
An Index Theorem for First Order Regular Singular Operators

Jochen Brüning; Robert Seeley

American Journal of Mathematics, Vol. 110, No. 4. (Aug., 1988), pp. 659-714.

Stable URL:

http://links.jstor.org/sici?sici=0002-9327%28198808%29110%3A4%3C659%3AAITFFO%3E2.0.CO%3B2-6

American Journal of Mathematics is currently published by The Johns Hopkins University Press.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journals/jhup.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic
journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers,
and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take
advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Fri Sep 28 05:26:38 2007

http://links.jstor.org/sici?sici=0002-9327%28198808%29110%3A4%3C659%3AAITFFO%3E2.0.CO%3B2-6
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/jhup.html


AN INDEX THEOREM FOR FIRST ORDER REGULAR SINGULAR 

OPERATORS 

By JOCHEN BRUNINGand ROBERT SEELEY 

1. Introduction. In this paper we use the methods developed in 
[B+ S1,2] to prove index theorems for certain first order elliptic operators. 
More precisely, let M be a Riemannian manifold of dimension n + 1,E,F 
hermitian vector bundles over M, and D :C r ( E )  -t C r ( F )  an elliptic first 
order differential operator. We think of M as a singular Riemannian mani- 
fold with singularities in an open subset U such that M \ U  is a smooth 
compact manifold with boundary. Our ass~amptions on the nature of the 
singularities and the behavior of D on U will be formulated abstractly in 
the following way. 

(RS1). There is a compact Riemannian manifold N of dimension n 
and a hermitian vector bundle G over N such that there are bijective linear 
maps 

where I := (0, E] for some E with 0 < E I1. 

(RS2). aEand aFextend, respectively, to unitary mapsL2(E I U) + 

L2(I ,  L2(G))  and L 2 ( F  1 U) -+ L2(I ,  L2(G)). 

(RS3). For cp E Cm(I )  with cp constant near 0 and E let M, be the 
multiplication operator on L2(I ,  L2(G)). Then @%M,aE = @$M,aF = 
M+ for some cp E Cm(M),  and cp E C r ( M )  if cp vanishes in a neighborhood 
of 0. 
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(RS4). On CF(E I U) we have for some 6 > -1/2 

where 

(a) S O  is a self-adjoint first order elliptic differential operator on 
Cm(G),  

(b) Sl(x) is a first order differential operator on Cm(G)  with smooth 
coefficients in (0, €1, 

(c) ~ J S ~ ( X ) ( J S ~ I  ICuniformlyin+ l)-lli+ II(ISOJ+ l ) - l S I ( ~ ) J I  
(0, €1. 

If these assumptions are satisfied we refer to D as a first order regular 
singular elliptic operator. We will express this fact in writing 

and we will also identify cp and cp in (RS3) for simplicity. In addition, we 
use the notation listed in [B+ S2] Section 1, which we recall for conve- 
nience of the reader at the end of this introduction. 

Of course, the principal example of this situation is a manifold with 
conical singularities where certain index theorems for geometric operators 
are known [Che], [Cho]. It was our aim to unify and to generalize these 
results. The plan of the paper is as follows. In Section 2 we construct a 
closed extension D g(where 6 refers to "Dirichlet") of D and show that it is 
Fredholm with index essentially independent of S . In Section 3 we impose 
slightly stronger conditions on 6 and S and classify all closed extensions 
between the minimal Dmi,and the maximal Dm,, given by 

It turns out that Dmi, = Dm,, iff spec Son (-1/2, 1/2) = 0. The closed 
extensions are classified by the subspaces of 

(Theorem 3.1), and their indices are related in a simple way (Theorem 
3.2). In Section 4 we take up the calculation of the index of Dg.This is 
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done directly from the resolvent, using some results of [B+ S21. We obtain 
the index formula (Theorem 4.1) 

1 
(qso + dim ker So)+ R 

Here wD denotes the index form of D i.e. wD(p) is the constant term in the 
asymptotic expansion of 

trE e-fDb*Ds(P, p) - p),trF ePfDbDb*(p, p EM,  

as t L 0, and the integral stands for a certain regularization of the possibly 
divergent integral; qso is the usual 7-invariant of S o  as introduced in 
[ASPSS] ;  and R is a linear combination of residues of the 7-function of 
So .  We apply our results to the GauB-Bonnet and the signature operator 
on manifolds with asymptotically cone-like singularities (see (5.1) for the 
definition), and recover the GauB-Bonnet Theorem and the Signature 
Theorem of [Che] for suitable closed extensions in the conic case (Theorem 
5.1, 5.2). Asymptotically cone-like singularities are still very close to conic 
ones, but they cannot be treated analytically by separation of variables. We 
hope, however, to extend the method given here to considerably more gen- 
eral situations. 

We are indebted to Robert McOwen and Richard Melrose for helpful 
conversations. The first author also acknowledges the support of the 
Deutsche Forschungsgemeinschaft and the hospitality of MIT and North- 
eastern University, the second author acknowledges the hospitality of the 
University of Augsburg. 

Notation. 

R* is the interval (0, w), R+ is [O, w). 
Cr (Y)  is Cm-functions with compact support in Y. 
H is a fixed Hilbert space. 
Hs is the common domain of the family of self-adjoint operators 

S(X)= So + xsf 'Sl(x),  X E (0, €1. 
X denotes the operator Xf(x) = xf (x) on L2(R+, H) .  
If $ E Lm(R+) , \k denotes the operator \kf(x) = $(x)f(x) on 

L2(R+,H). 



2. The construction of a boundary parametrix for the operator 

acting in L2(R+,  H)with domain Cr(R*, Hs),amounts to the integration 
of first order ordinary differential equations. We assume as before that SI 

is smooth away from 0 and that for some constant Co 

uniformly in x > 0. 
For f EL2(0,a)we put 

Note that 

(2.5) (a, + X - ~ S ) P ~ , ,(a, + x-~s)P,,,  I.= = 

Appropriate parametrices are constructed by combining Po,,and PI,,. 
LEMMA2.1. Forf in L2(0, 1) and x + 0 we have the following esti- 

mates. 

I + ll-1/2Jl s < -1/2,f l J L 2 ,  

If(y)12dy)1/2 

+ ~ l o g 6 1 1 / 2 1 1 f ~ ~ ~ ~ 1 9  s = - 1 / 2 ,  0 < 6 < 1 .  

c) For -1/2 < s < 1/2 



Proof. We prove the second estimate in b);the other estimates in a) 
and b) are proved similarly, while c) follows from a). Let 0 < 6 < 1 and 
s = -1/2;  we find for x 5 6 

LEMMA2.2. Let 0 < E 5 1 and - 1  < /3 I0. Then in L2(0,E )  we 
have 

Here C'(s,c) = 0 ,  i = 1 ,  2 ,  and uniformly for 1s j 2 2. 

Proof. We note first that 

whenever XflPo,sXyis bounded in L2(0,E ) .  Thus it is sufficient to estimate 
the norm of the operators 

and 

Now the assertion follows from standard estimates for integral operators, 
e.g. from Schur's test ([H+ S], p. 22). 
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We introduce the "Dirichlet" boundary condition for the operator T 
at 0 by defining an operator T 6as restriction of T,,, to the domain 

(2.10a) S ( T s ) := { u  E D(Tmax)I) I u ( x ) ~ ~ ~ = o(1)a s x  -+ 0 ) .  

