin homomorphism of depth k (k ≥ 1) and X a generic vector field on Σn−1 such

that it does not have any zero on a compact subset C(⊂ Σn−1). (Here we are not assuming

that E is orientable.) Then there exists a vector field X̃ satisfying the following properties :

(1) X̃ is a generic vector field on Mn which has no zeros on Σn−1.

(2) ϕ(X̃) = ϕ(X) holds on Σn−1.
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(3) X̃ = X on C.

Proof. We fix a Riemannian metric on Mn. Since Mn is orientable, we can take

n as a normal vector field defined on Σn−1. Taking δ to be sufficiently small, there exists

a canonical diffeomorphism

exp : Σn−1 × [−δ, δ] −→ Nδ(Σn−1)

such that t �→ exp(q, t) is the normal geodesic of Mn with arclength parameter starting

from each q ∈ Σn−1 in the direction n. Here Nδ(Σ
n−1) is the δ-tubular neighborhood of

Σn−1 in Mn and Nδ(Zn−1) is its closure. Then

ñ(q, s) :=
∂ exp(q, s)

∂s

gives a unit vector field defined on Nδ(Σ
n−1) as an extension of n. Take an open neigh-

borhood V of C as an open subset of Σn−1 such that the closure V of V is compact and

X has no zeros on V . Without loss of generality, we may assume that the normal vector

n is proportional to the null vector field on Σn−1 \ V . Let ρ : Σn−1 → [0, 1] be a smooth

function such that

ρ(q) =

{
1 (if q ∈ C),

0 (if q 	∈ V ).

Let W be the vector field on Nδ(Σ
n−1) obtained via parallel transport of X along each

normal geodesic s �→ exp(q, s). We set

W̃ (q, s) := W (q, s) +
(
s2ρ(q) + (1− ρ(q))

)
ñ(q, s), (3.2)

which is a vector field on Nδ(Σ
n−1). Then W̃ has no zeros on Nδ(Σ

n−1) since X has no

zeros onNδ(Σ
n−1). We then apply Lemma A.1 in the appendix by settingK = Nδ(Σn−1)

and get a generic vector field X̃ defined on Mn such that ϕ(X̃) coincides with ϕ(X) on

Σn−1. It can be easily checked that X̃ is the desired vector field. �

Figure 1. Proof of Proposition 3.6.

Proof of Proposition 3.6. We prove the assertion by induction of the depth

k of the Morin homomorphism. So we firstly consider the case that k = 1. Suppose that
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n ≥ 2. Then Σn−1 is positive dimensional. We take a generic vector field X on Σn−1

and apply the previous lemma by setting C to be the empty set.

Next we consider the case that n = 1. Let p1, . . . , pm be A2-points on M1. Then

we can take an extended null vector field η̃j defined on a neighborhood Uj of pj which

has no zeros on Vj(⊂ Uj). We may assume that the Vj ’s are pairwise disjoint. Applying

Lemma A.1 by setting K = V1 ∪ · · · ∪Vm, we can get a generic vector field X on M such

that X = η̃j on Vj for j = 1, 2, . . . ,m, which gives the properties (i)–(iii).

We now assume that the assertion holds for k − 1. We fix an inner product 〈 , 〉 on
E . As in the proof of Theorem 2.4, we can take a unit section u such that the induced

bundle Ê defined by (2.5) is the subbundle of E which is orthogonal to u. Using the

assumption of induction, there exists a vector field X satisfying the properties (i)–(iii)

on Σn−1 for Ê by taking λ̇ to be a ϕ̂-function. Let δ be a small positive number such

that X has no zeros on C := Nδ(Σn−2), where Nδ(Σ
n−2) is a δ-tubular neighborhood of

Σn−2 in the Riemannian manifold Σn−1. We apply Lemma 3.7 for X (see Figure 1), and

we get the vector field X̃ satisfying the properties (1)–(3). Then X̃ satisfies (i), (ii) and

(iii) by construction. The property (ii) follows from (2). �

4. Adapted coordinate systems and the two dimensional case.

Proposition 4.1. Let ϕ : TMn → E be a Morin homomorphism on an n-manifold

Mn. Then there exists a local coordinate system (U ;x1, . . . , xn) centered at an Ak+1-point

p ∈Mn (k ≥ 1) satisfying the following properties:

(1) For each j = 1, . . . , k−1, the restriction of {∂/∂xj+1, . . . , ∂/∂xn} spans the tangent
space of Σn−j at p,

(2) ∂/∂xk gives an extended null vector field on U .

The local coordinate system (x1, . . . , xn) given in Proposition 4.1 is called a ϕ-

adapted coordinate system at p.

Proof. Let λ : U → R be a ϕ-function defined on a local coordinate neighborhood

(U ; y1, . . . , yn) of p. Let η̃ be an extended null vector field on U and η its restriction to

Σn−1 ∩ U . Then by (2) of Definition 2.2, we have that

∂(λ, λ̇, . . . , λ(k−1))

∂(y1, . . . , yk)
	= 0.

By the implicit function theorem, there exist functions yj(yk+1, . . . , yn) (j = 1, . . . , k)

such that yj(0, . . . , 0) = 0 and

λ(j−1)(y1(ŷ), . . . , yk(ŷ), ŷ) = 0 (j = 1, . . . , k),

where ŷ = (yk+1, . . . , yn) and λ(0) := λ. So if we set

x1 := λ, x2 := λ̇, . . . , xk := λ(k−1), xl := yl (l = k + 1, . . . , n),
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then ψ := (x1, . . . , xn) gives a new local coordinate system at p satisfying the property

(1). Then the restriction η|Σn−k of the null vector field is a tangent vector field of Σn−k+1

along Σn−k, and can be written as

η|Σn−k+1 =

n∑
j=k

cj∂j ,

where ∂j := ∂/∂xj (j = k, . . . , n). Since η is transversal to Σn−k at p, the coefficient ck
does not vanish. Let {gt}|t|<ε : V → Mn be the local 1-parameter group of transforma-

tions generated by η̃, where V (⊂ U) is a neighborhood of p in Mn and ε > 0 is a small

positive number. Then

Φ : (t1, t2, . . . , tk−1, tk, tk+1, . . . , tn) �→ gtk(ψ(t1, t2, . . . , tk−1, 0, tk+1, . . . , tn))

gives a local diffeomorphism such that the equalities

dΦ(∂/∂tk) = η, dΦ(∂/∂tl) = ∂/∂xl (l = k + 1, . . . , n)

hold, and they span the tangent space of Σn−k+1 when t1 = t2 = · · · = tk = 0. Thus the

inverse map Φ−1 gives the desired local coordinate system. �

Here we prove formula (1.4) for n = 2. Although this formula was proved as a

corollary of the Gauss–Bonnet type formula in [23] and [24], our proof in this section is

new.

Let X be a characteristic vector field associated to a Morin homomorphism ϕ :

TM2 → E of depth at most 2 on a compact oriented 2-manifold, and we assume that E
is oriented. Take a section Y of E as Y := ϕ(X). Then the following assertion holds:

Proposition 4.2. Let Z(Y ), Z(X) be the set of zeros on M2 of Y and X, re-

spectively, and let Z(X1) be the zeros on Σ1 of X1 (as in Definition 3.4). Then it holds

that

Z(Y ) ∩ (M2 \ Σ1) = Z(X), (4.1)

Z(Y ) ∩ (Σ1 \ Σ0) = Z(X1) ⊂ A2, (4.2)

Z(Y ) ∩ Σ0 = A3. (4.3)

Proof. Since Y = ϕ(X), property (i) in Definition 3.4 implies that Z(X) ⊂ Z(Y ).

