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Abstract

As part of the ongoing development of flapping-wing micro air vehicle prototypes at Cranfield
University (Defence Academy Shrivenham), a model of insect-like wing aerodynamics in hover
has been developed and implemented as MATLAB code. The model is intended to give better
insight into the various aerodynamic effects on the wing, and therefore is as close to being purely
analytical as possible. The model is modular, with the various effects treated separately. This
modularity aids analysis and insight, and allows refinement of individual parts. However, it comes
at the expense of considerable simplification, which requires empirical verification. The model
starts from quasi-steady inviscid flow around a thin 2D rigid flat wing section, accounting for
viscosity with the Kutta–Joukowski condition, and the leading edge suction analogy of Polhamus.
Wake effects are modelled using the models of Küssner and Wagner, on a prescribed wake shape, as
initially used by Loewy. The model has been validated against experimental data from Dickinson’s
Robofly and found to give acceptable accuracy. Some empirically inspired refinements of the
Polhamus effect are outlined, but these need further empirical validation.

1 Introduction

This paper describes a novel aerodynamic model of insect-like flapping wings in hover, combining
indicial methods of unsteady aerodynamics with Polhamus’ leading edge suction analogy. The
model has been derived for aerodynamic design of flapping wings of micro air vehicles (MAVs).
MAVs are defined as flying vehicles ca. six inches in size (hand-held) and are developed to recon-
noitre in confined spaces. Insect-like flapping entails reciprocal motion of pitching and plunging
wings, and seems an attractive mode of propulsion for indoor flight at the MAV scale [1–3].

Phenomenologically, the interpretation of the flow dynamics involved, adopted here, is based
on recent experimental evidence obtained by biologists from insect flight and related mechanical
models. It is assumed that the flow is incompressible, has a low Reynolds number and is laminar
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and that two factors dominate: (1) forces generated by the bound leading edge vortex, which
models flow separation, and (2) forces due to the attached part of the flow generated by the periodic
pitching, plunging and sweeping. The first of these resembles the analogous phenomenon observed
on sharp-edged delta wings and is treated as such. The second contribution is similar to the
unsteady aerodynamics of attached flow on helicopter rotor blades and is interpreted accordingly.

The indicial-Polhamus model is analytical and modular, and accounts for the main elements
of the unsteady flow involved, i.e. (i) quasi-steady kinematic effects (‘frozen’ at each time),
(ii) vortical lift (as on delta wings using the Polhamus model), (iii) unsteady kinematic effects
(modelled using the Wagner function), (iv) shed wake effects (modelled using the Küssner function
and corrections to the Wagner effect), and (v) added mass effects (non-circulatory lift due to
acceleration of the surrounding air by the wings). This two-dimensional, wing-element model
requires no empirical coefficients: given the required wing kinematics and geometry, all lift
(drag) components are calculated and summed up to give the total lift (drag).

This aerodynamic model was implemented in MATLAB and runs in less than five minutes on a
1.8 GHz Pentium IV computer. The model’s predictions have been verified on the best available set
of experimental data, due to Dickinson. Despite several simplifying assumptions, lift prediction
is quite good, while drag prediction is not as good.

Both from the insect flight analysis and MAV design perspectives there is a need for an analytic
framework for aerodynamic modelling of flapping wings. It should offer qualitative and quantita-
tive interpretations of the main phenomena involved while avoiding the extremes of mathematical
oversimplification and intractable complexity. This problem is the main motivation for the devel-
opments presented here which were first suggested in [4] and subsequently developed in [5].

The main novel features of the proposed model are:

• wakeless solutions for quasi-steady and added mass Forces for the flapping motion, without
assuming small angle of attack;

• a simplified, inviscid wake model for the effect of a highly curved wake filament, combining
Wagner and Küssner functions with a modified Loewy model;

• a generalisation of the Polhamus leading edge suction analogy to include the effect of rapid
pitching at large pitch angles;

• a method of calculating the force and moment of a wing, based on the kinematics of the tip,
and a number of wing shape parameters;

• a code implementation of the above model.

This paper is organised as follows. This introduction continues by defining wing kinematics
in Section 1.1 and commenting on aerodynamics of insect flight in Section 1.2. An overview of
the proposed model is given in Section 2 to provide a roadmap for the core of the paper, Sections
3–6, in which the details of the model are derived. (The terminology for the derivations is in
Appendix A.) A comment on code implementation follows in Section 7 and the data used to
test the model’s prediction are summarised in Section 8. The actual predictions are presented in
Section 9 and discussed in Section 10. The paper ends with conclusions in Section 11.

1.1 Wing kinematics

Insects fly by oscillating (plunging) and rotating (pitching) their wings through large angles,
while sweeping them forwards and backwards. The wingbeat cycle (typical frequency range: 5–
200 Hz) can be divided into two phases: downstroke and upstroke (see Fig. 1). At the beginning
of downstroke, the wing (as seen from the front of the insect) is in the uppermost and rearmost
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Figure 1: Typical motions of insect wing in hover. The insect body is oriented almost vertically,
while the wing tip traces a flat figure of eight around the stroke plane. The stroke plane
is inclined at an angle β.

position with the leading edge pointing forward. The wing is then pushed downwards (plunged)
and forwards (swept) and rotated (pitched) with considerable change of the angle of attack at the
end of the downstroke, when the wing is twisted rapidly, so that the leading edge points backwards,
and the upstroke begins. During the upstroke the wing is pushed upwards and backwards and at
the highest point the wing is twisted again, so that the leading edge points forward and the next
downstroke begins.

Insect wing flapping occurs in a stroke plane that generally remains at the same orientation to
the body and is either horizontal or inclined (see Fig. 1). In forward flight the downstroke lasts
longer than the upstroke, because of the need to generate thrust. In hover they are equal, resulting
in the wing tip typically tracing a flat figure of eight (as seen from the insect’s side).

1.2 Main aerodynamic phenomena in insect flight

The kinematics of insect wings make the analysis of the associated aerodynamics a non-trivial task,
not yet completed, especially in terms of its mathematical description. The classical approach, see
e.g. [6], was based on the quasi-steady assumption that the instantaneous forces on the flapping
wing are equivalent to those for steady motion at the same instantaneous velocity and angle of
attack. However, Ellington in his seminal work [7–12] showed that this framework is inadequate
to explain the high lift generated by insects, especially in hover (typically underestimating by a
factor of three).

Ellington concluded that unsteady aerodynamics must be involved, but the nature of the
unsteadiness was not clear. Subsequent experimental work [13–16] led to the remarkable dis-
covery of a spiralling leading edge vortex in a large insect. This is a bound vortex, i.e. its position
on the wing remains constant during a half-cycle, despite the wing’s pitching, plunging and
sweeping, while the vortex’s size fluctuates. Inside the vortical structure spanwise flow (along the
leading edge, from the wing base to the tip) was observed, an apparent cause of spiralling out of
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the vortex. In hover, at the end of the downstroke the vortex is shed by a sudden wing twist and
a new one is created symmetrically during the upstroke and shed when the wing flips again.

This persisting leading edge vortex was discovered through three-dimensional flow visuali-
sation for a tethered hawkmoth Manduca sexta [14] and confirmed with a better resolution on
an aerodynamically scaled up mechanical model of the hawkmoth [15, 16], powered by electric
servomotors. Recent experiments on a mechanical model of the fruit fly Drosophila melanogaster

wing by Dickinson [17] seem to suggest that a bound leading edge vortex also occurs on smaller
insects. However, the spanwise spiralling out, detected by Ellington et al. for the hawkmoth, was
observed to be weak.

The interpretation of the above biological results, adopted here, is taken from [4]. We assume
that the main aerodynamic phenomena occurring in insect-like flapping are:

1. bound leading edge vortex, persisting during each half-cycle and shed at the end of it,
2. effects (other than the vortex) of wing pitching, plunging and sweeping are present all the

time, and
3. wing interaction with its own convected wake (caused by previous wingbeats) due to its

forward–backward sweeping (re-entering the wake).

The flow is assumed incompressible, has a low Reynolds number and is laminar, while the
wing is treated as rigid, thin and of symmetrical section. These postulates are well supported in
experimental observation of insect flight, with the exception of wing rigidity.

Because the flow is laminar, it is susceptible to separation and it is hypothesised here that insects
deliberately provoke separation at the leading edge to exploit the vortical lift thus obtained. It
is also postulated that no further separation occurs during each half-cycle and that the vortex
is shed at the end of it, due to a sudden wing flip. Hence, the starting point of the proposed
conceptual framework is to interpret phenomenon (1) as accounting for the separated part of the
flow, while treating (2) as responsible for the attached part of the flow interacting with (3), i.e. no
interaction between (1) and (3). This important division is also the first indirect inclusion of the
effect of viscosity, by allowing for the bound leading edge vortex. The unsteady contributions of
the non-vortical part of the flow will be analysed as inviscid, but with the imposition of the Kutta
condition on the trailing edge which takes into account viscosity for the second (and last) time.
There is some controversy in the literature, see e.g. [18], whether the Kutta condition is indeed
valid for unsteady flows. The developments presented here rely on extensively verified, e.g. [19],
aerodynamic modelling of unsteady wing motions where the validity seems to hold.

The vortical lift due to (1) is interpreted as essentially identical to the leading edge vortex on
sharp-edged delta wings, see [20, 21], not as dynamic stall, as in [22]. The reasons for this are
now explained.

Pitching, plunging and sweeping wings are well known in helicopter rotor design, see [23],
and their aerodynamics can be derived from unsteady thin aerofoil theory, provided the flow
is attached. For helicopter blades this cannot be guaranteed for angles of attack α in excess of
15◦, for then separation begins. If α continues to increase between 15◦ ≤α≤ 20◦, dynamic stall
develops, see [22]. This is characterised by a vortex arising initially at the leading edge, but soon
being convected over the chord to be shed from the trailing edge at α≈ 20◦. This shedding is
accompanied by a catastrophic loss of lift due to a massive flow separation on the whole wing. It
should be emphasised that if the angle of attack continually increases from 15◦ to 20◦, the vortex
is never bound and is constantly being convected towards the trailing edge.

In contrast, in every half-cycle of insect-like flapping α is well above 20◦ and the leading edge
vortex is still bound. This is because separation occurs at the beginning of the motion and keeps
generating stable vortical lift throughout the half-cycle of the motion. Over a half-cycle, it is not
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a transient phenomenon leading to a catastrophic loss of lift. Moreover, this controlled separation
remains localised at the leading edge (unlike in dynamic stall) and occurs nowhere else on the
wing, so that the rest of the wing flow is attached .

Thus, the essence of the framework proposed here is to account separately for the bound leading
edge vortex and for the other (attached) part of the flow, and then adding both contributions.

2 Model overview and relevant prior work

Following the flow phenomenology explained in Section 1.2, the proposed model is modular,
accounting separately for the appropriate constituent elements of the flow (see Fig. 2). The wing
is divided into rectangular elements and the appropriate contributions of each element are then
summed up to produce the total aerodynamic force. The model is thus essentially two-dimensional.

2.1 Model structure and assumptions

The model starts with the inviscid flow around a thin, flat wing section in two dimensions, using
thin aerofoil theory (see Chapter 4 of [20]). The velocity potential is used to derive the quasi-
steady forces in Section 3, and again for the added mass forces in Section 4. The standard unsteady
aerodynamics approach is followed, see [23], but extra terms are included for the velocity due to
significant wing rotation.