This also gives rise to Dirichlet boundary conditions for D ; we thus call D6 
the restriction of Dm,, to the domain 

(2.10b) S ( D 6 )  = ( u  E Q(D,,,)I I J u ( x ) l l ~= 4 1 ) a s x  0 ) .-+ 

The boundary parametrix P6 is then defined by 

P* := 0 Po,,0 0 P1,S 
ssspec So ssspec So 

s > o  s < o  

with each term Po,,or P I , ,acting in the appropriate eigenspace. Since we 
assume that 6 > -1/2 in (2.1), Lemma 2.2 applies to P*. We will now 
establish that D s  is a Fredholm operator. 

LEMMA2.3. If II/ E C r ( - 1 ,  1 )  then \EPs maps L2( (0 ,  11, H )  into 

D(T6) .  

Proof. By Lemma 2.1, setting f ( x )  = 0,,s,,, sof s ( x )we have 

so P6 f ( x )= o(1)as x 0. Now+ 
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so in view of (2 .2 )it suffices to estimate 

where we have used Lemma 2.2.  

LEMMA2.4.  If u E d>(Ts )and u ( x )  E 0for x r 1 then 

Proof. Let ( e , ),,,,,, be an orthonormal basis in H with Soe,  = se , .  
For x > 0 we put 

(2.14) h ( x )  := ( a ,  + X - ~ S ~ ) U ( X )= T U ( X )  - X ~ S ~ ( X ) U ( X )  

and 

h , ( x )  := ( h ( x ) ,e , )  = ( T u ( x ) ,e , ) ~- ( u ( x ) ,xBS1(x)*es)H 

= u ; ( x )  + X - ' S U , ( X ) ,  s E spec S o .  

In view of (2 .2 )and /3 > -1 / 2  we have h ,  EL1(O, I ) ,  and since u , ( l )  = 0 
we obtain 

It remains to show that for s 2 0, P I , ,can be replaced by Po , , .  We write 

Fors 2 Oandh E L '  
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and u s ( x )= o(1)since u E 9 ( T 6 ) .SOcs = 0 ,  and us  =Po,,hSif s r 0. The 
proof is complete. 17 

LEMMA^.^. There is 0 < E 5 1such thatfor c p ,  $ E C r ( - 6 ,  E ) ,  with 
$cp = cp and u E 9 ( D 6 )  

for some bounded operator V in L2( (0 ,I ) ,  H ) .  As  a consequence, 

Proof. Choose x E C r ( - E ,  E )  with X$ = I). Since cpu E D ( T g )we 
obtain from Lemma 2.4 with f := T s p u  

Iterating, 

For E sufficiently small we have by Lemma 2.2 and (2.2) the operator 
norms 

so we obtain (2.16) with 

(2.17) follows from Lemma 2.2 and (2.2). 

LEMMA2.6. D is a closed operator. 

Proof. I f ( u , , ) C  D(Dg)withun-+u,Dsun-+vinL2(E)thenclear ly 
u E D(D,,,) and v = Du. So we have to show only that u satisfies the 
boundary condition (2.10b). If 6 is chosen as in Lemma 2.5 and cp E 

Corn(-6, E )  with cp = 1 near 0 then we derive from (2.16) 
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hence 

Thus it follows from Lemma 2.1 that 1 1  u ( x )1 )  = o(1)as x -+ 0. 

THEOREM2.1.  D 6 :  -+ L 2 ( F )is a Fredholm operator. 

Proof. By Lemma 2.6,  is a Hilbert space under the graph 
norm, so we only have to prove that D* has finite kernel and cokernel; for 
this we construct right and left parametrices. Choose cp, @ E CF(-c ,  6 )  

such that cp = 1near 0 and @ = 1near supp cp, and choose $, $ E C F ( M )  
such that cp + $ = 1 and $ = 1 in a neighborhood of supp $. Let P i : L 2 ( F )  
+ HI',,(E) be an interior parametrix for D with 

with R i ,  L;  compact in L 2 ( F )and L 2 ( E ) ,respectively. Define 

By Lemma 2.3,  Q* maps into 9 ( D 6 )and 

Now if the support of cp is sufficiently small we have in view of Lemma 2.2 
and (2.2) 

and we can write 

where R ;  is compact and IJR1 )  < 1/2 .  This implies 
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so D6 has finite cokernel. Next we find with Lemma 2.4 

and as before we obtain for small 6 

where Li is compact and I(L( 1  < 1/2. But then 

so D6 has finite kernel. 

To compute the index of D6 it is convenient to have Sl( x )= 0 near 0.  
This can always be achieved by a deformation of D 6 .  

LEMMA2.7. Let S ( x )E S ( H s ,H )  be a smooth function of x in (0 ,  11 
and satisfy (2.2).Thenfor x E C;( -E ,  6 )  with 6 sufficiently small and 6 > 
-1/2 

is a Fredholm operator on B (D6)with 

ind D6 = ind D 6 .  

Proof. By (2.17) and interior regularity 

is bounded from B ( D 6 )to L2(F) .Thus the family 

is a continuous function of 6 E [0, 11 with values in S ( a ) ( D s ) ,L2(F)) .Re-
peating the proof of Theorem 2.1 with $ such that x$ = 0 we see that each 
D6(6)is a Fredholm operator, so the index must be constant. I7 
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3. The closed realizations of D are all Fredholm operators; we show 
this by proving that Dm,, and DA,, are Fredholm. We then identify those 
realizations with the subspaces of 01, ker(So s). Assume now that 1 ,  -

/3 = 0, that is for x I1 

and maintain the hypothesis (2.2) on S1.We have the following analog of 
Lemma 2.4. 

LEMMA3.1. If u € a)(Tma,)and u (x) E 0for x 2 1 then 

where 

and Pm,,SIis bounded in L2((0, I),  H ) .  

Proof. Let ( e ,3,,,,,, be an orthonormal basis of eigensections for 
So.Let u and Tu E L2, and set 

Hence for each s ,  

since u and Tu are in L2. For any s ,  u , ( l )  = 0 implies that 



It  follows that for s 1 1 / 2  

(3 .5 )  

since 

is in L2,the last term by (3 .4 )and the other by Lemma 2.1.  Now (3 .4 )and 
(3 .5 )give 

Combining this with (3 .4 )for s < 1 / 2  gives Pmaxh= u ,  and this proves the 
lemma, by (3 .3 ) .  I7 

THEOREM3.1.  Dm,,  and D m i n  are Fredholm operators. The exten- 
sions of Dmi, are all Fredholm operators, and correspond to the subspaces 
of the finite-dimensional space 

Proof. Choose cp,  Q, rl/, $ as in Theorem 2.1 and define the para- 
metrix 

Then by Lemma 3.1 and (2 .19b)  

As in the proof of Theorem 2.1 we see that, by an appropriate choice of cp 

and Q, the operator in brackets has small norm, while Liis compact; hence 
PD,,, is a Fredholm operator, and has finite nullity. Thus Dm,, has finite 
nullity. Since it is an extension of the Fredholm operator D g , it also has 
closed range with finite codimension; thus it is Fredholm. The same argu- 
ment applies to D;,,, hence its adjoint D m i nis also Fredholm. 
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Now D ( D m i n )and 33(Dm,,) are Hilbert spaces under the graph norm. 
Thus 33(Dmin)is a closed subspace of 33(Dmax),and it has finite codimen-
sion since both operators are Fredholm. Hence the inclusion map is Fred-
holm and 

ind Dm,, = ind Dmi,  + dim 33(Dmax)/33(Dmh). 