Since ϕ : TpM
2 → Ep is a linear isomorphism when p ∈ M2 \ Σ1, we have (4.1). Since

Z(X1) ∩ Σ0 is the empty set, property (ii) of characteristic vector field yields

Z(Y ) ∩ (Σ1 \ Σ0) = Z(X1).

Since Y = ϕ(X1) on Σ1 and X1 is proportional to a null vector at each A3-point p, we

obtain (4.3). �

When n = 2, (1.8) reduces to
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χE =
∑

p∈M2\Σ1

indp(Y ) +
∑
p∈A2

indp(Y ) +
∑
p∈A3

indp(Y ). (4.4)

Proposition 4.3. The first term of the right-hand side of (4.4) satisfies∑
p∈M2\Σ1

indp(Y ) = χ(M2
+)− χ(M2

−). (4.5)

Proof. Let p be in Z(Y )\Σ1, and λ be an oriented ϕ-function on a neighborhood

of p. We denote by sgn(λ(p)) the sign of the function λ at the point p. Since sgn(λ(p)) = 1

(resp. sgn(λ(p)) = −1) if ϕp : TpM
2 → Ep is orientation preserving (resp. orientation

reversing), we have that

indp(Y ) = sgn
(
λ(p)

)
indp(X) (p ∈M2 \ Σ1).

We set

M̄2
+(δ) := M2

+ \ Nδ(Σ1), M̄2
−(δ) := M2− \ Nδ(Σ1) (δ > 0),

where Nδ(Σ
1) is the δ-tubular neighborhood of Σ1 as in the proof of Lemma 3.7, and the

overline means the closure operation. If we choose δ sufficiently small, then Z(Y )∩(M2 \
Σ1) is contained in M̄2

+(δ) ∪ M̄2
−(δ) and M̄2

+(δ) (resp. M̄2
−(δ)) has the same homotopy

type as M2
+ (resp. M2

−). In particular, the following identity holds

∑
p∈M2\Σ1

indp(Y ) =
∑

p∈M̄2
+(δ)

indp(X)−
∑

p∈M̄2
−(δ)

indp(X). (4.6)

Here, −X (resp. X) is an outward vector of M̄2
+(δ) (resp. M̄2

−(δ)) by property (iii)

of Definition 3.4 of the characteristic vector field X. Since the operation X �→ −X is

orientation preserving, applying the Poincaré–Hopf index formula (cf. [14]), we have that

χ(M2
+) = χ(M̄2

+(δ)) =
∑

p∈M̄2
+(δ)

indp(−X) =
∑

p∈M̄2
+(δ)

indp(X) =
∑

p∈M2
+

indp(X).

Similarly, we can also show that

χ(M2
−) =

∑
p∈M2

−

indp(X),

which proves the assertion. �

Proposition 4.4. The second term of the right-hand side of (4.4) satisfies∑
p∈A2

indp(Y ) = 0. (4.7)

Proof. We fix p in Z(Y )∩ (Σ1 \Σ0). Then p is an A2-point. Let (U ;x1, x2) be a

ϕ-adapted coordinate system as in Proposition 4.1 (for n = 2 and k = 2) around p which
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is compatible with the orientation of M2. Then by (2) of Proposition 4.1,

η̃ := ∂/∂x1

gives an extended null vector field on U . Let μ be an orientation (i.e. a non-vanishing

section of the determinant bundle of E∗ which is compatible with the orientation of E
defined on M2) of E , and set

λ := μ

(
ϕ

(
∂

∂x1

)
, ϕ

(
∂

∂x2

))
.

Then λ is an oriented ϕ-function with respect to the orientations of E and M2. Since

∂/∂x1 is an extended null vector field, ϕ(∂/∂x1) vanishes on Σ1 ∩ U = {λ = 0}. Then

by the well-known preparation theorem for C∞-functions, there exists a section e1 of E
such that ϕ(∂/∂x1) = λe1. On the other hand, we set e2 := ϕ(∂/∂x2). Then {e1, e2}
gives a frame field of E on U which is compatible with the orientation of E . In fact,

λ = μ

(
ϕ

(
∂

∂x1

)
, ϕ

(
∂

∂x2

))
= μ

(
λe1, e2

)
= λμ(e1, e2),

and hence μ(e1, e2) = 1. We set

X = ξ1
∂

∂x1
+ ξ2

∂

∂x2
and Y = α1e1 + α2e2.

Then it holds that

α1 = λξ1, α2 = ξ2.

Since λ vanishes on Σ1 and since ∂/∂x2 spans TpΣ
1 (cf. (1) of Proposition 4.1), we

have λ(p) = λx2(p) = 0, where λx2 := ∂λ/∂x2. In particular, the equality (α1)x2 =

∂α1/∂x2 = 0 holds at p. Since the equalities (α1)x1
= λx1

ξ1 = λ̇ξ1 also hold at p, we

have that

sgn

(
det

(
(α1)x1

(α1)x2

(α2)x1
(α2)x2

))
= sgn

(
λ̇ξ1(α2)x2

)
= sgn

(
λ̇ξ1(ξ2)x2

)
= indp(X1) sgn

(
λ̇ξ1

)
.

Here, we used the relation indp(X1) = sgn(ξ2)x2 . In fact, by (1) of Proposition 4.1, one

can parametrize Σ1 around p as

Σ1 ∩ U = {(x1, x2) = (f(t), t) ; t ∈ I},

where I is a sufficiently small interval including 0 and f is a smooth function on I such

that df(0)/dt = 0. That is, t can be taken as a local coordinate system of Σ1. Then

there exists a smooth function ξ̂ : I → R such that
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X1 = ξ̂
d

dt
= ξ̂

(
df

dt

∂

∂x1
+

∂

∂x2

)
.

The condition (ii) of Definition 3.4 yields that

ξ̂ = ξ2,
dξ̂

dt
=

df

dt

∂ξ2
∂x1

+
∂ξ2
∂x2

.

Since df(0)/dt = 0, we have

indp(X1) = sgnt=0

(
dξ̂

dt

)
= sgnp

(
∂ξ2
∂x2

)
.

Since p 	∈ Nδ(Σ
0) for sufficiently small δ, the characteristic vector field X points in

the direction of M2
+ = {λ > 0} at p. So the equality

sgn(ξ1) = sgn(λ̇)

holds at p. Thus λ̇(p)ξ1(p) > 0 and

indp(Y ) = indp(X1).

Since Z(X1) ⊂ A2 and χ(Σ1) = 0, applying the Poincaré–Hopf index formula for the

vector field X1 on Σ1, we get the assertion. �

By (4.4), Proposition 4.3 and Proposition 4.4, formula (1.4) follows immediately

from the following assertion:

Proposition 4.5. Let p be an arbitrarily given A3-point. Then

indp(Y ) =

{
1 (if p ∈ A+

3 ),

−1 (if p ∈ A−
3 ).

Proof. We take a ϕ-adapted coordinate system (U ;x1, x2) centered at p which

is compatible with the orientation of M2. In particular, η̃ := ∂/∂x2 is an extended null

vector field on U , and (∂/∂x2)p ∈ TpΣ
1. Let μ be a local orientation of E , and let

λ := μ
(
ϕ(∂/∂x1), ϕ(∂/∂x2)

)
. We set e1 := ϕ (∂/∂x1). Since ϕ(η̃) vanishes on Σ1, there

exists a section e2 of E on U such that ϕ(∂/∂x2) = ϕ(η̃) = λe2. Since

λ = μ

(
ϕ

(
∂

∂x1

)
, ϕ

(
∂

∂x2

))
= μ

(
e1, λe2

)
= λμ(e1, e2),

we have μ(e1, e2) = 1, which implies that {e1, e2} forms a frame field of E compatible

with the orientation of E . We set

X = ξ1
∂

∂x1
+ ξ2

∂

∂x2
.