The separated flow at the sharp leading edge is modelled using the Polhamus leading edge
suction analogy, [24], as detailed in Section 5. The model assumes that any leading edge suction
is rotated through 90◦ to become an additional normal force.

Simple modelling of wake effects is the main thrust of this work, a problem dealt with in
Section 6. Briefly, wake effects usually attenuate changes in forces, as the shed vorticity will
oppose the creation of vorticity bound to the wing. The wake is treated as a thin filament of
vorticity shed from the trailing edge, and the effect is expressed analytically using simplified
wake models. First amongst these is the Wagner function, see [25], which deals with the effect of
a two-dimensional straight-line wake behind an arbitrarily pitching and accelerating aerofoil. The
Küssner function, see [26], deals with a similar case, but for a change in lift coefficient due to a
gust, which the wing gradually enters as it moves. Since we focus on hover, the wake will remain
in the vicinity of the wing, but will move downwards over time. Loewy [27] modelled the wake
of a hovering rotorcraft by splitting the wake into straight-line elements: a primary wake behind

wake-induced lift

non-circulatory lift

induced velocity

Total liftcirculatory liftWing Kinematics

& Wing Geometry
+ +

Quasi Steady

Added Mass

Wake Effect

Averaging

LE Vortex

Figure 2: Overview of the modular method for modelling the aerodynamic effects. Note the lack
of iterative loops: only one-pass computation is required.
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the wing, and a series of straight-line secondary wakes below the wing. This model is adapted for
use with flapping flight.

The main simplifying assumptions made are:

1. The wing is thin and flat.
2. The flow is stationary for purposes of force calculations.
3. The flow is inviscid.
4. The effect of the leading edge vortex is to rotate the leading edge suction force by 90◦.
5. The leading edge vortex dissipates immediately when shed.
6. The flow leaves the trailing edge smoothly, satisfying the Kutta–Joukowski condition.
7. The wake is treated as a thin, globally stationary filament of vorticity, which has no self-

induced velocity effects.
8. The wake is split into single-stroke elements, assumed to be straight lines.
9. The wake moves under constant downwash velocity ui, without deforming under its own

induced velocity.

Also, only the Polhamus model of the leading edge vortex accounts for flow separation. The rest
of the model assumes the flow to be attached.

2.2 Relevant prior work

While new, this is not the first model to attempt to separate the contributions of various aerody-
namic effects in order to create a modular model. We highlight only the most relevant examples,
since reviews of greater scope have appeared recently [28–30].

The early work of Ellington [11] proposed the pulsed actuator disc model of the wake, which
simply models the wake as a series of vortex rings, shed once per stroke, and convected downwards
by a constant downwash velocity. Ellington then applied this effect as a correction to the average
lift during a cycle. Although this is a good first-order model, in that it correctly identifies the
general shape of the wake vorticity, it does not model the unsteady lift profile during the individual
strokes.

In a later development, Walker [31] modelled the lift of the wing through elements using
the aerofoil section formula F = ρUŴ, where U is the forward velocity of the wing. Walker
then treated the bound vorticity of the wing Ŵ as a superposition of four circulation compo-
nents, similarly to this method. However, he introduced empirical corrections to the vorticity
which would have to be obtained a new each time the design is modified. Such semi-empirical
approaches also have the disadvantage of lumping together, in an unknown way, disparate aero-
dynamic effects by representing them through an amalgamated measurement. This is avoided
in the model developed here, where each lift component is clearly identified and precisely
derived.

The work closest to ours is Minotti [32]. However, the two main differences are: (1) for leading
edge vortex modelling he uses a point vortex placed in an arbitrary position above the wing;
(2) the attached part of the flow is not decomposed into quasi-steady, wake-related and added
mass components, as in our study.

3 Quasi-steady effects

The following sections make extensive use of the mathematical definitions in Appendix A.
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3.1 Potential theory

A two-dimensional potential model of the inviscid flow around a thin, flat aerofoil is used to form
a complex velocity potential  ̄, which has the property of differentiating to the velocity of the
flowfield: d ̄/d z̄ = uP − iuN. For the case of a thin, flat plate, the potential is purely real, as a
function of the wing coordinate ζ only:  =  (ζ).

Some standard results of potential theory, e.g. [33], are:

1. The potential due to a bound vorticity γ is such that ∂ /∂x = γ .
2. The datum of  can be set arbitrarily.
3. Individual  for several flowfields can be superimposed, to give their combined effect.

The following identity

∂ 

∂ζ
= bγ (1)

and the quantity Q =
√

1 − ζ2 will be used extensively.

3.2 Dirichlet solution

The Dirichlet solution is the potential function needed to cancel out the component of the local
free stream velocity normal to the surface of the wing, making the wing surface a streamline.
It does this without contributing a net circulation to the flow. This is also the minimum energy
solution to the problem, i.e. it is the solution that imparts the least amount of kinetic energy to
the fluid. This has been done in a variety of ways. von Kármán and Sears [34] directly wrote the
bound γ needed. Theodorsen [35] formed the potential function from a set of source–sink pairs on
the upper and lower surface of a unit circle, then used Joukowski mapping to map the circle to a
straight line, where the source–sink pairs become doublets aligned normally to the wing. Finally,
Katz and Plotkin [33] wrote the expression for the doublet strength needed directly, then showed
that this could be differentiated to give the bound vorticity.

Whichever method is used, the end result is a potential function split into two superposable
parts: one for the translational motion, and one for the rotation about the hinge line (pitch axis).
The potential on the upper surface is:

 +
TD = uNbQ, (2)

 +
RD = β̇b2

(

ζQ

2
− aQ

)

. (3)

For this the ability to define the datum of arbitrarily was used, so the potential on the upper and
lower surface are exactly equal and opposite.
 + can be differentiated to give the bound vorticity:

γ+
TD = uNb

−ζ

Q
, (4)

γ+
RD = β̇b2( 1

2 − ζ2 + aζ)/Q. (5)

There are two singularities, one each at the leading edge and trailing edge. At these points γ
and velocity become infinite, and is discontinuous unless zero. This is dealt with in Sections 3.3
and 3.6.
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3.3 Kutta–Joukowski condition

Kutta and Joukowski independently observed that the discontinuity at the trailing edge is equiva-
lent to the flow passing around the trailing edge, experiencing infinite acceleration as it does. In a
real fluid, the flow will be unable to do this, and will instead separate at the trailing edge. Satisfy-
ing the Kutta–Joukowski condition involves superposing a net bound vorticity onto the Dirichlet
solution, so the flow leaves smoothly at the trailing edge. The correction required to satisfy this
condition is referred to in this work as the Kutta–Joukowski correction. It is an empirically-
inspired correction to the potential flow model, to make the flow behave like a real, viscous fluid.
This additional vorticity should not cause any net normal flow anywhere on the wing, so the wing
remains a streamline.

Derivation of the Kutta–Joukowski condition can be approached from the potential or vorticity
perspective. van Kármán and sears [34] write the expression for the vorticity needed to cancel the
velocity at the trailing edge directly. Note, however, that their solution includes the vorticity of
the shed wake, which will be dealt with as a separate effect in the model. Theodorsen [35] uses
a uniform distribution of vorticity about a unit circle of sufficient strength to cancel the Dirichlet
potential at the trailing edge, then maps this to a line. Katz and Plotkin [33] write the vorticity
needed directly.

For the wake-free case, the latter two methods give expressions for potential and vorticity:

 +
TK = uNb(a sin (ζ) − π/2), (6)

 +
RK = β̇b2

(

1
2 − a

)

(a sin (ζ) − π/2), (7)

γ+
TK = uNb/Q, (8)

γ+
RK = β̇b2

(

1
2 − a

)

/Q, (9)

where the expressions have been split into a translational and a rotational part, as above.
The discontinuity at the leading edge still exists; this is dealt with in Section 5 using leading

edge suction, and the Polhamus leading edge suction analogy.

3.4 Unsteady form of Bernoulli equation

The well-known unsteady Bernoulli equation, see e.g. [33], is:

p = ρ

(

p0(t) +
∂ 

∂t
−

1

2
u2

TEf

)

. (10)

The ∂ /∂t term is the added mass, which will be dealt with in Section 4. The last term becomes
the quasi-steady pressure. The velocity of a fluid particle on the upper surface u+

TEf , is written as:

u+
TEf = (uP + uPγ + iuNE), (11)

where uP is the velocity of the undisturbed free stream relative to the wing, uPγ is the additional
velocity relative to the wing, caused by the bound vorticity. This velocity is purely parallel to the
wing surface, and equals ∂ /∂ζ and γ . The square of this velocity ū2+

T is obtained by substituting
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γ for uPγ :

u2+
TEf = (uP + γ + iuNE)(uP + γ − iuNE) (12)

= u2
P + γ2 + u2

NE + 2γuP. (13)

Consider the pressure difference across the wing �p. The stagnation pressure p0 is the same
above and below. The first three terms of the above are the velocity of the wing, which is the same
above and below, so they cancel, yielding:

�pQ = −ρ 1
2 2uPγ

+ − ρ 1
2 2uPγ

−

= −2ρuPγ
+. (14)

This gives the normal force for a unit spanwise element of the wing as:

dFNQ = 2ρuPγ
+dζ

= ρuPγdζ. (15)

This is a familiar result: a uniform free stream flowing past a vortex will cause a force normal
to the flow, of a magnitude proportional to the product of the velocity and the circulation.

3.5 Leading edge suction correction

The result of eqn (15) is used to incorporate the effect of leading edge suction, by substituting the
total velocity for the parallel velocity, so that

dFNQ + idFPQ = ρūTEγ dζ, (16)

where dF is the increment of force corresponding to the increment of chord length dζ and the
total velocity of the wing is uTE = uP + iuN + iβ̇bζ− I β̇ba. The total force is normal to the total
velocity.

3.6 Quasi-steady forces

The quasi-steady forces on the wing are found for each of the γ components calculated above,
using standard integrals of the parameter Q. The values for γ employed here are twice those for
γ+ given earlier, as explained above. This calculation differs from the standard textbook case, in
that the rotational component of normal velocity iβ̇b(ζ − a), is not neglected here, since it is not
small compared to the translational velocity. This is because this application has low translational
velocity and high angle of attack. For clarity, the solution is split into four components: The
cases of isolated translation (T ) and rotation (R), for the Dirichlet (D) and Kutta–Joukowski (K)
potentials:

TD part:

FNQ + iFPQ = ρ

∫ 1

−1
ūTEγTD dζ = 2ρbuN

∫ 1

−1
ūTE

−ζ

Q
dζ

= −πρb2uNβ̇ (17)
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RD part:

FNQ + iFPQ = ρ

∫ 1

−1
ūTEγRD dζ = 2ρb2β̇

∫ 1

−1
ūTE

(

1
2 − ζ2 + aζ

)

/Q dζ

= πρb2uNβ̇ (18)

The total quasi-steady contribution of the Dirichlet part is zero, which is as expected: since
there is no net vorticity, there can be no net force.

TK part:

FNQ + iFPQ = ρ

∫ 1

−1
ūTEγTK dζ = 2ρbuN

∫ 1

−1
ūTE

1

Q
dζ

= 2πρbuNūTm. (19)

RK part:

FNQ + iFPQ = ρ

∫ 1

−1
ūTEγRK dζ = 2ρb2

(

1
2 − a

)

β̇

∫ 1

−1
ūTE/Q dζ

= 2πρb2β̇

(

1
2 − a

)

ūTm. (20)

The Kutta–Joukowski components produce net forces, because they have a net vorticity.