The conclusion of the theorem is now clear. 

We next show that D ( D m a x ) / 3 3 ( D m i n )is isomorphic to 01,< 112 

ker(So - s ) ,  and relate the extensions of Dminto the asymptotic behavior 
of their elements at x = 0 .  

LEMMA3.2. For s in spec S o ,  1s I < 1/2,  there are continuous linear 
functionals c ,  on 33(Dmax)such that for x in (0 ,  1 )  and 0 < E < 1 

for u in 33(Dmax).The same statement holdsfor D ' ,  mutatis mutandis. ( I f  
s has multiplicity m > 1, there are m corresponding functionals c ,  .) 

Proof. Just as Lemma 2.4 implies Lemma 2.5, Lemma 3.1 implies 
that if u E %(Dm,,) then II(ISoJ+ l ) u ( . ) I J HE L2(0 ,I ) ,  and 

Hence in (3.3), 1 1  h ( . ) J J HE L 2 ( 0 ,1). Since h = u '  + x- 'Sou ,  we have for 
s > -1/2 ,  for some constants c, (u) ,  

Since x-": y%,(y)dy E L2by Lemma 2.2, we have 

(3.8) c , (u )  = 0 ,  s r 1/2.  

For 1s I < 1/2,  setting x = 1 gives 

r l  



672 

Fors  < 1/2. 

By interior regularity, u ' E L2(($, I),H )  and 

Hence the functionals in (3.9) are continuous on D(D,,,), and 

By Lemma 2. lb) ,  for every positive 6 < 1, 

By Lemma 2.la) and (3.7), (3.8), 

This together with (3.10)-(3.12) proves the Lemma. 

We can now define, for each subspace W C GIs< 112 ker(S0 - s ) ,  an 
extension D of Dmi,by restricting Dm,, to 

Note that D is automatically closed since the functionals c, are continu-
ous on D (D,,,). 

THEOREM3.2. The operators D wgive all closed extensions of Dmin, 
and (DW)* = D hi .Moreover 

ind(Dw) = ind(Dmin)+ dim W. 
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Proof. We note first that for u E D(D,, , )  and v E D(D; , , )  

(3.13) (Du,  v )  = (u ,  D ' v )  - C c , (u)c ' , ( v )
/ s / < 1 / 2  

where cl_ ,  are the functionals for D ' .  For by Lemma 3.2, taking cp  E 

Corn(-1, 1 )  with P ( X )  -- 1nearx = 0,  we have 

with ( 1  G(x)11 + /IV(x))I ICx1l21 log x 1 ' I 2  as x -+ 0. Then 

(Du, V )  = lim 3 :  ( D u ,  c p v ) ~  + ( u ,  D'(1  - c p b )
6-0 

= lim [ - ( u ( E ) ,v ( E ) ) ~ ]+ ( u ,  D ' v )  
e-+O 

= - C + (u ,  D ' v ) .  c S ( u ) c ~ , ( v )  
j s / < 1 / 2  

Note second that 

For, given any constants c , , / s I < 1/2, we set 

with cp  as before, and find 



We observe next that 

(3.15) c s ( u ) = O  forall s iff u € 9 ( D m i n ) .  

In fact, (3.13) implies that u E 9((Dkax)*)if u satisfies (3.15). But since 
Dkax= (Dmin)*we have (DkaX)*= Dmin .The converse part of (3.15) is 
true since c, is continuous on 9(Dmax) .  

Now let D be any extension of Dminand define 

Then clearly D C D w. Conversely, for v E 9 ( D w )there is u E 9 ( D )  with 
c,(v - u)  = Ofor alls by definition. But then u - v E D(Dmin)c a>(D)by 
(3.15) proving D = D w.The formula for ind D w  is clear from Theorem 
3.1 and 9 ( D,) /9(Dmin) - W.  The relation D$ = D bi follows from 
(3.13). 

Example. F o r u ~ 9 ( D ~ ~ , ) w e h a v e u ( x ) = o ( l ) a s x - + O i f f c , ( u ) =  
0 for s r 0. Introducing 

W ,  := @ ker(So - s ) ,  W ,  := O ker(S0 - s )  
s < o  s > o  

we see that 

Thus we obtain for W c GIs1 < , / 2  ker(So - s )  from Theorem 3.2 

(3.16) ind D w  = ind Dmin+ dim W 

= ind D8  + dim W - dim W ,  . 

4. The index of Ds will be calculated in this section, using a variant of 
the approach in [B+S2]. We assume for small x the representation (2.1) 
with 0 > -1/2 and the regularity property (2.2). Moreover, at first we 
assume also that S (x) = 0, that is 
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for some sufficiently small positive E .  We then pass to the general case by a 
limiting argument. 

Since Dgis closed, the operators 

are nonnegative and self-adjoint. We will show that the resolvent powers 
(A* + are trace class for appropriate m ,  and tr(A' + A)-" has an 
expansion in powers of X and log X as h + w .  By a familiar argument, -+ 

the nonzero eigenvalues of A+ and A- coincide, counting multiplicities; 
for the maps 

are injective between the corresponding eigenspaces. Thus 

(4.3) tr(A+ + A)-"' - tr(A- + A)-"' = h-" ind Dg. 

For this difference, all terms in the expansion as X + w are zero, except -+ 

for the term in h-"I, and the one gives the index. 
The expansion of tr(A + A)-"' comes from a parametrix. For 0 < x < 

E ,  (4.1) implies that 

with S; fSo+ 1/4 = (Soi 1/2)2 2 0. Denote by T' the operators in 
L2(R+,H )  defined by the right hand side of (4.4), with the appropriate 
boundary conditions: 

For T+ :u(x) = oil)  and u '  + x-'Sou = O(1). 

For TP:u(x)  = O(1) and -u '  + x-'Sou = o(1). 

The resolvent for T' is obtained as a direct sum over s E spec So, 

(4.5) (T' + A)-' = @,(L$ + A)-'@T, 



where L$ is the appropriate realization of -8; + XP2(s2+ s), and .rr, is 
the projection on the s-eigenspace of So. Set 

We generally suppress the dependence of v+ on s to simplify notation. 

LEMMA4.1. Let Im z2 + 0 and x I y. Then (L: + z2)-' has the 
kernel 

and 

whereas (L; + z2)-' has the kernel 

and 

Proof. We consider L,+ only; L; is treated similarly. To compute 
the resolvent kernel we may apply Theorem 16 in [D+S], XIII. 3, i.e. if 
cp(x, z), $(x, z )  denote the (up to constants) unique solutions of (L: + 
z2)u(x) = 0 satisfying the boundary conditions at 0 and a,respectively, 
then 

The equation 
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has the general solution 

or, if v+ is not an integer, 

The unique solution satisfying the boundary condition at oc is 

Unless -1/2 < s < 0, the function 

satisfies the relevant boundary condition p(x) = o(1) and (a, + x-ls) 
cp(x) = O(1) as x + 0. Since 

the Wronskian of cp and $ is 1, and ( 4 . 7 ~ )follows. When -1/2 < s < 0 
then 

solves the above boundary conditions. Since K, = K-,, the Wronskian 
calculation is the same as above, and we obtain (4.7b). 