By (iii) and (i) of Definition 3.4, Xp ∈ TpΣ
1 and Xp 	= 0, and hence we have ξ1(p) = 0
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and ξ2(p) 	= 0. We now set

Y = α1e1 + α2e2. (4.8)

Then it holds that α1 = ξ1 and α2 = λξ2. By (iii) of Definition 3.4, X is tangent to Σ1

near p. Since λ vanishes along Σ1, it holds that

0 = dλ(X) = λx1
ξ1 + λ̇ξ2

on a sufficiently small neighborhood p in Σ1, where we used the fact that λx2
= λ̇ (cf.

(2) of Proposition 4.1). Since dλ(X) vanishes along Σ1 and ∂/∂x2 ∈ TΣ1 at p, the fact

ξ1(p) = λ̇(p) = 0 yields that the equalities

0 =
∂dλ(X)

∂x2
= λx1x2

ξ1 + λx1
(ξ1)x2

+ λ̈ξ2 + λ̇(ξ2)x2

= λx1
(ξ1)x2

+ λ̈ξ2

hold at p. Since dλ(p) 	= 0 and λx2
(p) = λ̇(p) = 0, we can conclude that λx1

(p) 	= 0. In

particular, we have that

(ξ1)x2
(p) = − λ̈(p)ξ2(p)

λx1
(p)

.

Using the facts λx2
(p) = λ̇(p) = 0, we have that

indp(Y ) = sgn

(
det

(
(ξ1)x1

(p) (ξ1)x2
(p)

λx1
(p)ξ2(p) ξ2(p)λx2

(p)

))

= sgn

(
det

(
(ξ1)x1(p) (ξ1)x2(p)

λx1(p)ξ2(p) 0

))

= − sgn

(
ξ2(p)λx1

(p)

(
− λ̈(p)ξ2(p)

λx1
(p)

))
= sgn

(
ξ2(p)

2λ̈(p)
)
.

Since the sign of an A3-point coincides with the sign of λ̈, Proposition 4.5 is proved. �

5. The proof of the index formula.

In this section, we prove our formula (1.4) for n-manifolds (n = 2m ≥ 4).

Let Mn be an oriented manifold, and X a characteristic vector field associated to

a Morin homomorphism ϕ : TMn → E . Suppose that E is oriented. Let (U ;x1, . . . , xn)

be a ϕ-adapted coordinate system centered at an A2-point p ∈Mn (cf. Proposition 4.1),

which is compatible with the orientation of Mn. Suppose that Y := ϕ(X) vanishes at p.

Then X has an expression

X = ξ1
∂

∂x1
+ · · ·+ ξn

∂

∂xn
. (5.1)

By a property of ϕ-adapted coordinate systems,
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η :=
∂

∂x1

gives a null vector field. By (ii) in Definition 3.4, ξ1 	= 0 holds. Moreover, the fact

ϕ(Xp) = 0 yields that

ξ1(p) 	= 0, ξj(p) = 0 (j = 2, . . . , n). (5.2)

Lemma 5.1. It holds that

indp(Y ) = sgn
(
ξ1(p)λ̇(p)

)
indp(Xn−1).

Proof. Let μ be an orientation of E , and set

λ := μ

(
ϕ

(
∂

∂x1

)
, . . . , ϕ

(
∂

∂xn

))
,

which is an oriented ϕ-function on a neighborhood of p. We set

ej := ϕ(∂/∂xj) (j = 2, . . . , n).

Since η̃1 = ∂/∂x1 is an extended null vector field, by the preparation theorem for C∞-

functions, we can write ϕ(∂/∂x1) = λe1, where e1 is a local section defined on a neigh-

borhood of p. Since

λ = μ

(
ϕ

(
∂

∂x1

)
, . . . , ϕ

(
∂

∂xn

))
= λμ(e1, . . . , en),

we have μ(e1, . . . , en) = 1. In particular, {e1, . . . , en} gives an oriented frame on the

vector bundle E around p. So we can write

Y = α1e1 + · · ·+ αnen, where αj =

{
ξj (j 	= 1),

λξ1 (j = 1).
(5.3)

We set

J := det(αij)i,j=1,...,n, αij :=
∂αi

∂xj
.

If J(p) 	= 0, it holds that

indp(Y ) = sgn
(
J(p)

)
. (5.4)

By (5.2) and (5.3), we have that

(α1)x1
(p) = ξ1(p)λx1

(p) 	= 0, (α1)x2
(p) = · · · = (α1)xn

(p) = 0. (5.5)

Then (5.5) implies that
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J(p) = det

⎛
⎜⎜⎜⎝
(α1)x1

0 . . . 0

(α2)x1
(α2)x2

. . . (α2)xn

...
...

. . .
...

(αn)x1
(αn)x2

. . . (αn)xn

⎞
⎟⎟⎟⎠

= (α1)x1
det

⎛
⎜⎝
(α2)x2

. . . (α2)xn

...
. . .

...

(αn)x2
. . . (αn)xn

⎞
⎟⎠

= (α1)x1
det

⎛
⎜⎝
(ξ2)x2 . . . (ξ2)xn

...
. . .

...

(ξn)x2 . . . (ξn)xn

⎞
⎟⎠ ,

because of (5.3). Thus, by (5.2), (5.4) and (5.5), we have that

indp(Y ) = sgn
(
J(p)

)
= sgn

(
(α1)x1

)
sgn

∂(ξ2, . . . , ξn)

∂(x2, . . . , xn)

= sgn
(
ξ1(p)λx1(p)

)
indp(Xn−1). �

We now prove the formula (1.4). Let Mn (n = 2m) be a compact oriented n-

manifold without boundary, and ϕ : TMn → E be a Morin homomorphism, where E
is an oriented vector bundle. We fix a characteristic vector field X as in the previous

section (cf. Proposition 3.6). Take a section Y of E as

Y := ϕ(X).

We denote by Z(X) and Z(Y ) the set of zeros of X and Y , respectively. The following

assertion can be proved as in Proposition 4.2.

Proposition 5.2. Let Z(Xn−j) (j = 0, 1) be the set of zeros for Xn−j, where

Xn = X. Then it holds that

Z(Y ) ∩ (Mn \ Σn−1) = Z(X), (5.6)

Z(Y ) ∩ (Σn−1 \ Σn−2) = Z(Xn−1). (5.7)

By (1.8), it is sufficient to show the following assertion.

Theorem 5.3. The following identity holds

∑
p∈Mn

indp(Y ) = χ(M2m
+ )− χ(M2m

− ) +
m∑
j=1

(
χ(A+

2j+1)− χ(A−
2j+1)

)
.

We prove the theorem by induction on the dimension n = 2m. We have already

shown that the formula holds for m = 1 in Section 4. So we now assume that the formula

1.4 holds for m− 1, and will prove the case for m. Let

ϕ̂ : TΣn−1 → Ê
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be the reduction. Then it induces again the second reduction ˆ̂ϕ : TΣn−2 → ˆ̂E . Since
E is oriented, we can take an oriented ϕ-function λ : Mn → R satisfying (2.22). By

Proposition 3.1, λ̈ is an oriented ˆ̂ϕ-function of
ˆ̂E defined on Σn−2. Since the restriction

of X to Σn−2 is a characteristic vector field of Σn−2, the induction assumption yields

that

∑
p∈Σn−2

indp(Y ) =

m∑
j=1

(
χ(A+

2j+1)− χ(A−
2j+1)

)
.