3.7 Total quasi-steady force

The total quasi-steady force is written as the sum of the four components given in eqns (17)–(20):

FNQ + iFPQ = 2πρb (uNūTm + b β̇( 1
2 − a)ūTm) (21)

= 2πρbuNr ūTm, (22)

where the normal and parallel components are:

FNQ = 2πρbuNruP (23)

FPQ = 2πρbuNruNm. (24)

The horizontal and vertical components of these forces are:

FHQ = −FNQSβ + FPQCβ = 2πρbuNr(−uPSβ + uNmCβ)

= 2πρbuNruVm, (25)

FVQ = FNQCβ + FPQSβ = 2πρb uNr(uPCβ + uNmSβ)

= 2πρbuNruHm. (26)

Mapping from spherical to rectangular coordinates, the force on the wing is:

L = FVQCψ, (27)

D = FHQSθ. (28)
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Recall that drag is defined as force in the +x direction, not the direction opposing motion.
The standard results are recovered readily by making the same assumptions about fast forward

motion at low angle of attack, i.e. that β is small, and θ,ψ = 0. In this case, uP ≈ uH, and the lift
force will be the normal force:

L = 2πρbuNruH. (29)

This is indeed the standard result for a pitching aerofoil at low β.

3.8 Wing integrals

The above calculations are forces per unit span. This is now extended to the force for the entire
wing by integrating along the span, using two-dimensional strip theory:

FNQW = R

∫ 1

0
FNQ dr

= ρR

∫ 1

0
buPuN dr + ρR

∫ 1

0
b2uPβ̇

(

1
2 − a

)

dr. (30)

It follows from the first term that the velocities at the pitch axis scale directly with r, so they can
be written in terms of the tip velocities and r:

∫ 1

0
buPuN dr =

∫ 1

0
bruPTruNT dr

= uPTuNT

∫ 1

0
br2 dr. (31)

Also, the semichord b can be expressed as a fraction of the maximum semichord B:

uPTuNT

∫ 1

0
br2 dr = uPTuNTB

∫ 1

0

b

B
r2 dr

= uPTuNTB b1r2. (32)

The term b1r2 is defined as the integral
∫ 1

0 (b/B)r2 dr; the subscripts are the powers of b/B and
r, respectively. Thus the integral is purely a function of the wing shape, not the wing scale. These
so-called wing shape factors are convenient in that they speed up calculation considerably, and
give additional insight into how the wing shape affects the forces.

Now consider the second term:
∫ 1

0
b2uPβ̇

(

1
2 − a

)

dr = β̇uPTB2
∫ 1

0

(

1
2 − a

)

(

b

B

)2

r dr

= β̇uPTB2
[

1
2 b2r1 − b2r1a

]

, (33)

where b2r1 =
∫ 1

0 (b/B)2r dr, and b2r1a =
∫ 1

0 (b/B)2ra dr.
Assuming a is constant along the span, eqn (33) can be simplified to:

∫ 1

0
b2uPβ̇

(

1
2 − a

)

dr = β̇uPTB2
(

1
2 − a

)

∫ 1

0

(

b

B

)2

r dr

= β̇uPTB2
(

1
2 − a

)

b2r1. (34)
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The total force on the wing, assuming that a is constant along the span, is

FNQW = R

∫ 1

0
FNQ dr

= 2πρRB uPT

[

uNT b1r2 + β̇B
(

1
2 − a

)

b2r1

]

, (35)

FPQW = R

∫ 1

0
FPQ dr

= 2πρRB
[

u2
NTb1r2 + uNTBβ̇

(

1
2 − 2a

)

b2r1 + b2β̇2a2b3r0

]

. (36)

3.9 Moments

The vertical (MVQ) and horizontal moments (MHQ) are:

MVQ = RFVQr, (37)

MHQ = RFHQr. (38)

The pitching moment about the hinge is formed by going back to the original integral of normal
force along the chord and multiplying by the offset from the hinge b(a − ζ).

MβQ = ρ

∫ 1

−1
γuPb (a − ζ) dζ. (39)

Equation (39) is now applied to the components of γ in eqns (4), (5), (8) and (9):

TD part:

MβQTD = ρ

∫ 1

−1
γTDuPb (a − ζ) dζ = 2ρuNuPb2

∫ 1

−1

−ζ

Q
(a − ζ) dζ

= πρuNuPb2. (40)

RD part:

MβQRD = ρ

∫ 1

−1
γRDuPb (a − ζ) dζ

= 2ρβ̇uPb3
∫ 1

−1

(

1
2 − ζ2 + aζ

)

(a − ζ)

Q
dζ

= −πρβ̇uPb3a. (41)

TK part:

MβQTK = ρ

∫ 1

−1
γTKuPb (a − ζ) dζ = 2ρuNuPb2

∫ 1

−1

a − ζ

Q
dζ

= 2πρuNuPb2a. (42)
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RK part:

MβQRK = ρ

∫ 1

−1
γRKuPb (a − ζ) dζ = 2ρβ̇uPb3

∫ 1

−1

1
2 a − a2 − 1

2ζ + aζ

Q
dζ

= πρβ̇uPb3(a − 2a2). (43)

Total moment:

MβQ = MβQTD + MβQRD + MβQTK + MβQRK

= πρb2uP

(

uN (1 + 2a)− β̇ba2
)

. (44)

The expressions for MVQ and MHQ bear considerable similarity to the force expressions, but
the pitching moment expression does not, due to the extra factor of ζ it introduces.

3.10 Wing moment integrals

We proceed as in Section 3.8: the wing integrals are written in terms of shape parameters, assuming
the hinge location to be constant.

MVQ = RFVQr,

MVQW = R2
∫ 1

0
FVQr dr

= 2πρR2B uNT uHT b1r3 + 2πρR2B2uNTβ̇aSβb2r2

+ 2πρR2B2uHTβ̇

(

1
2 − a

)

b2r2 + 2πρR2B3β̇2
(

1
2 a − a2

)

Sβb3r1, (45)

MHQ = RFHQr,

MHQW = R2
∫ 1

0
FVQr dr

= 2πρR2B uNT uVT b1r3 + 2πρR2B2uNTβ̇aCβb2r2

+ 2πρR2B2uVT β̇

(

1
2 − a

)

b2r2 + 2πρR2B3β̇2
(

1
2 a − a2

)

Cβb3r1, (46)

MβQ = πρb2uP

(

uN (1 + 2a)− β̇ba2
)

MβQW = πρR

∫ 1

0
uPb2

(

uN (1 + 2a)− β̇ba2
)

dr

= πρRB2 uPT

(

uNT (1 + 2a) b2r2 − β̇Ba2b3r1

)

. (47)
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4 Added mass effects

4.1 What is added mass?

Long ago Stokes [36] showed experimentally that the force on a pendulum in a fluid depended not
only on the speed of the pendulum, but also the acceleration. When a body is accelerated in a fluid,
it will experience a retarding force, apart from the viscous drag. This is completely independent
of the inertia of the body itself and can be shown to occur even in a completely inviscid fluid
for a massless object. This is called an irrotational or non-circulatory effect, because it does not
rely on a net circulation in order to generate force. However, net circulatory components will also
have an added mass effect, since adding them will modify the potential, see e.g. [35].

The concept of forces arising from an inviscid fluid is somewhat counterintuitive, so we offer
a brief explanation of that effect, inspired by [37]. Suppose a body is moving with a velocity U

through an undisturbed, inviscid fluid. In order to allow the body to pass, fluid has to move aside
ahead of the body and close up after it. Thus, the fluid acquires kinetic energy due to the passage
of the body, even when the free stream is at rest. When U is constant, this kinetic energy is also
constant and there is no net force on the body, as expected. However, increasing the velocity of
the body will also increase the kinetic energy of the flow, so the body has to do work on the fluid.

Although it is often used as a simple explanation, added mass does not represent fluid that is
rigidly bound to the wing by viscosity. It is an artefact of the fluid being given kinetic energy by
the body. For that reason, since viscosity does affect the velocity of the fluid, it will affect the
added mass, but is not necessary for the definition of added mass, see e.g. [38].

4.2 Potential form of added mass

The informal example of Section 4.1 is now revisited rigorously, using [39, pp. 94–95]. The
kinetic energy can be expressed as:

T = 1
2

∫

V

ρū2
T dV , (48)

where V is the fluid volume. For the case of a thin, flat, two-dimensional plate, the above reduces
to the familiar unsteady Bernoulli equation (10), e.g. [40, pp. 15–27], or [39, pp. 82–89]. The
third term of (10) is the quasi-steady pressure, as used in Section 3. The first two terms relate to
the added mass. However, since p0 is constant, it can be ignored, so that the pressure due to added
mass is:

pa = ρ
∂ 

∂t
. (49)

The normal force for an upper or lower surface is obtained by integrating along the chord:

FNA = −b

∫ 1

−1
pa dζ

= −ρb
∂

∂t

∫ 1

−1
 dζ, (50)

where the last step can be taken because the variable of the differentiation, t, is independent of
the variable of integration ζ, and  is continuously differentiable on (−1, 1).
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For the force normal to the wing, the difference � =  + − − in potential across the wing
is considered. This gives the force:

FNA = −ρb
∂

∂t

∫ 1

−1
� dζ. (51)

Because  has been defined in terms of the velocity of the fluid relative to the wing, but added
mass is based on the velocity of the body relative to the fluid, the sign of  in eqn (51) has to be
reversed :

FNA = +ρb
∂

∂t

∫ 1

−1
� dζ. (52)

4.3 Total circulation

Integration of the potential in eqn (52) is not straightforward, because  is discontinuous at the
leading edge. Instead, the standard method of thin aerofoil theory is employed, to form the total
circulation along the upper surface of the wing from the leading edge to a point ζ:

Ŵ+(ζ) =

∫ ζ

−1
γ+ dζ, (53)

remembering that Ŵ(−1) = 0.
Now consider the integral of  from the trailing edge:

 +(ζ) =

∫ ζ

1
γ+dζ = Ŵ+(ζ) − Ŵ+(1), (54)

noting that (1) = 0. This means that the total circulationŴ=Ŵ+ +Ŵ− = 2Ŵ+ can be substituted
for� in eqn (52). This allows integration from the leading edge, sinceŴ is 0 there, and therefore
continuous. This method is similar to that of [33, p. 73]. This could also have been done by using
� and integrating from the trailing edge: this was the method adopted by [35], but is more
cumbersome. In either case, this is still a calculation based on potential. The potential is simply
being expressed in terms of the bound vorticity of the wing, in accordance with thin aerofoil theory.