Now we construct the parametrix for (A + A)-". In the interior, away 
from x = 0, there is the standtird pseudodifferential parametrix for (A + 
A)-"' ([GI, [S]), which we denote by Pi.  If cp and $ are C", vanishing nearx 
= 0, with $ = 1 near supp cp, then 

(4.12) (A + h)"'$Picp= cp - R i  with IIRill,, = O(A-k) 



where k can be arbitrarily large. Moreover, where M (0 ,  xo)  X N ,  Pi 
has a kernel Pi(x ,  x '  ;y ,  y '; h)dy l  dy with an expansion (when ( x ,  x ' )  = 

( y ,  Y ' ) )  

(4.13) tr Pi(x,x ' ;  X ,  x ' ;  X)dxldx = C p,;(x, ~ ' ) h - . i / ~ d ~ ' d ~ .  
.t 

The expansion is uniform for x ' in the cross section N and x > E ,  with any 
E > 0. We patch this together with a boundary parametrix as in (4.5).To 
control the remainder arising from the patching, we use: 

LEMMA4.2. If cp E Corn(-1, yo)  and $ E CF(xo,03)with yo < X O ,  
then for all j ,  i ,  m ,  k and X large, 

Proof. For high eigenvalues s E spec S owe use the a priori estimates 
(3.5) in [B+S2]; we identify the L ,  in those estimates with L' in (4.5), 
taking 

We will prove inductively that for Is I sufficiently large, and $, cp satisfying 
the conditions of Lemma 4.2, 

We abbreviate L' to L ,  and write L = -a: + X-'a with a in (4.14). 
Since $ and cp have disjoint supports, 

Thus if E CF(0, oc) and E 1 near supp $, 

Similarly, since 

a2(L+ X I - '  = -I + (ax-2 + X ) ( L+ X I - '  
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and 

we have 

( 4 . 1 6 ~  $a(L + x>-lcp= + h)-lcp- [$ ' (L  + A ) - I ~ ~ / ~ J [ + ~ ~ ( L  

+ 2 $ ' ( a X P 2+ A)(L + A)-'cp + 2$aX-3(L + A)-'cp]. 

From (3.5) in [B+ S21, the following have bounds independent of a and A: 


a jlX-2-i(L + 1 1 ,  I /  AXy i (L  + A)-'Xi 1 1 ,  


a ' I 2  IIxi-la(L + A)-lX-.i 1 1 ,  [ l x y j a ( L+ x)- lx , i  1 1 ,  


for any fixed integer j. Since 

a k ( L  + A)-k = X 2 k [ a X - 2 k ( L+ h ) - 1 X 2 k - 2 ]. . . [ a X P 2 ( L+ A)-'] 

we find for $ with compact support that 

(4.17) lI$ak(L + I C k  and 1 1  Ak(L + I 1 

and hence 

1 1  $(L + A)-k 1 1  I C(a + A)-k. 

Likewise 

ak-'I2a(L + 
-- x 2 k - I [ x l - 2 k a 1 / 2 a ( ~  + X)-lX2k-2] . . . [aX-2(L  $. A)- '] ,  

SO 

(4.18) lI$a(L + IC(a + A)1/2-k.  



Now differentiate (4.16) k - 1 times with respect to h and apply (4.17), 
(4.18) to obtain 

when 4, cp have disjoint supports and $ vanishes near 0. The proof of (4.15) 
is completed by induction; in (4.16), use (4.17) in the first factor on the 
right, and successive improvements of (4.17') and (4.18') in the other fac- 
tors. 

It remains to obtain estimates like (4.15) for low eigenvalues s. There 
we use the kernels (4.7)-(4.8). From the asymptotics of the Bessel func- 
tions, and noting that 4 E Cm(xO,w) and cp E C r ( -  1, yo) with yo < xo,  we 
can estimate the kernel of $(L, + z2)-' by 

when $(x)cp(y) # 0; note that - v  occurs only when v I1/2. Similar esti- 
mates for the derivatives of the Bessel functions (see e.g. (3.11) in [B+ S21) 
yield the necessary inequalities for low eigenvalues, with exponential decay 
in z = 6,proving (4.15) for all s, and h large. 

To complete the proof of Lemma 4.2 we need trace estimates. The 
operators $I(L + h)-k$l are positive, with trace norm equal the trace. 
The estimate of these trace norms (and indeed the index calculation below) 
uses the Mellin transforms from [0,p. 1231: 
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if v r 0 and max{-1, 2m - 2 v  - 3 )  < Re(w) < 2m - 2;and 

if 0 I v < 1/2 and 2m + 2 v  - 3 < 2m - 2.So the trace norm of $ , ( L  + 
is, for the kernels with I,K,, 

Similar estimates hold for v = 0 (use a different power to estimate 
4'({/d2), and for the kernels involving I-,. Thus 

This with (4.16) gives (4.15) again, but now with trace norms: 



Since the power k is arbitrary, we get the same inequalities with arbitrary 
powers of s on the left. Moreover, using ~ Z ( T  + A)-" = - ( T  + A)'-" + 
( X P 2 A+ h ) ( T  + A)-"', we get 

Since S Ois a first-order elliptic operator on the compact n-dimensional 
manifold N, then 

for all 6 > 0. Thus Lemma 4.2 follows by summing (4.21) over s E 

spec So .  

To construct the parametrix for ( A  + A)-"', choose cp in Corn(- 1,  yo)  
with yo < E and cp = 1near x = 0; and $ in Corn(-1, E )  with $(x )= 1 for 
0 I x I xo, where x o  > yo. Let pi = 1 - c p ,  and choose qi in C ; ( M ) ,  
vanishing near x = 0, with qi = 1near supp pi. Let P: be an interior 
parametrix for (A' + A)-"' as in (4.12) above. With slight abuse of nota-
tion, and suppressing the superscript f, define 

Then ( A  + X)"P = I - R ,  where 

By (4.12)and Lemma 4.2, 1 1  R 11 ,, I Ch-k. Hence for large X 

and 11 P C;" Rj 1) ,, I CXPk.So we may compute the asymptotics of tr(A + 
A)-" from P. The interior term gives, by (4.13), 



683 INDEX THEOREM FOR SINGULAR OPERATORS 

We will show that the boundary contribution to tr(rl/(T+ A)-"cp) has the 
form 

with a satisfying the conditions for the expansion theorem in [ B + S l ] .  
The operators (T' + A)-' have, on the diagonal x = y,  the kernels 

given in Lemma 4 .1 : for ( T +  + A)-' 

and for ( T - + A)-' 

where z 2  = X and v + ( s )  = 1 s $- 1 / 2  1 as in ( 4 . 6 ) . Noting that 

and setting xz = {, we are led to define formally 

( 4 . 246 )  a - ( x ,  {) = 



LEMMA4.3. I f  2m > n + 1 then each series (4.24a, b) converges to 
a Cmfunction for { > 0, and 

Proof. Calculating as in (4.20), for 1s 1 so large that v = 
1s f 1/2 1 2 m - 1, the positive operator $(L' + A)-"$ has trace norm 

fo r1  < 0 < 2m. I f2m > n + l ,wecanchoose2m > 0 > n + 1 and 
deduce from (4.22) that the sum overs of the terms in (4.26) is convergent. 
Further, each integrand in (4.26) is the restriction to the diagonal of the 
kernel of a positive operator, so the integrand is positive, hence the sum of 
the integrands in (4.26) is still positive with m replaced by m + 1, so 

is a decreasing function of z, and it follows that (4.24a, b )  converge uni-
formly; so do their derivatives. This proves Lemma 4.3. 