On the other hand, as in Proposition 4.3, one can prove the following assertion:

Proposition 5.4. The first term of the right-hand side of (1.8) in the introduction

satisfies ∑
p∈Mn\Σn−1

indp(Y ) = χ(Mn
+)− χ(Mn

−). (5.8)

Now formula (1.4) for the 2m-dimensional case reduces to the following assertion:

Proposition 5.5. The second term of the right-hand side of (1.8) in the intro-

duction satisfies ∑
p∈Σn−1\Σn−2

indp(Y ) = 0. (5.9)

Proof. We fix a point p ∈ Σn−1 \Σn−2 satisfying Yp = 0 arbitrarily. By property

(iii) in Definition 3.4, there exists a vector field Xn−1 on Σn−1 such that Z(Xn−1) =

Z(Y ) ∩ (Σn−1 \ Σn−2). By Lemma 5.1, it holds that

indp(Y ) = indp(Xn−1) sgn
(
λ̇(p)ξ1(p)

)
.

By (iii) of Definition 3.4, ξ1∂/∂x1 points into Mn
+ at p. Since ∂/∂x1 is an extended null

vector field, λ̇∂/∂x1 points also into Mn
+ at p (cf. Proposition 3.2). Hence

sgn
(
λ̇(p)ξ1(p)

)
≥ 0,

and indp(Y ) = indp(Xn−1) holds. Since Z(Xn−1) = Z(Y ) ∩ (Σn−1 \ Σn−2) and Σn−1 is

odd dimensional, it holds that∑
p∈Σn−1\Σn−2

indp(Y ) =
∑

p∈Σn−1

indp(Xn−1) = χ(Σn−1) = 0. �

6. Applications.

In this section, we shall give several applications of the formula (1.7): recall that

a C∞-map f : M2m → N2m between 2m-manifolds is called a Morin map if the corre-

sponding bundle homomorphism ϕ = df as in Example 2.15 admits only Ak-singularities
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for k = 2, . . . , 2m+ 1 (cf. Remark 2.18).

Theorem 6.1 ([15] and [4]). Let M2m and N2m be compact oriented 2m-

manifolds, and let f : M2m → N2m be a Morin map. Then it holds that

deg(f)χ(N2m) = χ(M2m
+ )− χ(M2m

− ) +
m∑
j=1

χ(A+
2j+1)− χ(A−

2j+1), (6.1)

where deg(f) is the topological degree of the map f , and M2m
+ (resp. M2m

− ) is the set of

points at which the Jacobian of f is positive (resp. negative).

This formula is a generalization of Quine’s formula [16] for Morin maps between 2-

manifolds (see also [5]). It should be remarked that the numbering of Morin singularities

is different from the usual one (cf. Remark 2.18). For example, a fold (resp. a cusp)

singularity is an A2-singular point (resp. an A3-singular point) in (6.1).

Proof of Theorem 6.1. Let E be the pull-back of the tangent bundle TN2m of

N2m by f . Then the map f induces a bundle homomorphism ϕf := df : TM2m → E as

in Example 2.15. Since f is a Morin map, ϕf has only Ak-points, and then the formula

follows from (1.4) using the fact that χE = deg(f)χ(N2m). �

Next we give applications for immersed hypersurfaces in R2m+1. Let M2m be a

compact oriented 2m-manifold and f : M2m → R2m+1 a wave front. Suppose that there

exists a unit normal vector field ν along f defined on M2m. Then it induces the Gauss

map into the unit 2m-sphere ν : M2m −→ S2m, and a family of wave fronts

ft := f + tν (t ∈ R),

each of which is called a parallel hypersurface of f . The Gauss map of ft is commonly

equal to ν for all t ∈ R. The Gauss map ν can be considered as the limit limt→∞ ft/t.

Corollary 6.2. Let M2m be a compact oriented 2m-manifold and f : M2m −→
R2m+1 an immersion. Suppose that the Gauss map ν is a Morin map. Then the singular

set of ν satisfies identity (1.7) in the introduction, where M2m
− is the set of points at

which the Gauss–Kronecker curvature of f (i.e. the determinant of the shape operator)

is negative.

This formula is a generalization of the Bleecker–Wilson formula for Gauss maps of

immersed surfaces in R3.

Proof of Corollary 6.2. We apply formula (6.1) for the Gauss map ν of the

immersion f . Then we have that

2(deg ν) = χ(M2m
+ )− χ(M2m

− ) +
m∑
j=1

(
χ(A+

2j+1)− χ(A−
2j+1)

)
.

Since f is an immersion, it is well-known that 2(deg ν) is equal to χ(M2m).
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Next, we show that M2m
+ (resp. M2m

− ) coincides with the set where the Gauss–

Kronecker curvature is positive (resp. negative): Let ds2 be the induced Riemannian

metric on M2m by the immersion f , and let e1, . . . , e2m be an oriented local orthonormal

frame field on M2m such that

dν(ej) = −μjdf(ej) (j = 1, . . . , 2m),

that is, e1, . . . , e2m are eigenvector fields of the shape operator of f , and μ1, . . . , μ2m are

principal curvatures. Then we have that

λ := det
(
dν(e1), . . . , dν(e2m), ν

)
=

2m∏
j=1

μj = K, (6.2)

where K := μ1 · · ·μ2m is the Gauss–Kronecker curvature of f . This λ is positive (resp.

negative) if and only if K > 0 (resp. K < 0), which proves the assertion. �

Next, we show the following.

Theorem 6.3. Let M2m be a compact oriented 2m-manifold and f : M2m →
R2m+1 a wave front. Suppose that f admits only Ak-front singularities (2 ≤ k ≤ 2m+1),

as defined in Definition 2.16. Then the singular set of f satisfies the identity

2 deg(ν) = χ(M2m
+ )− χ(M2m

− ) +
m∑
j=1

(
χ(A+

2j+1)− χ(A−
2j+1)

)
, (6.3)

where deg(ν) is the degree of the Gauss map ν : M2m → S2m induced by f , and χ(M2m
+ )

(resp. χ(M2m
− )) is the Euler characteristic of the subset M2m

+ (resp. M2m
− ) of M2m at

which

λ := det(fx1
, . . . , fx2m

, ν)

is positive (resp. negative) for an oriented local coordinate system (x1, . . . , x2m), where

fxj = ∂f/∂xj.

This formula is independent of the index formula for the Gauss map ν (cf. Theo-

rem 6.1). In fact, the singular set of f does not coincide with that of its Gauss map in

general.

Proof of Theorem 6.3. We apply (1.4) for the bundle homomorphism

ϕf := df : TM2m −→ Ef

as in Example 2.17. Then it is sufficient to show that χEf
is equal to 2 deg(ν). Let ξ be

a vector field on the unit 2m-sphere S2m. By parallel transport, ξq (q ∈ S2m) can be

considered as a vector in Ep for p ∈ ν−1(q). Thus, ξ induces a section ξ̃ of E defined on

M2m. Then the equalities
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χEf
=

∑
p∈M2m

indp(ξ̃) = deg(ν)
∑

q∈S2m

indq(ξ) = deg(ν)χ(S2m) = 2 deg(ν)

hold, which proves the identity. �

Next, we give an application to parallel hypersurfaces of strictly convex hypersur-

faces.

Theorem 6.4. Let S2m be the unit 2m-sphere, and let f : S2m −→ R2m+1 be a

strictly convex immersion, that is, the Gauss map ν : S2m → S2m is a diffeomorphism.