For the four given components of the potential, the equivalent total vorticity Ŵ is found by
integrating the vorticity γ , of eqns (4), (5), (8) and (9):

ŴTD = 2uNbQ (55)

ŴRD = 2β̇b2
(

ζQ

2
− aQ

)

(56)

ŴTK = 2uNb
(

a sin (ζ) + π/2
)

(57)

ŴRK = 2β̇b2
(

1
2 − a

)

(

a sin (ζ) + π/2
)

(58)

Note the similarity of these expressions to those of the potential of eqns (2), (3), (6) and (7). The
first two terms are identical, while the second two only differ by a constant π, to ensure that Ŵ is
zero at the leading edge, while  is zero at the trailing edge.
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4.4 Accelerations

In order to find the acceleration, uN is written in terms of the global velocities:

uN = uHS + uVC, (59)

uNm = uHS + uVC − β̇ba, (60)

uNm = uHS + uVC + β̇b
(

1
2 − a

)

. (61)

This gives the accelerations:

u̇N = u̇HS + u̇VC + 2β̇uP, (62)

u̇Nm = u̇HS + u̇VC + 2β̇uP − β̈ba, (63)

u̇Nr = u̇HS + u̇VC + 2β̇uP + β̈b
(

1
2 − a

)

. (64)

4.5 Normal added mass forces

Equation (52) is evaluated for the four components:

TD part:

FNA = ρb
∂

∂t

∫ 1

−1
ŴTD dζ

= 2ρb2 ∂

∂t

(

uN

∫ 1

−1
Q dζ

)

= πρb2u̇N. (65)

RD part:

FNA = ρb
∂

∂t

∫ 1

−1
ŴRD dζ

= 2ρb3 ∂

∂t
β̇

∫ 1

−1

(

ζQ

2
− aQ

)

dζ

= −πρb3aβ̈. (66)

The two Dirichlet components combine to give

FNAD = πρb2u̇Nm, (67)

where u̇Nm is the normal acceleration of the midpoint of the wing.

TK part:

FNA = ρb
∂

∂t

∫ 1

−1
ŴTK dζ

= 2ρb2 ∂

∂t

(

uN

∫ 1

−1

(

a sin (ζ) + π/2
)

dζ

)

= 2πρb2u̇N. (68)
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RK part:

FNA = ρb
∂

∂t

∫ 1

−1
ŴRK dζ

= 2ρb3
(

1
2 − a

) ∂

∂t

(

β̇

∫ 1

−1

(

a sin (ζ) + π/2
)

dζ

)

= 2πρb3
(

1
2 − a

)

β̈. (69)

The two Kutta–Joukowski components combine to give:

FNAK = 2πρb2u̇Nr , (70)

where u̇Nr is the normal acceleration of the 3/4-chord point of the wing, also called the rear

neutral point.

4.6 Parallel added mass forces

FPA, the parallel added mass force, is formed by substituting normal acceleration components for
parallel ones, similar to the way velocities were substituted to find FPQ in Section 3.5. However,
this cannot be done by simply substituting the parallel acceleration. Some of the terms above are
the result of an increase in Ŵ with the normal velocity. Intuitively, it is obvious that the plate will
have smaller added mass when accelerating along its length than when it is accelerating normal
to the chord, simply because in the second case it is blocking the flow.

The actual values are taken from [40, p. 27, equation (4.17)]. Sedov writes the added mass
forces on the wing in the absence of wake circulation as:

X = λy�V + λyω�
2,

(71)

Y = −λy

dV

dt
− λyω

d�

dt
,

where X , Y are the parallel and normal forces at the leading edge the velocities are U , V , and the
rotational velocity is �. λy and λωy are added mass coefficients, tabulated on p. 29 of the same
reference: λy = ρπb2, λyω = ρπb3.

The expression for X uses the same values of λ as Y , so the expression for X can be formed
by making the following substitutions into the expression for Y :

dV

dt
→ −�V , (72)

d�

dt
→ −�2. (73)

From eqn (71), it can be seen that the expression for Y is similar to the expression for normal
force. By analogy with the above substitution, the substitution:

u̇N → −β̇uN (74)

β̈ → −β̇2 (75)
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is used in eqns (67) and (70) to yield:

FNAD = πρb2u̇Nm

= πρb2 (u̇N − β̈ba
)

FPAD = πρb2
(

−β̇uN + β̇2ba
)

(76)

FNAK = 2πρb2u̇Nr

= 2πρb2
(

u̇N + β̈b
(

1
2 − a

) )

FPAK = 2πρb2
(

−β̇uN − β̇2b
(

1
2 − a

))

(77)

4.7 Vertical and horizontal added mass forces

The normal and parallel forces are resolved into horizontal and vertical components:

FVAD = FNADCβ + FPADSβ (78)

= πρb2
[

u̇HSβCβ + u̇VC2
β + 2β̇uPCβ − β̈abCβ − β̇uNSβ + β̇2abSβ

]

= πρb2
[

u̇HSβCβ + u̇VC2
β + β̇(2uPCβ − uNSβ) − β̈abCβ + β̇2abSβ

]

,

FHAD = −FNADSβ + FPADCβ (79)

= πρb2
[

−u̇HS2
β − u̇VSβCβ − 2β̇uPSβ + β̈abSβ − β̇uNCβ + β̇2abCβ

]

,

FVAK = FNAKCβ + FPAKSβ (80)

= 2πρb2
[

u̇HSβCβ + u̇VC2
β + 2β̇uPCβ − β̈b(a − 1

2 )Cβ

−β̇uNSβ + β̇2(a − 1
2 )bSβ

]

,

FHAK = −FNAKSβ + FPAKCβ (81)

= 2πρb2
[

−u̇HS2
β − u̇VSβCβ − 2β̇uPSβ + β̈b(a − 1

2 )Sβ

−β̇uNCβ + β̇2b(a − 1
2 )Cβ

]

.

4.8 Moments

The root moment of the wing is formed similarly to the quasi-steady case in Section 3:

MVA = RFVAr, (82)

MHA = RFHAr. (83)

Similarly, the pitching moment about the hinge is formed by revisiting the normal force
expressions in eqns (67) and (70), and multiplying by the backwards offset from the hinge b(a−ζ).
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Thus, the pitching moment becomes:

MβA = ρb
∂

∂t

∫ 1

−1
Ŵb (a − ζ) . (84)

The contributions for the four components, as for the forces, are:

TD part:

ŴTD = 2uNbQ (85)

MβATD = ρb
∂

∂t

∫ 1

−1
ŴTDb (a − ζ)

= πρb3u̇Na. (86)

RD part:

ŴRD = 2β̇b2Q
(

1
2ζ − a

)

(87)

MβARD = ρb
∂

∂t

∫ 1

−1
ŴRDb (a − ζ)

(88)

= πρb4β̈

(

−a2 −
1

8

)

.

TK part:

ŴTK = 2uNb
(

a sin (ζ) + π/2
)

(89)

MβATK = ρb
∂

∂t

∫ 1

−1
ŴTKb (a − ζ) (90)

= πρb3u̇N

(

2a − 1
2

)

.

RK part:

ŴRK = 2β̇b2
(

1
2 − a

)

(

a sin (ζ) + π/2
)

(91)

MβATK = ρb
∂

∂t

∫ 1

−1
ŴRKb (a − ζ) (92)

= πρb4β̈

(

1
2 − a

)

(

a −
1

4

)

.

4.9 Comparison with standard results

Although the added mass force and moment expressions contain acceleration terms, they do not
reduce to the acceleration at a single point. This is because the calculation of added mass entails
all of the normal acceleration, but only some of the parallel acceleration.
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If the Kutta–Joukowski term is removed, and β = β̇ = β̈ = 0, then:

FNAD = FVAD = πρb2 [u̇V + 2β̇uP − β̈ba
]

(93)

= πρb2u̇Vm. (94)

This is the standard result of Jones, as outlined in [33, p. 192–194].
Another check is that for a closed cycle, FVA and FHA must sum to zero: they are closed

functions. This does not apply to the forces FNA and FPA, because they are defined relative to
wing-fixed axes. The wing-fixed axes are not usable as inertial reference axes.

4.10 Wing integrals

The results above (which are forces per metre span) are converted to wing integrals, using the
wing shape parameter method of Section 3.8. Again, it is assumed that the hinge is constant along
the wing, which allows the use of a smaller set of wing shape parameters.

FVAD = πρb2
[

u̇HSβCβ + u̇VC2
β + 2β̇uPCβ − β̈abCβ − β̇uNSβ + β̇2abSβ

]

FVADW = πρRB2
(

u̇HTSβCβ + u̇VTC2
β

)

b2r1 + πρRB2 (2β̇uPCβ − βuNSβ
)

b2r1

+ πρRB3
(

−β̈aCβ + β̇2aSβ

)

b3r0, (95)

FHAD = πρb2
[

−u̇HS2
β − u̇VSβCβ − 2β̇uPSβ + β̈abSβ − β̇uNCβ + β̇2abCβ

]

FHADW = πρB2
(

−u̇HS2
β − u̇VSβCβ

)

b2r1 + πρB2 (−2β̇uPSβ − β̇uNCβ
)

b2r1

+ πρB3
(

+β̈abSβ + β̇2abCβ

)

b3r0, (96)

FVAK = 2πρb2
[

u̇HSβCβ + u̇VC2
β + 2β̇uPCβ − β̈b(a − 1

2 )Cβ

−β̇uNSβ + β̇2(a − 1
2 )bSβ

]

FVAKW = 2πρB2
(

u̇HSβCβ + u̇VC2
β

)

b2r1 + 2πρB2 (+2β̇uPCβ − β̇uNSβ
)

b2r1

+ 2πρB3
(

a − 1
2

) (

−β̈Cβ + β̇2Sβ

)

b3r0, (97)

FHAK = 2πρb2
[

−u̇HS2
β − u̇VSβCβ − 2β̇uPSβ + β̈b(a − 1

2 )Sβ

−β̇uNCβ + β̇2b(a − 1
2 )Cβ

]

,

FHAKW = 2πρB2
(

−u̇HS2
β − u̇VSβCβ

)

b2r1

= 2πρB3
(

a − 1
2

) (

+β̈bSβ + β̇2bCβ

)

b3r0. (98)
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5 Polhamus leading edge and tip suction correction

5.1 Polhamus’s analogy

In the context of sharp-edged delta wings the leading edge vortex was modelled by [24] who
assumed that the separation at the leading edge is a ‘hard’ separation, causing total loss of leading
edge suction, while the leading edge vortex causes a normal force component of equal magnitude.
Effectively, the leading edge suction force is rotated by 90◦ onto the low-pressure side of the wing,
as illustrated in Fig. 3. This is called the Polhamus leading edge suction analogy. Although this
is a simple model, it has been shown to give remarkably good results, for example, in predicting
the attached vortex lift of delta wings, see e.g. [41].

The Polhamus analogy is desirable for three reasons:

1. It is simple to implement.
2. It is compatible with inviscid potential flow theory.
3. It is easy to extend to complex wing geometries (see Section 5.2).

5.2 Correction for leading edge sweep

The leading edge suction of a two-dimensional wing section is called the leading edge thrust, since
it is in the chordwise direction. For a swept wing, the leading edge suction force will actually be
normal to the leading edge, but will still have the same forward thrust component. This means
for a swept wing, the leading edge suction will be higher. It is the leading edge suction, not thrust
that is rotated in the Polhamus approach. This is described in [42], who outline a correction to
the Polhamus analogy for leading edges that are swept. It relies on the original Polhamus analogy
for swept, sharp-tipped wings, and the extension of this theory to rectangular wings by Lamar,
which is explained in [41]. The latter theory uses the Polhamus analogy on the tip suction force,
causing an additional normal force component. The scheme of [42] uses these two theories to
calculate the vortex lift for an arbitrary wing shape, as the summation of a series of trapezoidal
wing sections.

For the flapping wing considered here, it is assumed the wing comes smoothly to a point at the
tip. Because of this, there is no side edge to the wing, and therefore no tip suction, and no need
for the Lamar extension described above.