In order to expand o*(x, xz)dx as z -t +a,we must verify the 
conditions (1.2a, b)  in [BSSl] .  The main point is an asymptotic expan-
sion 

m 

(4.27) o x ,  ) - Z O X l-' 
j= 1 
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Now a + ( x ,  x z )  gives the trace of the kernel of (T* + z2)-"'on the diagonal. 
This kernel can be approximated by pseudodifferential methods. Denote 
by p&(x,  x ' ) d x f d x  the forms (4 .13)computed for 

( a  + x - l s 0 ) * ( a  + x-Iso) and ( a  + x-ls0)(a+ x - ' s o ) * .  

Then 

r 

Since a+(x , {) = {), from (4 .24)we get (4 .27)withX ~ " ' - ~ I J ~ ( ~ ,  

Now apply the expansion theorem of [B+ Sl];  note that p ( x ) = 1near 
0, and drop the "5": 

m

+ C z P k - l  log z a f i l ( 0 ) / k !
k=O 

with d k ) ( x ,{) = ( a x ) k a ( x ,{). In particular, there is precisely one logarith- 
mic term in ( 4 . 2 9 ~ )namely z - ~ "log z ,  and the coefficient of that term is 
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From (4 .3 ) ,  

(4 .30)  t r [ ( A +  + z2)-m - ( A - + z 2 ) - n f ]  = Z - 2 n f  ind D6 

so the terms in z - ~ " 'log z coming from A+ and A- must cancel: 

and so a k ( x )  = a G ( x ) . Hence in (4 .29a)  

and these two terms cancel from the expansion of (4 .30) ,leaving 

In the integral over M, we have the usual locally computed "index form" 

+ 
@ D  :=P2n1- PGI .  

Near x = 0 ,  D6 +8, + X - ' S o ,  so p;, = pc2,,,;hence from (4 .31) ,  

wD(x ,  x f ) d x l  = 0 for x near 0 .  
N 

It remains to compute the second integral in (4 .32) ,which is defined 
by analpic continuation in the power of {. Define 
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For a meromorphic function h(w), denote by Resk h(wo) the coefficient of 
(w - in the Laurent expansion of h; we want w ~ ) - ~  

In view of (4.24), we decompose 

(4.33) h* = h: + h: 

where 

and h- is similarly decomposed on the basis of (4.246). From (4.19) 

The sum (4.34) is analyzed in [B+S21, equations (7.12)-(7.16), where z = 
(w + 1 - 2m)/2. The analytic continuation is expressed in terms of the 
zeta function of a complex variable t ,  
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as follows: 

where the Bkare Bernoulli numbers and 

with y the Euler constant. For the correction term h: we have from 
(4.19a),continued analytically to v+ > -1/2, 

and from (4.19b),for v+ < 1/2 

Hence 

The computation for h- is the same, except for the possible occurrence of 
v-(s)= 1/2 when s = 0. But then 

and by the prescription of the Singular Asymptotics Lemma in [B+Sl] 
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while 

Thus 

Thus the second integral in the index formula (4.32) is 

1 1-- -- Reso({+ - {-)(I) -- Z (-l)kk-lBk Resl({+ - {-)(2k - 1)
2 4 k r l  

with 

We shall see from (4.41)below that Res,({+ - {-)(- 1)is the residue 
of the eta function of So at the origin, which is known to be zero for a 
differential operator So;but this vanishing can be deduced from (4.39) and 
(4.32). For, the first integral in (4.32) gives the coefficient of X-" in the 
expansion of tr pi[(A+ + A)-" - (A- + which is independent of 
m as one sees by differentiating the expansion with respect to A. (Note that 
this expansion has no term in X-" log X.) The second integral is given by 
the right hand side of (4.39), where the only term depending on m is the 
one withc,: sincec, in (4.37)varies with m its coefficient in (4.39)must be 
zero. 



We next relate the difference l+- l- in (4.39) to the eta function of 
So: 

q ( z ) =  C I ~ ( - ~ s g n s .  
sespec So 

s f 0  

Introduce 

3-dz) := C 1s f 1/21-2 
sespec So 
/ s 1 > 1 / 2  

For Re z large, 

(4.41) ( z - ( z )  = C (IS + 1/2 - ( s  - 1/2 I - ' )  
sespec So 
l s / > 1 / 2  

= C \sI-'((l + 1/2s)-2 - (1 - 1/2s)-2) 
sespec SO 

1s 1 > 1 / 2  


= 2  C I s l - ' C  
sespec So 

1s / > 1 / 2  


Since Sois a first order elliptic differential operator we know e.g. from [GI, 
Lemma 1.10.3 that qso is meromorphic in the whole complex plane with 
possibly simple poles at n ,  n - 1, . n = dim N, and holomorphic at a ,  

z = 0 and in Re z > n. In particular, the q-invariant of So, 
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is well defined. The right hand side of (4.19) can then be written as a finite 
sum plus a remainder holomorphic in Re z > -2 and vanishing at z = 
-I .  This gives 

= C [s + 1/2 - (1/2 - s)] + dim ker(So - 1/2) 
/ s / < 1 / 2  

- dim ker(So + 1/2) + qso - C sgn s 
O < l s j s 1 / 2  

and for j 2 1 

Also, 

(4 .42~)  Resl(C+ - [-)(--I) = Reslqso(0). 

This gives, using (4.39) 

= --
1 

(qso + dim ker So) + C akReslqso(2k)
2 k r l  
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as the second contribution in the index formula (4.32).The coefficients crk 
can be computed from (4.39) and (4.42a, b ) ;  they are independent of So.  
The residues are given by "local" formulae ([GI, Lemma 1.10.3) unlike vso 
and dim ker So. For the classical geometric operators, they vanish, accord- 
ing to [A+P+S]. 

Summing up, we have proved: 

LEMMA4.4. Suppose that S l ( x )  0 for x 5 5 .  Then 

where w~ is the usual locally computable index form for D ,  and M ,  = 
M\(x I 6 ) .  

Suppose now that we are in the general case, where S l ( x )need not be 
zero for small x ;  we then obtain the index formula by a limiting process. 
Choose $ E Cm(R)with $ ( x )  = 1 if x r -1 and $ ( x )  = 0 if x 5 -2. Put 

so that $,,(x) = 1 if x r 2/n  and $,,(x)= 0 if x I l / n .  The operators D ,  
defined by 

satisfy the same assumptions as D ,  and Lemmas 2.7 and 4.5 give 

(4.44) 

ind D g  = ind D,,,6 

1 
= --(vso + dim kerSo) + C a k  Reslqso(2k)+

2 k z l  1MI/,, 

where w, is the index form for D,. Denote by wo the index form for a, + 
X-lSo. Then w, = wo for x < l /;z,  and as we noted after (4.32), 
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Thus the integral of w, in (4.44) can be written as 

Moreover, since the coefficients of D,,converge to those of D in C mon each 
compact subset, w,, -t w~ pointwise, and uniformly on compact subsets. 
Thus to pass to the limit as n + cx, in (4.45) we need only: 

LEMMA4.5. Suppose that each coefficient a ( x ,  x ' )  in the differential 
operator S l ( x )  satisfies 

uniformly forx  in I and x i  in compact subsets of the local coordinate patch 
on N .  Then,  with the same uniformity, 

with C independent of n .  