Let t ∈ R be a value such that the parallel hypersurface

ft : S
2m −→ R2m+1

has only Ak-singularities (k = 2, . . . , 2m+ 1). Then the singular set of ft satisfies (1.7)

and 1/Kt can be extended as a C∞-function on S2m and gives an oriented ϕt-function

for ϕt = dft (cf. Definition 2.1), where Kt is the Gauss–Kronecker curvature of ft.

The corresponding assertion for a convex surface f : S2 → R3 is given by Martinez-

Maure [13] under the generic assumption that the Gaussian curvature is unbounded at

the singular set of ft, and proved in [24] for the general case. The above formula is a

generalization of it.

Proof of Theorem 6.4. We apply Theorem 6.3 for the bundle homomorphism

ϕt = dft : TS
2m → Eft . Since f is convex, the Gauss map ν : S2m → S2m is of degree

one. Since f = f0 is an immersion, and the Gauss map ν is common in the parallel

family {ft}t∈R, we have that

χ(M2m
+ ) + χ(M2m

− ) = χ(S2m) = 2 deg(ν)

= χ(M2m
+ )− χ(M2m

− ) +

m∑
j=1

(
χ(A+

2j+1)− χ(A−
2j+1)

)
,

where M2m
+ = S2m

+ (resp. M2m
− = S2m

− ) is the set where λt > 0 (resp. λt < 0). Here,

λ = λt is the function as in the statement of Theorem 6.3. Moreover, since ν is an

immersion, one can take the Riemannian metric dσ2 on S2m as the pull-back of the

canonical metric of S2m by ν, and let {e1, . . . , e2m} be an oriented local orthonormal

frame field on S2m with respect to dσ2 such that

df(ej) = −(1/μj)dν(ej) (j = 1, . . . , 2m),

that is, e1, . . . , e2m are eigenvector fields of the shape operator of f . Since

dft(ej) = df(ej) + tdν(ej) = −
(

1

μj
− t

)
dν(ej),

the Gauss–Kronecker curvature Kt of ft is expressed as
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Kt =

⎛
⎝ 2m∏

j=1

(
1

μj
− t

)⎞⎠
−1

.

On the other hand,

λt := det
(
dft(e1), . . . , dft(e2m), ν

)
=

⎛
⎝ 2m∏

j=1

(
1

μj
− t

)⎞⎠ det
(
dν(e1), . . . , dν(e2m), ν

)

=
1

Kt
det

(
dν(e1), . . . , dν(e2m), ν

)
= K

(
1

Kt

)
,

which implies that 1/Kt is an oriented ϕt-function, since K is positive because of the

convexity of f , where ϕt = dft. �

Now we consider the singularities of vector fields on M2m. Let D be an arbitrary

linear connection on M2m and X a vector field defined on M2m. One can apply (1.4)

for the bundle homomorphism

ϕX : TM2m � v �−→ DvX ∈ TM2m

if ϕX admits only Ak-singularities and get (1.7), where M2m
+ is the set of points where

(Dv1X, . . . ,Dv2mX)

forms a positive frame for a given locally defined positive frame v1, . . . , v2m on TpM
2m.

In [23], this map was introduced on a Riemannian 2-manifold, and we called the singular

points of ϕX the irrotational points there. However, it would be better to call them

the Ak-singular points of the vector field with respect to the connection D. In fact, the

singular set of ϕX has no relation with the rotations of the vector fields.

At the end of this section, we give an application for the Blaschke normal maps for

strictly convex hypersurfaces: we fix a strictly convex immersion

f : S2m −→ R2m+1.

Then there exists a unique vector field ξ along f satisfying the following two properties,

which is called the affine normal vector field:

(1) the linear map

S : TS2m � v �−→ Dvξ

gives an endomorphism on TS2m, that is, S(v) := Dvξ is tangent to f(S2m) for

each v, where D is the canonical affine connection on R2m+1,

(2) there exists a unique covariant symmetric tensor h such that

DXdf(Y )− h(X,Y )ξ
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gives a tangential vector field on f(S2m) for any vector fields X and Y on S2m.

Since f is strictly convex, h is positive definite. Then the 2m-form Ω defined by

Ω(X1, . . . , X2m) := det
(
df(X1), . . . , df(X2m), ξ

)
coincides with the volume element associated to h, where X1, . . . , X2m are vector

fields on S2m and “det” denotes the canonical volume form of R2m+1.

The vector field ξ induces a map

ξ : S2m � p �−→ ξp ∈ R2m+1, (6.4)

which is called the Blaschke normal map of f . The following assertion holds as in the

case of m = 1 (cf. [23, Lemma 3.1]).

Lemma 6.5. The Blaschke normal map ξ gives a wave front.

Proof. Consider a non-zero section

L : S2m � p �−→ (ξp, νp) ∈ T ∗R2m+1 = R2m+1 × (R2m+1)∗,

where (R2m+1)∗ is the dual vector space of R2m+1, and ν : S2m → (R2m+1)∗ is the map

defined by

νp(ξp) = 1, νp(df(TpS
2m)) = {0} (p ∈ S2m),

which is called the conormal map of f . By definition, L induces an isotropic map of

S2m into the projective cotangent bundle P (T ∗R2m+1) = R2m+1×P ∗(R2m+1) with the

canonical contact structure. Take a local coordinate system (x1, . . . , x2m) of S2m. Then

we have that

νxi
(fxj

) = (D∂/∂xi
ν)(fxj

) =
∂

∂xi
ν(fxj

)− ν(D∂/∂xi
fxj

)

= −ν(D∂/∂xi
fxj )

= −ν
(
D∂/∂xi

fxj − h

(
∂

∂xi
,

∂

∂xj

))
+ h

(
∂

∂xi
,

∂

∂xj

)

= h

(
∂

∂xi
,

∂

∂xj

)
(i, j = 1, . . . , 2m).

Since h is positive definite, one can show that νx1
, . . . , νx2m

are linearly independent.

Moreover, since ν(TpS
2m) = {0} for each p ∈ S2m, ν, νx1

, . . . , νx2m
are linearly inde-

pendent. In particular, the map L induces a Legendrian immersion, which proves the

assertion. �

The following assertion is a hypersurface version of [23, Theorem 3.2].

Theorem 6.6. Let S2m be the 2m-sphere and f : S2m → R2m+1 a strictly convex

immersion. Suppose that the Blaschke normal map ξ : S2m → R2m+1 (cf. (6.4)) admits

only Ak-front singularities for 2 ≤ k ≤ 2m+1. Then the singular set of ξ satisfies (1.7),
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where M2m
+ (= S2m

+ ) (resp. M2m
− (= S2m

− )) is the subset of S2m at which the determinant

of the affine shape operator (called the affine Gauss–Kronecker curvature) is positive

(resp. negative), and A+
2j+1 (resp. A−

2j+1) is the set of positive (resp. negative) A2j+1-

front singular points of ξ for each j = 1, . . . ,m.

Proof. If the singular points of ξ consist only of Ak-points (2 ≤ k ≤ 2m+1), the

affine shape operator

S : TS2m � v �−→ Dvξ ∈ f∗TR2m+1

gives a Morin homomorphism. Applying (1.4) for S, we get Theorem 6.6. �

Finally, we give an example which illustrates Theorem 6.6: Consider a plane curve

γ(t) = (1− 2ε sin t)

(
sin t

cos t

) (
−π

2
≤ t ≤ π

2

)
,

which lies on the upper-half plane and gives a convex curve if 0 ≤ ε < 1/4. Rotating it

around the horizontal axis, we get a rotationally symmetric strictly convex surface in R3.