5.3 Implementation

The method outlined in the previous section is used: at any given spanwise position, the leading
edge thrust is expressed in terms of the quasi-steady force FPQ, given per unit span. Then the
leading edge suction force FS, is found using the sweepback angle of the leading edge, ∠:

FS = FPQ/ cos (∠), (99)

where ∠ is defined as the angle between the leading edge and the outward (root to tip) direction,
with ∠ positive when the leading edge is swept back. There is a potential numerical issue if very
high resolution is used close to the leading edge, so that cos (∠) may become close to 0. For
this reason, and because it is easier to implement from x, y coordinates of the wing geometry,
we use the variable ϕ, which is equal to the rate of change of x1 (the non-normalised chordwise
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streamline

streamline

streamline

streamline

fully attached flow

leading edge suction force

rotated suction force

Separated region

Figure 3: Illustration of the Polhamus leading edge suction analogy.

coordinate of the leading edge) with respect to the non-normalised radius. This yields:

FS = FPQ

√

1 + ϕ2. (100)
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5.4 Forces

The forces that result from the Polhamus effect are as follows:

FPP = −2πρbuNruNm (101)

FNP = 2πρbuNruNm

√

1 + ϕ2 TP. (102)

The parallel component FPP is simply the opposite of the leading edge thrust, calculated in
Section 3. The normal force is this thrust force, scaled by

√

1 + ϕ2, to become the leading edge
suction, as explained in Section 5.2. The parameter TP is the sign of uNl, the normal velocity at
the leading edge, and determines on which side of the wing the leading edge suction occurs.

5.5 Wing integral

Similar to previous sections, the Polhamus forces on the entire wing are calculated by integrating
along the wing. There is, however, one complication: since the semichord varies along the wing,
the normal velocity at the leading edge will vary as well, and may reverse sign. This is dealt with by
assuming that the turn direction is governed by the normal velocity at the leading edge at the point
where the chord is maximum. Thus, the force on the entire wing due to the Polhamus effect is:

FPP = − 2πρbuNruNm

= − 2πρb
(

u2
N + uNβ̇b

(

1
2 − 2a

)

+ β̇2b2
(

a2 − a/2
))

, (103)

FPPW = − 2πρBR u2
NT b1r2 − 2πρB2Rβ̇uNT

(

1
2 − 2a

)

b2r1

− 2πρB3Rβ̇2
(

a2 − a/2
)

b3r0. (104)

Ignoring the turn direction and scaling above, the normal force is formed, assuming that the
entire suction force is an upward normal force.

FNP = 2πρb uNruNm

√

1 + ϕ2

= 2πρb

√

1 + ϕ2
(

u2
N + uNβ̇b

(

1
2 − 2a

)

+ β̇2b2
(

a2 − a/2
))

, (105)

FNPW = −2πρBR u2
NT b1r2P − 2πρB2Rβ̇uNT

(

1
2 − 2a

)

b2r1P

− 2πρB3Rβ̇2
(

a2 − a/2
)

b3r0P, (106)

where the wing shape parameters with subscript P are similar to the standard wing shape param-
eters, except they include the effect of leading edge sweep. For example:

b2r1 =

∫ 1

−1

(

b

B

)2

r1 dr (107)

b2r1P =

∫ 1

−1

(

b

B

)2

r1
√

1 + ϕ2 dr. (108)
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Figure 4: An example of a wake shape below a flapping wing, assuming uniform downwash
velocity.

6 Wake effects

6.1 Potential form of wake model

The inviscid potential model of the wake is to treat it as a thin, continuous filament of vorticity
being shed from the trailing edge of the wing, where any change in the bound circulation of the
wing will cause an equal and opposite circulation to appear in the wake, to satisfy the Kelvin–
Helmholtz theorem. In a real flow, the induced velocity due to the vorticity of the wing and wake
will combine to cause motion and deformation of the wake filament. The presence of viscosity
will introduce decaying effects into this process.

Assuming that the only motion of the wake is due to the uniform induced velocity ui (the
downwash), a wake shape similar to that of Fig. 4 is obtained. However, in this model it is entirely
possible for the wake to intersect with the wing, and for the wake to intersect itself.

The wake is by far the most complex part of the flow. In order to be able to isolate its effect in an
analytically tractable way, simplifications have to be introduced. This simplification process is set
in context by considering first exact solutions to simplified two-dimensional cases: the Wagner,
Küssner and Loewy models.

6.2 Wagner’s model

In his classical work Wagner [25] assumed the wing to be moving at a changeable forward velocity
and angle of attack. The angle of attack was assumed small, and the velocity horizontal, so the
wake filament becomes a straight horizontal line behind the wing. Wagner assumed this filament
did not deform or move. Then he applied the quasi-steady force equations, similar to those in
Section 3. However, the difference was that he integrated the effect of the entirety of the bound
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vorticity and the shed vorticity, under the same assumption that there is no flow penetration on the
wing. This reduced to a different expression for the bound vorticity, and hence lift, which was the
original quasi-steady (wakeless) result plus a correction based on the effect of the wake. This was
expressed as a function of the distance travelled in semichords measured since a given change
in either angle of attack or forward velocity. From superposition, the change due to a time series
of such changes can be expressed by simply summing the effect of every single change (using
Duhamel’s theorem, see e.g. [23]).

The Wagner function can be approximated by:

ψ′
W(s) = 1 − 0.165e−0.041s − 0.335e−0.32s, (109)

where s is the semichord distance travelled by the aerofoil. Wagner’s function expresses the delay
between a step increase in the quasi-steady CL, till the wake-induced effects have decayed, and
the full new lift coefficient is realised. It grows from 1

2 , meaning only half the lift from a step
change is realised at once, and goes asymptotically to 1 as s → ∞.

Using Duhamel’s theorem, see [23] or [4], the effect of a series of step changes in CL is:

CLW(s) =

∫ s1

s0

dCL(σ)

dσ
ψ′

W(s − σ) dσ, (110)

where CL is the wakeless (quasi-steady) lift coefficient, CLW is the wake-modified coefficient,
σ is a dummy variable for integration, and the motion goes from position s0 to s1. It is assumed
that no changes in CL occurred before position s0.

The perturbation Wagner function (ψW) is defined as a perturbation from the quasi-steady lift
after the step change. This is simply the expression of eqn (109) minus 1.

ψW(s) = ψ′
W(s) − 1

= −0.165e−0.041s − 0.335e−0.32s. (111)

The perturbation form of the Wagner function in eqn (111) can serve as a correction to the wakeless
quasi-steady result from Section 3. If the original Wagner function in eqn (109) were used, the
quasi-steady component would be included twice: once in the quasi-steady calculation, and once
in the non-perturbation form of the Wagner function.

The Duhamel sum of a series of changes in quasi-steady CL, using the perturbation Wagner
function is:

CLW =

∫ s1

s0

dCL(σ)

dσ
ψW(s − σ) dσ. (112)

This is the change in CL due to the effect of the wake only ignoring the step change in CL itself,
which is already part of the quasi-steady solution. Again, it is assumed that no changes in CL

occurred before s0.

6.3 Küssner’s model

The Küssner wake model was introduced in [26], but that paper contained a sign error, which
was corrected in [34]. The Küssner model is similar to the Wagner model, making the same
assumptions about the wake being straight, horizontal and stationary in absolute space. However,
instead of a change that applies to the entire wing at once, it considers a step increase in CL that is
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stationary in space. This could, for example, be a vertical gust region. The increase in CL does not
apply everywhere along the wing, but propagates along it as the wing moves into the increased
CL region. The Küssner function is also an expression based on s, and can be approximated by

ψ′
K(s) = 1 − 1

2 e−0.13s − 1
2 e−s (113)

Küssner’s function grows from 0, where the increased CL region is first encountered at the leading
edge, but has not yet affected any of the wing, and goes asymptotically to 1 as s → ∞ where the
gust-disturbed flow is the new steady condition. Also note that the Küssner model includes the
added mass effect, which the Wagner model does not.

Using Duhamel’s theorem, see [23] or [4], the effect of a series of CL regions is:

CLK =

∫ s1

s0

dCL(σ)

dσ
ψ′

K(s − σ) dσ, (114)

where CL is the wakeless lift coefficient, CLK is the wake-modified coefficient, σ is a dummy
variable for integration and the motion goes from s0 to s1. It is assumed that no changes in CL

occurred before s0.
The perturbation Küssner function (ψK) is defined as a perturbation from the quasi-steady lift

after the step change. This is simply the above expression minus 1.

ψK(s) = ψ′
K(s) − 1

= − 1
2 e−0.13s − 1

2 e−s. (115)

The perturbation expression of eqn (115) can serve as a correction to the wakeless quasi-steady
result. If the original expression of eqn (113) were used, the quasi-steady component would be
included twice.

The Duhamel sum of a series of changes in CL, using the perturbation Küssner function, is:

CLK =

∫ s1

s0

dCL(σ)

dσ
ψK(s − σ) dσ. (116)

This is the change in CL due to the effect of the wake only ignoring the step change in CL itself,
which is already part of the quasi-steady solution. Again, it is assumed that no changes in CL

occurred before s0.

6.4 Loewy’s model

The wake trailed behind the rotor of a hovering helicopter is convected downwards (‘down-
washed’). Due to the rotational motion, when the rotor returns to the same position in the rotation,
it will pass over the wake it has shed earlier. Loewy [27] modelled this inviscidly by treating the
wake as a straight horizontal vortex filament, as for the Wagner and Küssner models (see Fig. 5a–
c). He assumed that the vorticity of the wing was varying sinusoidally, with spatial wavelength
λ. He furthermore assumed that the helicopter had been in a steady hover for a long time, so the
wake behind the rotor extended to infinity. This is the primary wake. The novelty of the Loewy
approach was that he then modelled the encounter of previous wakes by reproducing the primary
wake below the rotor, saying that during the cycle the wake would have moved downwards due
to the uniform induced downwash ui. He therefore modelled the wake passage as an infinite
series of copies of the primary wakes (referred to here as secondary wakes), each offset by a
constant distance down and advanced in phase by a constant number. This allowed him to obtain
closed-form expressions for lift coefficients.
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6.5 Modified Loewy model

Although the closed-form expressions of Loewy have not been employed here, his principle of
secondary wakes has been utilised—treating the previous wakes as constantly offset straight
vortex filaments below the wing. The difference is that computation is performed as a direct sum
over the secondary wakes, rather than as closed-form expressions. The output of this model is the
induced velocity at a point on the wing. Note that while Loewy’s assumption that the distance
between wakes is constant was justified in that the time between wakes is constant, in the case of
flapping flight, the extreme ends of the stroke should actually meet to form a continuous filament.
This is another simplification that was deemed necessary.

We now outline an adaptation of the Loewy approximation of helicopter wake effects, to
flapping flight with stroke reversal.

Firstly, the nomenclature of [27] is collected:

• n is the number of whole revolutions completed.
• γa is the bound (attached) vorticity—this is called γb in the following.
• γ00 is the wake vorticity in the primary wake (behind the wing).
• γn0 is the wake vorticity in the secondary wakes (below the wing).
• h is the vertical separation between full revolution blocks (from one n to the next).
• Ŵb is the total bound vorticity.