Proof. The cut-off functions $,(x) = $(nx - 3 )  satisfy 

uniformly in n ,  so if we replace S , ( x )  by $ , ( x ) S l ( x ) then (4.46) remains 
valid uniformly in n .  Thus it is enough to show the constant C in (4.47) 
depends only on the constants implied in (4.46);so our notation ignores 
the dependence on n .  We obtain uniformity in x by rescaling to x = 1. 
Near x = 0 ,  

D = a, + X - l S ( x )  with S ( X )= S o  + X B + l S , ( x ) .  

For c < 1, set D ,  a, + x- 'S (cx ) ,  and let A' be the corresponding 
Laplaceans. We have locally computable forms w i ( x ,  x ' ) d x ' d x  such that 
for p in C r ( 0 ,  1 )  
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+ other powers of A. 

The change of variable x = cy converts a ,  4-X P 1 S ( x )to c-'[a, + 
Y-'S(cy )I, hence 

tr (~(c-~A'+ A)-"' - h-" I N  1:
 x ' ) d ~ ' ( o ( ~ ) d ~+ other powers. 

Replacing X by cP2Xand comparing these two expansions, we find 

Set y = 1, and find that the index form o = o+- w- for D satisfies 

where wo is the form for Do. Thus 

d c ,  x ' )  - ode, x ' )  = c- '[o,( l ,  x ' )  - ~ ~ ( 1 ,X I ) ]  

and it suffices to show that 

a 
(4.49) -w,(l, x ' )  = O(c0). 

ac 

Now let u(S(cx))= u(So)+ (cx)P+'u(Sl(cx))=: u c l .[ '  + uco,where [ '  
denotes the cotangent variables dual to x ', and . denotes the scalar prod- 
uct. The usual pseudodifferential parametrices for (A' + A)-', differenti-
ated m - 1times with respect to X ,  give 
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where p2 = [E2+ 1 + X - ~ ( U , ~  [')2]-1, a = a,,,,, and Q is a polynomial 
such that the integral (4.50) converges. The conditions (4.46) give 

for x near 1. This with (4.50) proves (4.49), hence the lemma. 

Thus we may pass to the limit in (4.45) and (4.44) to obtain the follow-
ing index theorem: 

THEOREM4.1. Assume that D satisfies (RS1) to (RS4) and that the 
assumption (4.46) is satisfied. Then D 6is a Fredholm operator with index 

1
ind D 6  = WD -- (qso + dim ker So)+ C a k  Reslqso(2k) 

SM 2 k? 1 

where 

If D denotes the closed extension of D corresponding to V as in Theorem 
3.1, then D is also Fredholm and 

1 
(qso + dim ker So)+ C akReslqso(2k)

k >  1 

5. Applicationsof Theorem 4.1 will be given to the GauB-Bonnet and 
the Signature operators on manifolds with asymptotically cone-like singu-
larities. By this we mean Riemannian manifolds M which possess an open 
subset U such that M \ U  is a smooth compact manifold with boundary 
and U is isometric to (0, E )  X N, where N is a smooth compact manifold of 
dimension n ,  with metric 
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where g N ( x )is a family of Riemannian metrics on N and smooth on [ 0 , 5 ) .  

We denote by QP the smooth p-forms and by Q$ those with compact sup- 
port. With I := ( 0 , 5 )  we define a bijective map 

where n : I X N + N is the projection on the second factor and x is the 
canonical coordinate on I .  Denoting by a and r, the Hodge operator on U 
and on N (with respect to the metric g N ( x ) ) ,respectively, one computes 
that 

and 

where L2*pdenotes the completion of Q$ with respect to the scalar product 
defined by the metric. 

Next we find that with d, dNthe exterior derivative on U , N 

and with similar notation 

Here [a,, a,] denotes the commutator of operators on CF(I,Q ( N ) ) ,where 
Q ( N ):= OPzoOP(N).Note that 
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(5 .7)  b P ( x ):= [a,, a,]*, : c;(I,Q P ( N ) )+ c;(I,Q P ( N ) )  

is a differential operator of order 0 with coefficients depending smoothly 
on x E [0, E ) .  

Now assume n + 1even. The GauB-Bonnet operator on M is 

where flev,Qodddenotes even and odd forms, respectively. Introducing 

a straightforward computation using ( 5 . 5 )  and ( 5 . 6 )  shows that on 
c;v, 

where S ( x ) is the operator 



with 

Now PCBdoes not yet satisfy the assumptions of Section 1since we do not 
have a fixed Hilbert space fiber in (5 .4 ) . To achieve this we denote by 
( . ( ),,, the scalar product defined by g N ( x )on OP(N).Then we can write 

where A , ( x )  is a family of bounded positive definite operators with respect 
to ( . I . )p ,O .Moreover, A , ( x )  is smooth in [ 0 , E )  and satisfies A,(O) = Id. 
We put 

Then 

is defined in L2(Z, @ p , o L 2 * p ( N ) )  with domain CT(Z, a ( N ) )  where L 2 * p ( N )  
now denotes the L 2 structure on W ( N )defined by g N ( 0 ) .Unless otherwise 
stated all geometric quantities on N will now be computed with respect to 
the metric g N ( 0 ) .From (5 .10)we obtain 

where 
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is clearly a symmetric first order elliptic differential operator on Q(N) and 
Sl(x)  is a smooth family of first order differential operators on Q(N) with 
smooth coefficients in [O,  E ) .  SO TGBis well defined with domain 
C;(Z, @p20H1,P(N))where H1<P(N) is the space of p forms with square 
integrable derivatives of order 11. 

To determine the closed extensions of DGBin @p,oL2*2p(M) and their 
indices we have to investigate the spectrum of So.We denote by A, the 
(positive) Laplacian on p-forms, and by 

the space of coclosed eigenfunctions of A, with eigenvalue A. 

is an eigenvalue of A, such that 

1 .  If p E spec Soand p ( c , ,  . . .,c , )  then the multiplicity of p is 

dim H;,(,),,,,(N). 
p z o  

2. I f p  = c, f o r s o m e p  and p f c;, 0 Ii Ip - 1 ,  then the multi- 
plicity o f  p is 

Proof. 1. Let p E spec SO, p P {tor . . ., c n ) ,  and put SO, := 
ker(So - p). By elliptic regularity we have So, C Q ( N ) .We define a map 



700 

as follows: 

Then we claim that $ is a bijection of Soponto O p 2 ~ H ~ p ( p ) , c c l ( ~ ) .First we 

show that 

The proof of (5 .18)is based on two observations. First suppose that 4 ESo, 
and for some p 2 0 q5i = 0 if 0 Ii < p .  Then So+ = p4 implies the 
equations 

6 4 ,  = 0, 

Hence 4,  is coclosed and 

Thus 4 ,  = $(+) ,EH i p ( p ) , c c r ( N ) ;  =in particular, this is always true if p 0. 
Next let 4 ,  E H$(, , , , , , (N) and define 6by 

j = p ,  

- c p + ~ pj = P + 1 ,  

otherwise. 