The left hand side of Figure 2 indicates the curve γ for ε = 17/80, and the right hand

side of Figure 2 gives the profile curve of the Blaschke normal map ξ of the surface for

ε = 17/80. As shown in Figure 2 (right), ξ has no swallowtails (i.e. it has no A3-points),

and our formula implies that the Euler number χ(M2
−) vanishes. In fact, the set ξ(M2

−)
gives a cylindrical strip if one rotates the profile curve of ξ around the horizontal axis.

1

2

1

2

M 2
−

Figure 2. The curve γ (left) and the profile curve of ξ (right).

7. Coherent tangent bundles induced by Kossowski metrics.

In this section, we introduce a class of positive semi-definite metrics called Kossowski

metrics describing the properties of wave fronts intrinsically. This class of metrics was

defined by Kossowski [10] for 2-dimensional manifolds. In [7], it was shown that each

Kossowski metric induces a coherent tangent bundle, and the formulas (1.2) and (1.3)

for the metric were proved. Our purpose is to generalize the results of [7] to higher

dimensional cases, that is, we will give an application of the formula (1.4) for Kossowski

metrics.

We now fix an n-manifold Mn, and a positive semi-definite metric ds2 on Mn. A

point p ∈ Mn is called a singular point of the metric ds2 if the metric is not positive
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definite at p. We denote by X the set of smooth vector fields on Mn, and by C∞(Mn)

the set of R-valued smooth functions on Mn.

We set 〈X,Y 〉 := ds2(X,Y ). Kossowski [8] defined a map Γ : X×X×X→ C∞(Mn)

as

Γ(X,Y, Z) :=
1

2
(X 〈Y, Z〉+ Y 〈X,Z〉 − Z 〈X,Y 〉

+ 〈[X,Y ], Z〉 − 〈[X,Z], Y 〉 − 〈[Y, Z], X〉) . (7.1)

We call Γ the Kossowski pseudo-connection. (Kossowski [8] called Γ the dual connection

of the Levi–Civita connection on Mn \ Σn−1, where Σn−1 is the singular set of ds2.) It

was introduced by Kossowski (cf. [8], [9] and [10]), and plays an important role to show

a realization theorem of generic singularities of Kossowski metrics as first fundamental

forms of wave fronts in R3. If the metric ds2 is positive definite, then the equality

Γ(X,Y, Z) = 〈∇XY, Z〉 (7.2)

holds, where ∇ is the Levi–Civita connection of ds2. One can easily check the following

two identities (cf. [10])

X〈Y, Z〉 = Γ(X,Y, Z) + Γ(X,Z, Y ), (7.3)

Γ(X,Y, Z)− Γ(Y,X,Z) = 〈[X,Y ], Z〉. (7.4)

The equation (7.3) corresponds to the condition that ∇ is a metric connection, and the

equation (7.4) corresponds to the condition that ∇ is torsion free. The following assertion

can be also easily verified:

Proposition 7.1 (Kossowski [8], [10]). For each Y ∈ X and for each p ∈ Mn,

the map

TpM
n × TpM

n � (v1, v2) �−→ Γ(V1, Y, V2)(p) ∈ R

is a well-defined bi-linear map, where Vj (j = 1, 2) are vector fields of Mn satisfying

vj = Vj(p).

For each p ∈Mn, the subspace

Np :=
{
v ∈ TpM

n ; ds2(v, w) = 0 for all w ∈ TpM
n
}

(7.5)

is called the null space at p. A non-zero vector which belongs to Np is called a null vector

at p.

Lemma 7.2 (Kossowski [8], see also [7]). Let p be a singular point of ds2. Then

the Kossowski pseudo-connection Γ induces a tri-linear map

Γ̂p : TpM
n × TpM

n ×Np � (v1, v2, v3) �−→ Γ(V1, V2, V3)(p) ∈ R,

where Vj (j = 1, 2, 3) are vector fields of Mn such that vj = Vj(p).
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Definition 7.3. A singular point p of the metric ds2 is called admissible1 if Γ̂p

in Lemma 7.2 vanishes. If each singular point of ds2 is admissible, then ds2 is called an

admissible metric.

Definition 7.4. An admissible metric ds2 defined onMn is called a frontal metric2

if for each p ∈ Mn there exists a local coordinate system (U ;x1, . . . , xn) and a C∞-

function λ on U such that

det(gij) = λ2, (7.6)

where ds2 =
∑n

i,j=1 gijdxidxj is a local expression of the metric ds2 on U and det(gij)

is the determinant of the n× n matrix (gij)i,j=1,...,n.

We remark that the condition (7.6) is independent of the choice of local coordinate

systems. If f : Mn → Rn+1 is a front, then the induced metric ds2(:= df · df) on Mn is

a frontal metric (cf. [7, Proposition 2.11]).

Definition 7.5. A singular point p of a given frontal metric is called non-

degenerate or generic (cf. [10]) if its exterior derivative dλ does not vanish at p, where λ

is the function as in (7.6). A frontal metric ds2 is called a Kossowski metric if all of the

singular points of ds2 are non-degenerate.

Since each singular point of a Kossowski metric is non-degenerate, and the singular

set (denoted by Σn−1) consists of a hypersurface ofMn. Moreover, the function λ changes

sign across Σn−1. In particular, a C∞-function λ satisfying (7.6) is uniquely determined

up to the sign.

Definition 7.6 (cf. [7]). Let ds2 be a Kossowski metric on Mn. A local coordinate

system (U ;x1, . . . , xn) of M
n is called adjusted at a singular point p ∈ U if

∂n := ∂/∂xn

belongs to Np. Moreover, if (U ;x1, . . . , xn) is adjusted at each singular point of U , it is

called an adapted local coordinate system of Mn.

Since the singular set Σn−1 of a Kossowski metric is a hypersurface in Mn, one can

easily prove the existence of an adapted local coordinate system at each singular point.

We are interested in the class of Kossowski metrics because of the following fact:

Proposition 7.7. Let (E , ϕ, 〈, 〉, D) be a coherent tangent bundle (see the intro-

duction) on a manifold Mn. Then the induced metric ds2 := ϕ∗〈, 〉 is a frontal metric.

Moreover, if ϕ admits only non-degenerate singular points, then ds2 is a Kossowski met-

ric on Mn.

Proof. The admissibility of the metric follows from the identity

1The notion of admissibility was introduced by Kossowski [10]. He called it d(〈, 〉)-flatness.
2It is called a discriminant transverse metric in [10].
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Γ(X,Y, Z) = 〈DXϕ(Y ), ϕ(Z)〉 (X,Y, Z ∈ X).

On the other hand, for each p ∈Mn, one can take an orthonormal frame field (e1, . . . , en)

of E on a coordinate neighborhood (U ;x1, . . . , xn) of p. Let θ1, . . . , θn be the dual frame

field of (e1, . . . , en). Then μ := θ1 ∧ · · · ∧ θn gives an orientation of E on U , and there

exists a smooth function λ ∈ C∞(U) such that

ϕ∗μ = λdx1 ∧ · · · ∧ dxn.