For the flapping-wing case Loewy’s expression for induced velocity uw is:

unw =
−1

2π

[

∫ TE

LE

γa

x − ζ
dζ +

∫ ∞

TE

γ00

x − ζ
dζ +

∞
∑

n=1

∫ ∞

−∞

γn0(x − ζ)

(x − ζ)2 + n2h2
dζ

]

. (117)

This is simply an expression of the two-dimensional Biot–Savart law for all the vortical elements.
The first term is the bound vorticity, the second term is the primary wake vorticity, and the
summation of the final term is all of the secondary wakes.

Next, Loewy used the reduced frequency to express the above spatial integrals in terms of
time. This reduction cannot be used here, because the forward velocity of the flapping wing is not
constant. However, the spatial distribution of the wake vorticity, in terms of the length travelled s,
can be found and represented as a sum of sinusoidal elements using the fast Fourier transform.
The induced velocity, caused by each sinusoidal element, can be calculated, and the vector sum of
velocities formed to produce the total effect. In this way, the finite extent of the secondary wakes
is taken into account directly, while the essence of Loewy’s approach is preserved through the
Fourier decomposition of the wake’s vorticity.

6.6 Combined wake model

The models of Sections 6.2, 6.3 and 6.4 are combined to form a wake model of the actual,
complex wake shape behind and below a flapping wing. Firstly, the wake is split into single-stroke
segments, similarly to Loewy’s model. The primary wake extends backwards in a horizontal line,
to the start of the current stroke, and a number of secondary wakes, due to previous strokes, that
are horizontal lines, each one offset by the distance uiT/2 below the later stroke, where ui is the
average downwash velocity, and T is the period of a complete cycle, so T/2 is the period of a
single stroke (see Fig. 5).
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.  .  . .  .  .
.  .  .

Periodically repeated returned wakes

(c) The Loewy model

(b) Infinitely long returned wakes

(a) Simple wake behind wing

Half

Half

Half

.  .  .

(d) The modified Loewy model
Periodical repetition is vertical only

Figure 5: Illustration of the original and modified Loewy returning wake model.

The analysis is restricted to two-dimensional, assuming that the wing can be treated as a series
of two-dimensional spanwise segments, that do not affect each other. Also, this assumes that there
is no spanwise flow.

The start and the end of the stroke are governed by the position of the trailing edge, which is
where the wake is being shed from.

The primary wake is assumed to be a line, so the effect of the primary wake can be treated
as a Wagner-type effect, by applying the Wagner function to the changes in the quasi-steady lift
coefficient CL since the start of the current stroke. It is assumed that the compounded effect of
the Wagner contributions from previous strokes instantly disappear at the start of a new stroke.
However, at the start any stroke after the first, only the change in CL between strokes is used—
this is the step change in CL from the end of one stroke to the start of the next. If the entire CL
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was used to calculate the Wagner effect at the start of each stroke, the model would give us an
unrealistically strong starting vortex, as if the wing had just impulsively started from rest at the
start of the stroke.

The effect of the secondary wakes is incorporated by calculating the induced velocity at the
leading edge, due to the vorticity of all the secondary wakes, in a Loewy-type sum.These secondary
wakes are assumed to be straight lines, and globally stationary, so the flowfield they cause is also
globally stationary. The velocities induced by the secondary flowfield are treated as stationary
gusts, and their effect on the wing is modelled as a Küssner-type effect. This is done by calculating
CL with and without the secondary wake-induced velocities, and treating the difference in CL as
a series of Küssner perturbations. Again, to avoid the start of a stroke being modelled as if it were
an impulsive start, CL at the start of the stroke is taken as the step change since the end of the
previous stroke, similarly to the method used for the Wagner effect above.

The effects of the primary and secondary wakes are treated as entirely separate, but
superposable.

6.7 Added mass and the wake

In our model, the added mass does not affect the wake. This is because:

• The added mass is a purely irrotational effect, and therefore will not affect the bound vorticity
of the wing, or the vorticity in the wake.

• The wake is modelled as a prescribed shape (line segments), so the added mass cannot affect
the shape of the wake.

Under these conditions, the added mass cannot affect the wake. However, as the wake affects
the velocity of the fluid around the wing, it has an effect on the added mass. This has not been
modelled accurately, because no Wagner-type function exists for this effect. The Küssner function
already includes the effect of added mass.

6.8 Polhamus correction and the wake

It is expected that the leading edge vortex will cause a change in the bound vorticity and, therefore,
wake vorticity. For usual cases, where the incoming velocity is approximately parallel to the chord,
the increased normal force due to the rotation of the leading edge suction can be modelled by an
increase in bound circulation of the wing. However, for flapping kinematics, the incoming velocity
is not approximately parallel to the chord. Therefore, for our case we cannot use a vorticity model
of the Polhamus correction, as mentioned in Section 5.

For this reason, the effect of the leading edge vortex on the wake cannot be modelled accurately.
A simple correction for the effect of the leading edge vortex has been applied, by using the
Polhamus-modified CL in the wake calculations.

Similarly, because the Wagner and Küssner functions treat the wing and wake as horizontal,
they predict the force that results to be purely normal to the wing, so no parallel component exists.
This means they do not have an effect on the leading edge suction. It is technically possible to
derive expressions similar to Wagner and Küssner’s function, but for the leading edge suction.
However, if this is applied to the Polhamus effect, it leads to an iterative model, where the results
of an earlier function are affected by the results of a later one.
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Master FunctionMaster Function

Data Function

Calculation Function

Run Function

Figure 6: Code overview: The hierarchy of functions. Note that the flow of information is always
upwards, or horizontal, never down, so that only non-iterative (one-pass) computation
is involved.

7 Code implementation

The code was implemented in MATLAB because of the great deal of inbuilt functionality
for handling vectors and matrices it offers, which made code development easier, but—more
importantly—makes the code far more compact and legible.

The code was split into a number of functions. Because the theory devised is non-iterative, it
was possible to arrange them hierarchically by type, as shown in Fig. 6. Briefly, the top-level,
run functions are the command used to execute the entire code. These in turn call the master
functions, which calculate the results for a given part of the model, e.g. the quasi-steady forces.
They do this by calling calculation functions that deal with a specific aspect of the calculation.
At the lowest level, the data functions provide all the data needed by the other functions. The
flow of information in the figure is almost entirely upwards. The exception is the quasi-steady
results from the quasi-steady master functions, which are used by other master functions. At no
point does information flow down the hierarchy. As already stressed, an important feature of this
model is that it is non-iterative, so the flow of information is unidirectional.

The code runs in less than five minutes on a 1.8 GHz Pentium IV computer.
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Figure 7: Robofly wing geometry. The horizontal and vertical lines are the hinge line (from the
root to the point furthest from the root), and the maximum chord line (the longest line
normal to the hinge line), respectively.

8 Dickinson’s Robofly data

Dickinson’s Robofly is a mechanical device that mimics the kinematics of a hovering insect, by
controlling the movement of a wing at the root with electric motors. The wing is a scaled-up
version of a fruit fly wing, which is flapped in mineral oil at low frequency, to preserve dynamic
similarity with the original fruit fly. The frequency was 0.168 Hz, giving a period of about 6 s for
a full cycle. The equipment and procedures are explained in [43–45]. The data provided were for
the ‘advanced’ case of [43], where the wing rotation leads the wing reversal.

8.1 Geometry

The wing geometry of Dickinson’s Robofly is a scaled version of a Drosophila Melanogaster

fruit fly wing. The tip radius is 250 mm, but the inner 60 mm of the wing is taken up with sensors,
and is assumed not to contribute to the force. The shape is shown in Fig. 7, where for the purpose
of the plot the inner 60 mm of the wing has been shown with straight trailing and leading edges.

8.2 Kinematics

The Robofly kinematics follow a simplified pattern, see Fig. 8, and do not mimic those of any
particular insect. The sweeping motion (change of θ) is approximately a triangular wave, with
near-constant sweeping velocity during midstroke. The sweeping amplitude is 80◦, so the wing
completes almost half a revolution each stroke. There is no plunging motion. The pitching is
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approximately a square wave, with very sharp rotation—note that this is Dickinson’s data for
advanced rotation so the rotation occurs before the hinge point comes to a stop at the end of a stroke.

9 Indicial-Polhamus model prediction for Robofly data

9.1 The ‘lift’ force, FV

The data comprise eight strokes, in four full cycles. The results are not exactly equal from one
stroke to the next, most noticeably the first stroke has a very suppressed initial peak compared with
the rest; this is consistent with the Wagner effect. The average lift is 0.40 N. These experimental
data will be reproduced on the following plots as a dotted line, for comparison.

The following description will start with comparing the experimental results with the quasi-
steady results, as shown in Fig. 9. Then, those results will be modified by adding the corrections
for Polhamus, wake effects and added mass, one at a time. Finally, a modification of the added
mass model that gives a better fit with the experimental results is suggested.

Referring to Fig. 9, which shows the predicted quasi-steady lift on the entire wing versus the
measured lift, it can be seen that lift is almost constant during the translation at the middle of
each stroke, followed by a very sharp peak and trough at the rotation. These peaks are almost
entirely due to suction forces, and are much lower in the measured data. Also, the quasi-steady
model overpredicts lift by approximately a factor of 2. Typically, quasi-steady models will under-
predict flapping-wing aerodynamics, because they eliminate a number of rotational terms that
a negligible in standard aerodynamic applications. By including these rotational terms in the
derivation of the quasi-steady model in Section 3, we obtain results that more correctly model
flapping-wing aerodynamics. Our quasi-steady model overpredicts the lift, because it does not
yet include any of the loss-inducing effects such as wake influence.

Adding the Polhamus correction in Fig. 10 gives the Polhamus-corrected lift shown in Fig. 11,
which fits the measured data better. It is seen that the lift peak in Fig. 9 is effectively cancelled
by the Polhamus effect in Fig. 10. This is because the lift peak coincides with the wing being
almost vertical, at which point lift is derived mainly from leading edge suction. The Polhamus
effect rotates this suction force by 90◦, and turns it into a horizontal force. Polhamus has very little
effect on the lift during translation, because the wing is at 45◦, so when the leading edge suction
force is rotated by 90◦, its vertical component is almost the same. The fact that it changes at all is
because of the scaling due to leading edge sweep. The overall shape of the Polhamus-corrected
lift in 11 is similar to that measured, but overpredicts lift by almost a factor of 2, and is missing
some salient features of the shape. Again, this overprediction is because our model does not yet
include loss-inducing wake effects.

Adding the primary wake correction for lift in Fig. 12, gives the Wagner-corrected lift in Fig. 13.
The lift is now considerably reduced, and illustrates how the Wagner effect opposes increases in
lift by reducing and delaying them. Note that the lift is now increasing during the translation,
matching the experiment.

Adding the secondary wake lift correction in Fig. 14 gives the Küssner-corrected lift in Fig. 15.
This correction acts mainly to reduce the lift at midstroke. It is zero during the first stroke, because
there is no secondary wake until the first reversal. After that, it starts out strongly asymmetric due
to the strong starting vortex and unbalanced secondary wakes, but tends to similarity between
strokes as time progresses, as the starting vortex is further from the wing and the secondary wake
tends to a long series of asymmetric wakes.
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Figure 8: Robofly wing kinematics: the first stroke starts forwards (negative sweep angle θ) with
the wing past the vertical. Angles are given in radians.
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Figure 9: Predicted quasi-steady lift (thin line) versus measured Robofly lift (thick line); the
dashed line is the average predicted force.
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At this stage, one salient feature of the lift trace is not picked up—the upward ‘bump’ at the
start and end of each translation phase. This is a compound effect of (a) ignoring added mass and
(b) the simplified secondary wake. Because the modelled shape of the secondary wake has discrete
‘jumps’ at the end of every stroke, the effect is to under-predict the secondary wake effect at the
start of every stroke.