Then it follows from the equations (5 .19)that 6E So,; in fact 
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d 6 ,  + c ,+16 ,+1= d 4 ,  + C , + I ( P- c P + l ) - ' d 4 ,  

- p ( p  - c , + I ) - ' ~ + ,= p$,+i, 

d$,+l = 0. 

Using these facts it follows easily by induction that for 4 E So,  and p r 0 

* ( 4 ) P  E H;p(,,,ccl(N) 

and 

Hence (5.18) is proved. Moreover, the same arguments show that the map 

* :so, - p z oO H;p(,),"cl(N) 

is bijective, proving the assertion on the multiplicity of p .  

2. Now assume that p = C ,  but p f c i , 0 Ii 5 p - 1.  From the 
arguments above we conclude that the map 
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is surjective and that 

Writing out the eigenvalue equation as before we find that $ ( + ) , - I  is in the 
range of 6,  while 6d$~(4J ) , -~= 0, so 

Thus 

and we conclude as before that the map 

is bijective. The proof is complete. 
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We can now investigate the small eigenvalues of So. Denote by X p j ,  
0 I p In ,j r 0, the different eigenvalues of A, with nontrivial coclosed 
eigenforms, where hRi < hp,,j+l.Then p E spec S o iff for some p and j 

Thus XRi generates two eigenvalues namely 

If XEi > 0 it follows from Lemma 5.1 that assigning to p$ the multiplicity 

we obtain that for each eigenvalue p G { c I ,. . .,c , ~ }  

multiplicity of p = C mRi. 
P .j+ 

P = P i ,  

Now consider the eigenvalues X p o  = 0 with nontrivial coclosed eigenspace 
HP(N).By Lemma 5.1 again they contribute to the eigenvalue c, only, and 
with multiplicity 

b ,  := dim HP(N) .  

Moreover, if p f (n - 1) /2 and j r 0 then 

( 5 . 2 2 ~ )  p$ and p i  have different signs 

and 

(5.223) 



Therefore, eigenvalues with absolute value < 1/2 can occur only if p = 
(n - 1)/2. In that case we find that eigenvalues p with 1 p I < 1/2 arise 
precisely from eigenvalues X(n-1),2,,i with 0 < X(n-1)/2,,i < 1. For these j 

(5 .23~)  p:-1),2,,j have the same sign if X(n-1)/2,j < 114, 

(5.23b) pg-1)/2,,; have different signs if 1/4 < X(n-l),2,,i < 1, 

(5.23~) the multiplicity of the eigenvalue 0 of So is dim H';;<;~/~(N). 

Thus we obtain from Theorem 3.2. 

LEMMA5.2. A choice of boundary conditions for DGBis necessary 

i f f  

Our next goal is the computation of the q-invariant qso. We know 
from [GI, Lemma 1.10.3 that the q-function qso(z) of Sois meromorphic in 
C and regular at z = 0, and by the previous discussion it is given for Re z 
large by 

(5.24) qsO(z)= C sgns ls l - '=  C s g n c p ) c p ~ - z b p  
sespec Sa\{O) p=O 

Clearly, q l  and 172 are entire functions. The contribution of q1 to qso is 
given by (setting n =: 2k + 1) 

?I 

q l(0) = C sgn c, .b, 
p=o 
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To determine the contribution of q2we have to distinguish two cases. 

Case 1. ( n  - 1)/2 = k is odd. Then if 0 < hk,j< 1/4 the eigen- 
values of Sobetween 0 and 1/2 are precisely 

If hk,,i= 1/4 then ~ k , , ~is the zero eigenvalue and pk+lj> 0 has the same 
multiplicity. Thus we obtain in this case 

(5.26a) q2(0)= dim ker So+ 2 C dim ker(So - s ) .
O < s < 1 / 2  

Case 2. k is even. A similar discussion shows that in this case 

(5.263) q2(0)= -dim ker So- 2 C dim ker(So - s) .
- 1 / 2 < s < O  

We turn to the contribution of q3. By the above, q3 is meromorphic, and 
regular at z = 0. Writing d ,  := (p  - ( n  - 1) /2)2and recalling 
HT.,,,(N) = ( 0 ) if h > 0 we have for Re z large 

Denote by Q,  the orthogonal projection in L2-p (N)onto the space of co- 
closed forms and put 



It follows from standard arguments that cp is meromorphic and holo 
morphic for Re z sufficiently large. From (5.27) it follows that 

where R N  is holomorphic in Re z > aN-' -a.Thus we obtain 

173(0)= C ( - 1 ) ~Resl cp( l )+ C ( - l ) p  C Pk Resl cp(2k + 1 )
p=O p=O k r l  

If we know that qso is regular in Re z > -1 / 2  then (5.29) clearly implies 
that 

is holomorphic in Re z > -1/2.  Thus R = 0 in this case. Since the coeffi- 
cients of Sl ( x )in TGBare smooth in [0,c) Theorem 4.1 applies and we can 
state the GauD-Bonnet Theorem for manifolds with asymptotically cone- 
like singularities. 

THEOREM5.1. Let M be a Riemannian manifold of dimension n + 
1 = 2 k  with asymptotically cone-like singularities. If k is odd then the 
maximal closed extension D G B , , , ~ ~of the GauBBonnet operator DGBis a 
Fredholm operator with index 
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Here b ,  is the pthBetti number of N ,  lPis defined in (5.28),and the con-
stants P k  are determined from (5.29).wcg denotes the Chern-GauBBon-
net form on M ,  and the integral exists in the sense of Theorem 4.1.  I f  k is 
even the same formula holds for the index of DCB,min,the closure of DGB. 

Proof. The proof follows from Theorem 4.1 and (5.25),  (5.26a),  
(5.26b),and (5.30).  

The index of DGBis also equal to the L2-Eulercharacteristic of M .  
Assuming that vsois regular in Re z > -1/2  the second sum on the right 
vanishes and the expression (5.31)thus gives essentially Cheeger's formula 
([Che] Theorem 5.1) .  As a corollary it gives the GauB-Bonnet theorem for 
manifolds with boundary and identifies the boundary contribution as a 
spectral invariant of the boundary; this is explained in [Che] Section 5 .  
Note also that our approach expresses the boundary contribution by means 
of an 7-invariant. 

We now turn to the signature operator Ds. Assume that n + 1 = dim 
M =: 4k  and denote by T the involution of Q ( M )= OpZOQP(M)which 
equals 

Denoting by Q k ( M )the eigenspace of T with eigenvalue -t 1we obtain the 
decomposition 

Q ( M )= Q + ( M )@ Q - ( M ) .  