If we write ds2 =
∑n

i=1 gijdxidxj on U , then we have that

|λ| =
√
det(gij), (7.7)

since ϕ∗μ gives a Riemannian volume element on U \ Σn−1. Thus λ2 coincides with

det(gij), which implies that ds2 is a frontal metric. Then the final assertion follows

immediately by comparing the definitions of non-degeneracy of singular points for ϕ and

for ds2. �

Example 7.8. A Riemannian n-manifold (Mn, g) (n ≥ 3) is called conformally flat

if for each point p ∈Mn, there exists a neighborhood U(⊂Mn) of p and a C∞-function

σ on U such that e2σg is a metric with vanishing sectional curvature. When n ≥ 4,

(Mn, g) is conformally flat if and only if the conformal curvature tensor

Wijkl := Rijkl + (Bikgjl −Bilgjk +Bjlgik −Bjkgil) +
Sg

n(n− 1)
(gikgjl − gilgjk) (7.8)

vanishes identically on Mn, where (x1, . . . , xn) is a local coordinate system of Mn,

B :=
n∑

i,j=1

Bijdxi ⊗ dxj , Bij :=
1

n− 2

(
Rij −

Sggij
2(n− 1)

)
(7.9)

is called the Schouten tensor, gij , Rijkl, Rij are the components of the metric g, the

curvature tensor of g, and the Ricci tensor of g respectively, and Sg denotes the scalar

curvature. When n = 3, (M3, g) is conformally flat if and only if B in (7.9) is a Codazzi

tensor, that is, ∇B is a symmetric 3-tensor, where ∇ is the Levi–Civita connection of

(M3, g). (When n ≥ 4, conformal flatness implies that B is a Codazzi tensor because

of the second Bianchi identity.) We denote by (gij)ni,j=1 the inverse matrix of (gij)
n
i,j=1,

and set

B̌ :=
∑
i,j,a

giaBaj
∂

∂xi
⊗ dxj (7.10)

which gives a (1, 1)-tensor of Mn, and it induces a bundle homomorphism

B̌ : TpM
n � v �→ B̌p(v) ∈ TpM

n (p ∈Mn). (7.11)

Since B in (7.9) is a Codazzi tensor, B̌ satisfies the torsion free condition (1.1) with
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respect to ∇ (cf. [12]), In particular, B̌ : TMn → (TMn, g,∇) gives a structure of a

coherent tangent bundle. The pull-back of the Riemannian metric g by B̌ is given by

ǧ :=
∑
i,j,a,b

BiaBjbg
ab dxidxj . (7.12)

It is a remarkable fact that ǧ gives a new conformally flat metric on Mn \Σn−1 (cf. [12]).

This new metric ǧ is called the dual metric of g. By Proposition 7.7, ǧ gives an example

of a frontal metric. The points where ǧ is not positive definite correspond exactly to

the singular points of the bundle homomorphism B̌. We call Ak-points of the bundle

homomorphism B̌ the Ak-points of the dual metric.

As a converse of Proposition 7.7, the following assertion holds.

Theorem 7.9. Let ds2 be a Kossowski metric on an n-manifold Mn. Then there

exists a coherent tangent bundle ϕ : TMn → (E , 〈, 〉 , D) such that ϕ∗ 〈, 〉 coincides with

ds2.

The case of n = 2 has already been proved in [7], and this theorem is a generalization

of it. We fix an adapted local coordinate system (U ;x1, . . . , xn) arbitrarily. We now carry

out the Schmidt orthogonalization for the frame

∂1 :=
∂

∂x1
, . . . , ∂n :=

∂

∂xn
,

that is, we set

ê1 := ∂1, e1 := ê1/|ê1|,

êj := ∂j −
j−1∑
i=1

〈∂j , ei〉 ei, ej := êj/|êj | (j = 2, . . . , n− 1).

Then e1, . . . , en−1 are smooth vector fields on U . Finally, we set

ên := ∂n −
n∑

i=1

〈∂n, ei〉 ei, en :=
ên

λ
∏n−1

j=1 |êj |
, (7.13)

where λ is a C∞-function on U satisfying (7.7). Then the resulting vector field en is

defined only on U \Σn−1, and e1, . . . , en consists of an orthonormal frame on U \Σn−1,

which is called the orthonormal frame field associated to the adapted coordinate system

(x1, . . . , xn).

We now set

ωij :=

n∑
k=1

〈e∇∂k
ej , ei〉 dxk =

n∑
k=1

Γ(∂k, ej , ei) dxk (i, j = 1, . . . , n), (7.14)

on U \Σn−1, where ∇ is the Levi–Civita connection of the metric ds2 on Mn \Σn−1 and

Γ is the Kossowski pseudo-connection.



452 K. Saji, M. Umehara and K. Yamada

Lemma 7.10. Each ωij (i, j = 1, . . . , n) can be extended to a smooth 1-form on U .

Proof. If 1 ≤ i, j ≤ n − 1, then ωij is trivially a smooth 1-form on U . So we

consider the case i = n. By (7.13) and (7.14), it holds on Mn \ Σn−1 that

Γ (∂k, ej , ên) = λωnj(∂k)

n−1∏
l=1

|êl| (k = 1, . . . , n, j = 1, . . . , n− 1).

Since ds2 is admissible, the left hand side vanishes on U ∩ Σn−1, there exists a smooth

function akj ∈ C∞(U) such that

Γ (∂k, ej , ên) = λakj

n−1∏
l=1

|êl| (k = 1, . . . , n, j = 1, . . . , n− 1).

In particular, we have that ωnj(∂k) = akj . We next consider the case j = n. Since

Γ(∂k, ên, ei) = −Γ(∂k, ei, ên) = 0

on U ∩ Σn−1, one can easily see that ωin(∂k) can also be extended as a C∞-function on

U . Finally, ωnn vanishes on U \ Σn−1, and is trivially extended on U . �

Proof of Theorem 7.9. Let {(Ua;x
a
1 , . . . , x

a
n)}a∈Λ be an atlas of Mn consisting

of local adapted coordinate systems. Since ds2 is a Kossowski metric, there exists a C∞-

function λa on Ua (a ∈ Λ) such that

det(gaij) = (λa)
2,

where ds2 =
∑n

i,j=1 g
a
ijdx

a
i dx

a
j .

We fix two indices a, b ∈ Λ such that Ua ∩ Ub 	= ∅, and set

(U ;x1, . . . , xn) := (Ua;x
a
1 , . . . , x

a
n), (V ; y1, . . . , yn) := (Ub;x

b
1, . . . , x

b
n)

for the sake of simplicity. We denote by e1, . . . , en and ẽ1, . . . , ẽn the orthonormal

frame fields associated to the adapted coordinate systems (x1, . . . , xn) and (y1, . . . , yn),

respectively. By the previous procedure of orthogonalization, there are upper triangular

matrices T and T̃ such that

(e1, . . . , en) =

(
∂

∂x1
, . . . ,

∂

∂xn

)
T , (7.15)

(ẽ1, . . . , ẽn) =

(
∂

∂y1
, . . . ,

∂

∂yn

)
T̃ . (7.16)

These two matrices T and T̃ can be written as

T =

(
∗ ∗
0 d

)
, (7.17)
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T̃ =

(
∗ ∗
0 d̃

)
, (7.18)

where ∗ means a real valued (or a matrix valued) function which is smooth along Σn−1

and 0 is the row zero vector in Rn−1. On the other hand, d (resp. d̃) means a ‘divergent

function’ which is not smooth along Ua ∩Σn−1 but λad (resp. λbd̃) is a C∞-function on

Ua (resp. Ub).

Since T and T̃ are upper triangular matrices, one can easily check that

λa det(T ) = ∗, λb det(T̃ ) = ∗. (7.19)

On the other hand, there is a matrix valued function J such that the equality(
∂

∂y1
, . . . ,

∂

∂yn

)
=

(
∂

∂x1
, . . . ,

∂

∂xn

)
J (7.20)

holds on Ua∩Ub. Since (x1, . . . , xn) and (y1, . . . , yn) are adapted coordinate systems, we

can write

J =

(
∗ 0
∗ ∗

)
, (7.21)

where 0 is the column zero vector in Rn−1. By (7.15), (7.16) and (7.20), we have that

(ẽ1, . . . , ẽn) = (e1, . . . , en)T −1J T̃ .