Including the added mass effect in Fig. 16 gives the added-mass-corrected lift shown in Fig. 17,
which highlights a major limitation of the model. Although the added mass does have the missing
bumps, they are both far too large, and occur too soon to match those of the measured data.
It is postulated that this is a direct effect of omitting the attenuating effect of the wake on the
added mass, the effect of which would be to reduce, delay and smooth the added mass force. This
postulation is outlined below.

It is worth noting that the added mass effect is the sum of two components: the irrotational
Dirichlet solution, and the Kutta–Joukowski component, see eqns (67) and (70). If we add only
the Dirichlet component of the added mass shown in Fig. 18 to the wake-corrected lift in Fig. 15,
the final result become the Dirichlet-corrected lift shown in Fig. 19. It can be seen that the
Dirichlet added mass corrections in Fig. 18 has the correct ‘bumps’, at what seems to be the
correct magnitude, but they are occurring too soon.

Now consider if we add only the the Kutta–Joukowski part of the added mass in Fig. 20, to
the wake-corrected lift in Fig. 15, the final result becomes the Kutta–Joukowski-corrected lift in
Fig. 21. It can be seen that the Kutta–Joukowski added mass corrections in Fig. 20 has the correct
‘bumps’, that occur too soon much like the Dirichlet component above, but also the magnitude is
far too large.
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Figure 10: Polhamus correction to lift (thin line) versus measured Robofly lift (thick line); the
dashed line is the average predicted force.

 

 www.witpress.com, ISSN 1755-8336 (on-line) 

© 2006 WIT PressWIT Transactions on State of the Art in Science and Engineering, Vol 4,



640 Flow Phenomena in Nature

0 5 10 15 20
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

QS+Pol lift correction

F
o

rc
e

 (
N

)

Time (s)

Figure 11: Quasi-steady lift modified by Polhamus correction (thin line) versus measured Robofly
lift (thick line); the dashed line is the average predicted force.
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Figure 12: Wagner correction to lift (thin line) versus measured Robofly lift (thick line); the dashed
line is the average predicted force.
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Figure 13: Quasi-steady lift modified by Polhamus and primary wake (Wagner) correction (thin
line) versus measured Robofly lift (thick line); the dashed line is the average predicted
force.

This comparison between the two components of the added mass leads to the conclusion that
the main problem with the added mass model is that it is neglecting the attenuating effect of the
wake on the added mass lift. This is justified partly by the added mass components occurring too
soon, but mainly because the Kutta–Joukowski part of the added mass model is a worse fit than the
Dirichlet part. This, in turn, we link to the fact that the Dirichlet part derives from an irrotational
solution that requires no wake vorticity, while the Kutta–Joukowski component requires wake
vorticity, and therefore the missing modelling of the attenuating wake effect on the added mass
is more severe for the Kutta–Joukowski component.

This leads to an empirical correction to the added mass model, based loosely on the Wagner
function: that the added mass includes the entirety of the Dirichlet part, but only half of the Kutta–
Joukowski part, as shown in Fig. 22. This is a considerable improvement over the result in Fig. 17.
There is no particular theoretical justification for choosing the factor 1

2 , except that the Wagner
effect predicts the loss of half the circulatory quasi-steady lift, so it seemed a valid guess for
the loss of circulatory added mass lift, too. A similar approach has been suggested by [46]. Note
how well the scaled added mass figure matches the measured result, picking up all the critical
features of the force trace, although they manifest a little too soon and with too much magnitude.
This is especially true for the loss of lift at rotation, which is being heavily overpredicted. Again,
this is because the rotation is associated with strong vortex shedding, the effect of which on the
added mass are not modelled. This underlines the conclusion that the model captures the unsteady
aerodynamics rather well, but lacks a critical component in the modelling of the wake effect on
the added mass.

Figure 23 shows the result of Fig. 19, without correcting the force coefficients for the effect
of Polhamus, i.e. setting the variable usepolhamus =‘no’ in the code. It shows that without the
Polhamus correction to lift coefficients, the model heavily under-predicts FV during rotation,
because it is compensating for suction lift that is not being realised.
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Figure 14: Secondary wake (Küssner) correction to lift (thin line) versus measured Robofly lift
(thick line); the dashed line is the average predicted force.

0 5 10 15 20
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

QS+POL+WAG+KUS

F
o

rc
e

 (
N

)

Time (s)

Figure 15: Quasi-steady + Polhamus + primary and secondary wake corrections to lift (thin line)
versus measured Robofly lift (thick line); the dashed line is the average predicted force.
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Figure 16: Added mass correction to lift (thin line) versus measured Robofly lift (thick line); the
dashed line is the average predicted force.
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Figure 17: Total lift including added mass forces (thin line) versus measured Robofly lift (thick
line); the dashed line is the average predicted force.
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Figure 18: Dirichlet component of the added mass correction to lift (thin line) versus measured
Robofly lift (thick line); the dashed line is the average predicted force.
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Figure 19: Total lift, including the Dirichlet component of added mass forces (thin line) versus
measured Robofly lift (thick line); the dashed line is the average predicted force.
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Added mass does not contribute a net force over a closed cycle—so the inaccuracy of the added
mass effect above does not have an effect on the average lift. The average measured lift is 0.40 N,
and the average predicted lift from the model is 0.37 N, a 7.8% error.

9.2 The ‘drag’ force

Dickinson defined drag in terms of the horizontal force in the direction opposing motion, therefore
it was always positive. Our model defines horizontal force (FH) in the +θ direction. Therefore,
to compare with Dickinson’s data, value of the predicted drag was multiplied by the sign of the
horizontal tip velocity uHT. Considering Fig. 24 it can be seen that there is almost no quasi-steady
drag. This fits well with the theory, as there is very little vertical velocity of the midpoint. (There
is no plunging motion, so the only vertical velocity is due to the rotation and the hinge offset from
the midpoint, and the hinge is almost at the midpoint.)

The Polhamus effect is considerable, as seen in Fig. 25. Much like the quasi-steady lift force
does, the Polhamus effect overpredicts the drag force by a factor of 2. This is because the Polhamus
effect is a rotation of the quasi-steady suction force and therefore scales with the suction force.
However, the model predicts very little effect of the wake on drag for the first component, because
Wagner’s function does not predict any effect due to the primary wake, and for the second part,
because the secondary wake effect is small, just as it was for lift (see Fig. 26). Therefore only
the Polhamus correction is left, which is considerable. The Polhamus correction did not affect lift
during translation, but it has considerable effect on drag. Again, this is because when the leading
edge suction (which is at 45◦) is rotated, its vertical component is almost unchanged, but the
horizontal component changes sign.
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Figure 20: Kutta–Joukowski component of the added mass correction to lift (thin line) versus
measured Robofly lift (dotted line); the dashed line is the average predicted force.
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Figure 21: Total lift, including the Kutta–Jokowski component of added mass forces (thin line)
versus measured Robofly lift (dotted line); the dashed line is the average predicted
force.
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Figure 22: Total Robofly lift, including Dirichlet added mass forces, and half of the Kutta–
Joukowski added mass force (thin line) versus measured Robofly lift (thick line);
the dashed line is the average predicted force. Compare with Fig. 17.
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Considering the total drag for all components apart from added mass in Fig. 27, it can be seen
that the fit is poor: although the Polhamus effect correctly identifies the peak during each rotation,
the magnitude of the force is overpredicted approximately by a factor of 2, just as for lift. The
wake does not correct for this, because the Wagner effect does not affect drag in the model.
Incorporating added mass (see Figs 28 and 29) correctly identifies the peaks at either end of the
translation phase, but as with the vertical force, they are too large and too early, because the wake
effects on the added mass forces are ignored.

The horizontal force model is not acceptably accurate without some refinement. Scaling the
Polhamus effect was attempted, but due to the low rotation speeds, the scaling was 1 almost
everywhere, with a few localised spikes of lower value at the rotations.

The average measured drag force was 0.60 N, the average predicted force was 1.00 N, an error
of 67%.

9.2.1 Primary wake influence on drag

As can be seen from Figs 12, 14 and 26, the main effect of the wake is to reduce the predicted lift
and drag forces at midstroke.

It is postulated that the major part of the error between the measured and predicted drag in
Fig. 29 is due to the omission of primary wake (Wagner) effects on the drag (Fig. 30). From
Fig. 31 it can be seen that the Wagner effect on lift is almost exactly opposite half of the combined
quasi-steady and Polhamus lift. Effectively, the Wagner effect is halving the quasi-steady and
Polhamus contributions to lift. Assuming a similar effect of the primary wake on drag gives
the result of Fig. 32, which can be seen to be very close to the measured value. When using
this correction, the average drag force was 0.41 N, an under-prediction of 32%. This method of
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Figure 23: Robofly total lift with Dirichlet added mass correction, as in Fig. 19, but with
usepolhamus = ‘no’ (solid line) versus measured lift (dotted line). Note the loss of
lift at reversal is much greater than in Fig. 19, and the ‘bump’ just before the reversal
is lost. The chain line represents the average predicted force.
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Figure 24: Quasi-steady drag, or absolute value of FHQW, (thin line) versus measured Robofly
drag (thick line); the dashed line is the average predicted force.
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Figure 25: Polhamus correction to drag (thin line) versus measured Robofly drag (thick line); the
dashed line is the average predicted force.
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Figure 26: Secondary wake (Küssner) correction to drag (thin line) versus measured Robofly drag
(thick line); the dashed line is the average predicted force.

primary wake correction for drag is too tenuous to be relied on. Note especially how it completely
eliminates the first peak after reversal, because the primary wake effect should be delayed relative
to the change in quasi-steady force. However, it does support the postulation that the major part
of the error in predicted drag force is due to the omission of primary wake effects.

10 Discussion

10.1 Discussion of results

The Robofly data for both lift and drag show a similar form: a sharp trough near the reversal point,
accompanied by peaks immediately before and after reversal. Between these two peaks (in the
midstroke) the forces are lower, but increasing gradually towards the second peak.

For the predicted forces, both the lift and drag show a similar form: the Polhamus-corrected
quasi-steady force overpredicts the measured force by a factor of 2, and has no first peak
after reversal. The wake effect is to reduce these forces at midstroke. Finally, the added mass
contribution has very little effect at midstroke, but causes a sharp reduction in forces at reversal and
an increase immediately after, reducing the predicted value at reversal to match the trough in the
measured data and introducing the first peak just after reversal, again to match the measured data.
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Figure 27: Total drag without added mass (thin line) versus measured Robofly drag (thick line);
the dashed line is the average predicted force.
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Figure 28: Added mass correction to drag (thin line) versus measured Robofly drag (thick line);
the dashed line is the average predicted force.
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Figure 29: Total drag with added mass (thin line) versus measured Robofly drag (thick line); the
dashed line is the average predicted force.

10.2 Evaluation of results

This section deals with the accuracy and utility of the model. It is concluded that the added mass
model is not very good, as it overpredicts the effect of added mass by ignoring the effect of the
primary wake on the added mass. The lift results are acceptable as a first-order model, in that they
capture the general shape and overall scale of the lift force. Especially gratifying is the way they
accurately capture the loss of lift due to the impulsive start. The drag results, however, are less
good, primarily because our model predicts no effect of the primary wake on the drag force. The
drag model also suffers from our fluid being modelled as inviscid, whereas most of the real-world
drag in the experiment is viscous in origin. Using the Polhamus correction to force coefficient for
the purpose of wake effect seems especially promising, but will require more validation, after the
added mass model has been refined.