Now d + 6 anticommutes with T so 

Ds := d + 6 : Q f ( M )-t Q - ( M )  

defines a first order elliptic differential operator, the signature operator. 
With $; as in (5 .2)we introduce the bijections 

and a map a : Q ( N )-t Q ( N ) ,  
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Then a straightforward computation using (5 .3) ,  (5 .5 ) ,  and (5 .6 )shows 
that 

( $ - ) - ' D s $ + a +  =: ax + x- l (So(x ) + x S l ( x ) )  

where S i ( x )is a first order differential operator on Q ( N )with smooth coef- 
ficients in [0, c), i = 0, 1 ,  and in particular for 4 E Q J ( N )  

where [ ( j+ 1) /2 ]denotes the greatest integer I ( j  + 1) /2 .Modifying $-
and $+a* by R in (5.12)we obtain that 

with domain C r ( I ,  Q ( N ) )  in L 2 ( I ,  H ) ,  where again H = L 2 , p ( N ) .OpZO 
Then T is unitarily equivalent to Dson Q $ ( u )  with respect to the L 2struc-
ture defined by the metric of M. Here 

and S l ( x )is again a first order differential operator on Q ( N )with smooth 
coefficients in [0, 6 ) .  Note that So differs only by a diagonal operator with 
constant coefficients from the operator introduced in [A+P+S],  p. 63. 
Also it is easy to see that So is a self-adjoint first order elliptic operator on 
Q ( N ) .To apply our Index Theorem in this case we have to investigate spec 
S o . This analysis is very similar to the arguments given in Lemma 5.1 so we 
only sketch the proof of the following result. We denote by HP,,,,(N)and 
HP,,,,,(N)the spaces of closed and coclosed eigenforms of A, on N with 
eigenvalue A. 

LEMMA5.3.  Let b2,/:= ( ( 4 k  - 1) /2  - 2 j ) , 0 I j I 2 k  - 1 ,  and 
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Then the spectrum of Soconsists precisely of the following series: 

(a) *((ai/2) f .JXS?.;),all with multiplicity dim H?:G~'-~(N) for 
h >  O a n d O ~ i r k -  1; 

(b) f((@i/2)$. m),all with multiplicity dim H?~:~'+~(N) for 
X > O a n d O ~ i r k - 2 ;  

(c) +b2,/, both with multiplicity dim H2.i(N), 0 5 j 5 2k - 1; 
(d) 

f b2k -k 6, both with multiplicity mxf , 

bZk- <A, both with multiplicity m c ,  

where m t  denotes the dimension of the f1 eigenspace of the involution 
X-1'2ds on H?:,(N). 

Proof. Observe first that QeV(N) and Qodd(N) are invariant under So, 
inducing the decomposition So= Sr @sEdd. Denoting by $r the operator 
arising from SF by changing all b2,i to -bzi one checks that 

where E : Q(N) + Q(N) is given by (E+),/ = (-l)[(j+')'2]+i. Hence it is 
sufficient to treat ST. Next we note that 

0 r i 5 k - 1, is also invariant under ST. Denoting the restriction by Sr" 
we prove the assertion by induction on i. 

iLet p # bZk be an eigenvalue of SF". This means that 
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Eliminating * d 4 2 kfrom (5.33a)by (5 .33b)we see that 

(5.34) 4 2 k - 2  E H ? ~ , I ~ ( N )  

with 

= h ( p )  = (b2k-2 - p ) ( b ~ k- p) .  

On the other hand, if f p2k -2  satisfies (5.34)then it is easy to see that 

( ( ~ ~ 1 2 )  Hence we may assume 4 2 k - 2for p = + K. = o in (5 .33) .  
Then we must have 

where 

and 

with + according to b 2 k- p = ifi.On the other hand, if f p Z k  satisfies 
(5.35)and (5.36)then 

where 
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The eigenvalues p f b 2 kof SY'O are therefore precisely the following: 

a0-k -, both with multiplicity dim H : : , I ~ ( N ) ,
2 

(5 .37b)  b2k-2 with multiplicity dim H Z k P 2 ( N ) ,  

( 5 . 3 7 ~ )  b2k + f i  with multiplicity r n c ,  h > 0. 

If p = b Z kthen we obtain from (5 .33b)that 4 2 k - 2  is closed, hence har-
monic, and 4,,  is coclosed. But then we get from ( 5 . 3 3 ~ )that 42kis also 
closed and + 2 k - 2  = 0 since b 2 k - 2- b 2 k  f 0. Thus we find an additional 
eigenvalue 

(5 .37d)  b2k with multiplicity dim H 2 k ( N ) .  

i I-+ i + 1 Using completely analogous arguments we find the fol-
lowing description of the spectrum of SF."': it consists of 

ai+ 17k J h  + ?;+I,  both with multiplicity dim H::;I~'-'(N) 

( 5 . 3 8 ~ )  
for X > 0; 

Pi  
-$- both with multiplicity dim H : ~ : ~ ~ + ~ ( N )
2 

(5 .38b)  
for X > 0; 

b2k-2i -4  with multiplicity dim H Z k P 2 j p 4( N ) ,  
( 5 . 3 8 ~ )  

b2k+2i+2 with multiplicity dim H2k+2'+2( N ) ;  

(5 .38d)  p with multiplicity dim s;::. 

The assertion of the lemma now follows inductively from (5 .37)  and 
(5.38).  
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As an immediate consequence of Lemma 5.3 we see that eigenvalues p 

of Sowith ( p I < 1/2 are of the form 

(5 .39~)  -1/2 + 6 with multiplicity m xf 

and 

(5.398) 1/2 -6 withmultiplicity m; 

for 0 < X < 1. This implies 

LEMMA5.4. A choice of boundary conditions for Dsis necessary iff 

It remains to study the 11-function of So.Since the eigenvalues in (a), 
(b), (c) of Lemma 5.3 occur in pairs with opposite sign we have for Re z 
large (bzk = -1/2) 

Clearly, 7 I is entire and satisfies 

The study of v 2 is analogous to that of v 3in (5.23); we obtain the represen- 
tation 
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where 

and R N  is holomorphic in / z ( c~ with limN,, C N  = 03. The arguments 
given in Lemma 5 .3  can be applied to the case that all b j  = 0 also. This 
gives 

LEMMA5 . 5 .  2q is the 772function of N in the sense of [A+ P+ S ] .  
In particular, 77 is holomorphic in Re z > -1 / 2  and we obtain from 

(5 .39) ,  (5 .40) ,  and (5 .41)  

As before, (4 .31)is satisfied and Theorem 4.1 applies. If Ds,.is the closed 
extension corresponding to the subspace V of O P 1 , So,, then the singu- 
lar contribution to the index formula is according to Theorem 4.2  

--
1 

(qso(0)+ dim ker S o )  + dim V - C dim So,@
2 - 1 / 2 < f i < O  

+ dim V - C dim SO,,. 
- 1 / 2 < p < 0  

By  (5.39)we have 

C dim So+ = C rn, 
- 1 / 2 < p < O  O < h <'1 / 4 m' 1 / 4 < h < l+ 



hence the singular contribution becomes 

Thus we can state the Signature Theorem for our case. 

THEOREM5.2. Let M be a Riemannian manifold of dimension n = 

4 k  with asymptotically cone-like singularities. Then the closed extension 
Ds,"of the signature operator corresponding to the eigenvalues (5.39b) is 
a Fredholm operator with index 

Here us is the Hirzebruch Lk-polynomial in the Pontrjagin classes of M ,  
and the integral exists in the sense of Theorem 4.2. 
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