We now compute T −1J T̃ using the relations

∗+ ∗ = ∗, d+ ∗ = d, ∗ × ∗ = ∗, d× ∗ = d

on Ua and

∗+ ∗ = ∗, d̃× ∗ = d̃, ∗ × ∗ = ∗, d̃× ∗ = d̃

on Ub, where × means the usual multiplications of scalars and matrices. These relations

follow from the definitions of divergent terms d and d̃. Here, d×∗ might not be divergent

in general. The above convention d × ∗ = d means that d × ∗ can be a divergent term

as a possibility. On the other hand, if the term d× d appears, then it is more dangerous

than the divergent terms, since λd× d is still a divergent term. Fortunately, such a term

never appears in the calculation of T −1J T̃ as follows: the equalities (7.17) and (7.19)

yield that

T −1 = λa

(
d ∗
0 ∗

)
.

We now set

τab := T −1J T̃ ,
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which gives a C∞-function on Ua ∩ Ub \ Σn−1. Since

T −1J = λa

(
d ∗
0 ∗

)(
∗ 0
∗ ∗

)
= λa

(
d ∗
∗ ∗

)
,

we have that

τab = λa

(
d ∗
∗ ∗

)(
∗ ∗
0 d̃

)
= λa

(
d d+ d̃

∗ d̃

)
=

(
∗ ∗
∗ ∗

)
,

since λa = λb × ∗. So we can conclude that τab can be smoothly extended on Ua ∩ Ub.

In particular, the co-cycle condition

τabτbcτca = id (7.22)

holds on Ua ∩Ub ∩Uc, where id is the identity matrix. Thus there exists a vector bundle

E with inner product 〈 , 〉 whose transition functions are {τab}. Let

Ωa :=

⎛
⎜⎝
ωa
11 . . . ω

a
1n

...
. . .

...

ωa
n1 . . . ω

a
nn

⎞
⎟⎠

be a matrix valued 1-from on Ua according to Lemma 7.10, which gives a connection form

of the Levi–Civita connection of ds2 on Ua \ Σn−1. In particular, Ωa takes value in the

set of skew-symmetric matrices. The family of matrix valued 1-form {Ωa}a∈Λ satisfies

the identity

Ωb = τ−1
ab (dτab) + τ−1

ab Ωaτab (7.23)

on Ua∩Ub \Σn−1. Then by continuity, (7.23) holds on Ua∩Ub. Thus, it induces a metric

connection D on E . By the definition of E , the bundle homomorphism

ϕ : TMn −→ E

is canonically induced so that ϕ(ea1), . . . , ϕ(e
a
n) consists of an orthonormal frame of E on

Ua \ Σn−1, where ea1 , . . . , e
a
n is the orthonormal frame field associated to (xa

1 , . . . , x
a
n).

Then the restriction of the map ϕ into Mn \ Σn−1 gives a vector bundle isomorphism

between the tangent bundle of Mn \ Σn−1 and E|Mn\Σn−1 , and ϕ∗ 〈 , 〉 = ds2 holds on

Mn \Σn−1. Then by continuity, ϕ∗ 〈 , 〉 = ds2 holds on all Mn. On the other hand, the

pull-back connection of D coincides with the Levi–Civita connection of ds2 on Mn\Σn−1.

In particular, (1.1) holds on Mn \ Σn−1. Then, by continuity, (1.1) also holds on all of

Mn. Thus we get a coherent tangent bundle associated to the Kossowski metric ds2. �

A Kossowski metric is said to be co-orientable if one can choose the chart

{(Ua;x
a
1 , . . . , x

a
n)}a∈Λ

of Mn such that
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μ := λadx
a
1 ∧ · · · ∧ dxa

n

gives a globally defined smooth n-form on Mn. It can be easily checked that the co-

orientability of ds2 corresponds to the fact that the induced bundle E is orientable (cf.

[7, Proposition 2.11]). We remark that each λa (a ∈ Λ) is a ϕ-function of the induced

coherent tangent bundle.

Definition 7.11. A Kossowski metric ds2 on Mn is called a Morin metric if its

induced coherent tangent bundle admits only Ak+1-points (k = 1, . . . , n).

Then as an application of the formula (1.4), we get the following assertion.

Corollary 7.12. Let ds2 be a co-orientable Morin metric defined on an oriented

compact manifold M2m. Then the identity (1.4) holds, where χE is the Euler character-

istic of the coherent tangent bundle E associated to ds2.

This corollary is a generalization of [7, Proposition 3.3]. The following assertion is

the spacial case of this corollary if we set ds2 to be the dual metric of the conformally

flat metric as in Example 7.8.

Theorem 7.13. Let (M2m, g) be a compact orientable conformally flat manifold

whose dual conformally flat metric ǧ admits only Ak-singularities for 2 ≤ k ≤ 2m + 1.

Then the singular set of the dual conformally flat metric ǧ satisfies (1.7), where M2m
+

(resp. M2m
− ) is the subset of M2m at which the determinant of the Schouten tensor is

positive (resp. negative), and A+
2j+1 (resp. A−

2j+1) is the set of positive (resp. negative)

A2j+1-points (j = 1, . . . ,m) of the bundle homomorphism B̌.

A. Extension of generic vector fields.

We prove the following assertion, which is needed to prove the existence of a char-

acteristic vector field associated to a given Morin homomorphism:

Lemma A.1. Let Mn be a compact manifold and X a C∞-vector field defined on

an open subset of Mn containing a compact subset K such that X has no zeros on the

boundary ∂K of K. Then there exists a C∞-vector field X̃ defined on Mn such that X̃

coincides with X on K and has only generic zeros on Mn \K.

Proof. We may assume that X is defined on a neighborhood U of K. Take an

open subset V such that

K ⊂ V ⊂ V ⊂ U,

where V is the closure of V . Taking U sufficiently close to K, we may assume that X

has no zeros on U \K◦, where K◦ (possibly empty) is the set of the interior points of K.

Then we can take C∞-functions ρj : M
n → [0, 1] (j = 1, 2) such that ρ1 = 1 on K (resp.

ρ2 = 1 on V ) and ρ1 = 0 on Mn \ V (resp. ρ2 = 0 on M \ U). We set X̂ := ρ2X, which

is a vector field on Mn. It is well-known that there exists a sequence of generic vector

fields {Zj}j=1,2,3,... on Mn converging to X̂ with respect to the Whitney C∞-topology.
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We set

X̃j := ρ1X̂ + (1− ρ1)Zj .

Then X̃j coincides with X on K, because ρ1 = ρ2 = 1 on K. Since X̂ has no zeros on

the compact set V \K◦, X̃j has a zero at p ∈ V \K◦ if X̂ = (1−ρ−1
1 )Zj holds at p. This

is impossible for sufficient large j, since Zj → X̂ as j → ∞ and ρ1 ∈ [0, 1]. Moreover,

X̃j coincides with Zj on Mn \V , since ρ1 = 0 on the complement of V . Thus it has only

generic zeros on Mn \ V . In particular, X̃j has the desired property for sufficiently large

j. �

Acknowledgements. The authors thank Mitsutaka Murayama, Toshizumi

Fukui and Kazuhiro Sakuma for valuable comments. They also thank the referee for

careful reading and valuable comments.

References

[ 1 ] V. I. Arnol’d, S. M. Gusein-Zade and A. N. Varchenko, Singularities of differentiable maps, Vol.

1, Monographs in Math., 82, Birkhäuser, 1985.
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