Moment data were not available for the Robofly experiment. This is unfortunate, as it makes
it impossible to validate the expressions for the moments. The added mass moment is especially
a concern, as the added mass forces were modelled without the effect of the wake. Similarly, the
effect of omitting Polhamus corrections from the pitching moment cannot be evaluated.

Nonetheless, it is gratifying that a purely inviscid model has managed to get this close to experi-
mental results, which are for a very viscous and unsteady flight regime. The model underpredicted
the average lift by only 7.8%. Note also that the expected operating regime of the FMAV is con-
siderably less viscous than that of Dickinson’s experiment. Dickinson had a Reynolds number of
order 102, while for the MAV, the Reynolds number would be of the order of 105.

 

 www.witpress.com, ISSN 1755-8336 (on-line) 

© 2006 WIT PressWIT Transactions on State of the Art in Science and Engineering, Vol 4,



652 Flow Phenomena in Nature

0 5 10 15 20
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

QS+POL+WAG+KUS+AM (scaled) drag

F
o

rc
e

 i
n

 N
e

w
to

n
s

Time

Figure 30: Total drag with added mass for Robofly dataset, including Dirichlet added mass forces,
and half of the Kutta–Joukowski added mass force (thin line) versus measured Robofly
drag (thick line); the dashed line is the average predicted force. Compare with Fig. 29.
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Figure 31: Comparison of predicted Polhamus-corrected quasi-steady lift (solid line) with minus
twice the Wagner primary wake lift effect (dotted line). Note the strong correlation.
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Figure 32: Total Robofly drag, as in Fig. 29, but minus half of quasi-steady and Polhamus con-
tribution (thin line) versus measured drag (thick line); the dashed line represents the
average predicted force.

11 Conclusions

11.1 Assumptions

• The wing root is stationary.
• The wing is thin and flat.
• The hinge point is at the same point on the chord for all spanwise sections, when wing shape

factors are used.
• The body does not affect the airflow and is ignored.
• The far-field free stream is stationary.
• The flow is entirely inviscid.
• The flow separates sharply from the leading edge, causing total loss of leading edge suction.
• The flow always reattaches and forms a stable leading edge vortex.
• The effect of the leading edge vortex is to rotate the leading edge suction force by 90◦, to

become a normal force component.
• The direction of the above rotation is in the direction of the normal velocity at the leading

edge.
• The leading edge vortex dissipates immediately when shed.
• The flow leaves the trailing edge smoothly, satisfying the Kutta–Joukowski condition.
• The wake is treated as a thin, globally stationary filament of vorticity.
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• The wake does not decay or dissipate.
• The wake is split into single-stroke elements, each of which is assumed to be a straight line.
• The wake moves under constant downwash velocity ui, without deforming under its own

induced velocity.
• The above movement is discretised into a set of steps at each reversal.
• Each wake segment is assumed to be behind the wing until reversal, where all previous wakes

jump downwards by a distance based on the average predicted downwash velocity.

11.2 Theory conclusions

A model has been developed for calculating highly unsteady lift of insect-like flapping wings,
and embodied in MATLAB code. This model is analytic and modular, for the purpose of giving
better insight into the various effects that act on the wing. However, this has come at the expense
of considerable simplification, in order to enable the use of known solutions to standard unsteady
problems. The main limitations of the model are: (1) no modelling of viscous forces (this was
necessary to obtain an analytical potential model) and (2) the effect of the wake on added mass is
incomplete: although the Küssner function includes the effect of added mass, the Wagner function
does not.

The model was tested on the data from an experiment on Dickinson’s Robofly from which
it was concluded that the average circulatory lift predicted was within 7.8% of the measured.
However, the non-circulatory lift (added mass effect) was a poor fit, so although added mass does
not contribute a net force over a cycle, some features of the shape of the lift trace are lost, and the
peak loads are being overpredicted. For drag, both the circulatory and non-circulatory component
showed poor correlation. This is partly because of the above-mentioned problems with added
mass, and the fact that the wake model does not model primary wake drag. However, it is also
suspected to be mainly due to the fact that viscous drag is omitted entirely.

This model is based on several simplifications. These were made for the purpose of making
it possible to embody the model in non-iterative code, and to give quantitative insight into the
meaning of the results. Despite the simplifications, the time evolution of lift has been captured
well and it has been shown that only the added mass component is not modelled with the required
accuracy. This indicates the soundness of this modular approach.

Appendix A: Terminology and notation

A.1 Angle of attack

The angle of attack is usually defined as the angle between the mean chordline (the line from
leading to trailing edge) and the free stream flow. It is not used in this investigation because:
(1) wing rotation causes α to vary along the chord and (2) α is not small for the flapping wing.

Instead, the following calculations are performed as a function of the normal velocity directly,
with no reference to α. The wing attitude is obtained from the pitching angle β, which is defined
from geometry and therefore independent of the free stream. For two examples of the relationship
between α and the pitching and plunging motions, see Figs 33 and 34.
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Figure 33: Illustration of the effect of plunging velocity correction on α. Here�αp is the effective
angle of attack due to plunging and differs from the geometric angle α which is zero.

A.2 Velocities

Velocities are written in metres per second, as the velocity of the fluid relative to the wing, in the
general form:

u123.

The first subscript is the direction of the velocity:

• P is in the wing-fixed system, parallel to the wing, towards the trailing edge.
• N is in the wing-fixed system, normal to the wing, towards the ‘upwards’ side.
• V is in the spherical coordinate system, upwards (i.e. the −ψ direction).
• H is in the spherical coordinate system, backwards (i.e. the +θ direction).
• T is the total velocity, in either coordinate system.

See Figs 38 and 39 for illustrations of the −ψ and +θ directions.
The second subscript is the chordwise location of the velocity:
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(a) Actual Situation

Oncoming velocity U

WingHinge Point

(b) pitching velocity due to rotation

Figure 34: Pitching effect on normal velocity, and hence α.

• l is at the leading edge.
• t is as the trailing edge.
• m is at the midpoint.
• r is at 3/4 chord, called the rear neutral point.

If this subscript is omitted, the velocity is assumed to be at the hinge point.
The third subscript is the spanwise position of the velocity:

• T is at the tip of the wing, assumed on the hinge line.

If this subscript is omitted, the velocity is assumed to be at a radial position r.
Special case: The velocity ui is the average downward velocity induced by the lift of the wing,

it is positive downwards, i.e. the +z direction.

A.3 Forces

Forces are written in the general form:

F12 33 4

If the fourth subscript is omitted, the force is assumed to be in Newtons per metre span (N/m),
otherwise it is in Newtons (N). See below for details on this fourth subscript.

The first subscript is the direction of the force:

• P is in the wing-fixed system, parallel to the wing, towards the leading edge.
• N is in the wing-fixed system, normal to the wing, towards the ‘upwards’ side.
• V is in the spherical coordinate system, upwards (i.e. the −ψ direction).
• H is in the spherical coordinate system, forwards (i.e. the −θ direction).
• L is in the rectangular coordinate system, upwards (i.e. the −z direction).
• D is in the rectangular coordinate system, forwards (i.e. the +x direction).

 

 www.witpress.com, ISSN 1755-8336 (on-line) 

© 2006 WIT PressWIT Transactions on State of the Art in Science and Engineering, Vol 4,



An Indicial-Polhamus Aerodynamic Model 657

x

β

z

Pitching (supination). Seen from right wingtip.

z

y

x

Axes origin at hinge point of wing

ψ

z

y

Plunging, seen from −X (behind).

y

x

Sweeping, seen from −Z (above)

θ

Figure 35: Coordinate system.
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Figure 36: The wing-fixed coordinate system.

ζ

pitch axis (hinge line)

η

Figure 37: A sample wing section.

The relevant directions are shown in Figs 40 and 41.
The second subscript is the flow component causing the force:

• Q is quasi-steady.
• A is added mass.
• P is Polhamus effect.
• W is Wagner (primary wake).
• K is Küssner (secondary wakes).

If this subscript is omitted, the force is assumed to be the sum of all the above contributions.
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UV

UH

Figure 38: Direction of the horizontal velocity uH and the vertical velocity uV, as seen from the
root of the wing. These are defined as velocity of the fluid relative to the wing, in the
spherical coordinate system.

UN

UP

Figure 39: Direction of the normal velocity uN and the parallel velocity uP, as seen from the
root of the wing. These are defined as velocity of the fluid relative to the wing in the
wing-fixed coordinate system of Fig. 36.

The third subscript may be one or two letters and is the component of the contribution for the
quasi-steady and added mass terms only:

• TD is the translational component of the Dirichlet solution.
• RD is the rotational component of the Dirichlet solution.
• TK is the translational component of the Kutta–Joukowski correction.
• RK is the rotational component of the Kutta–Joukowski correction.
• D is the total Dirichlet solution.
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FV

FH

Figure 40: Direction of the horizontal force FH and the vertical force FV, as seen from the root
of the wing, in the spherical coordinate system.

FP

FN

Figure 41: Direction of the normal force FN and the parallel force FP, as seen from the root of
the wing, in the wing-fixed coordinate system of Fig. 36.

• K is the total Kutta–Joukowski correction.

If this subscript is omitted, the force is assumed to be for the total contribution of all components.
The fourth, optional, subscript denotes the area of integration:

• W means the force is integrated over the entire wing.

If this subscript is omitted, the force is assumed to be per metre span.
The shorthand ‘lift’ is used for the vertical force FV and ‘drag’ for the horizontal force FH.

A.4 Moments

Moments are written in the general form:

M12 33 4

 

 www.witpress.com, ISSN 1755-8336 (on-line) 

© 2006 WIT PressWIT Transactions on State of the Art in Science and Engineering, Vol 4,



An Indicial-Polhamus Aerodynamic Model 661

If the fourth subscript is omitted, the moment is assumed to be in Newton-metres per metre span
(Nm/m), otherwise it is in Newton-metres (Nm). See below for details on this fourth subscript.

The subscripts are similar to those for forces above, except the first, where the only cases are:

• V Moment about the x axis, positive in the −ψ direction (upwards).
• H Moment about the z axis, positive in the −θ direction (forwards).
• P Pitching moment about the hinge line, positive in the +β (pitching up).

The descriptions of direction (‘upwards’, and so on) are local to the right-hand wing, which is the
only one considered.

A.5 Other definitions

Q
√

1 − ζ2

C cos
S sin
Sm

nα sin (nα)m

TP Polhamus-effect turn direction, see eqn (102)
ϕ wing sweep factor, see p. 27

A.5.1 Downwash velocity ui

Any lift generation causes a downwash velocity, and the Rankine–Froude theory for an actuator
disc assumes a constant downwash velocity ui across the swept disc of a propeller. In hover this
yields:

ui =

√

F̄

2ρAS
, (118)

where F̄ is the average lift force, and AS is the swept area of the propeller, the horizontal area
that the wing passes over during a stroke. This is shown in Fig 42. Note on the same figure the
important issue of a partial actuator disc. The left-hand figure shows the full area within the wing
tip radius, which is the swept area when the wing performs full rotations and passes over the
entire disc. For our application, however, AS is based on the area each wing will actually traverse
over during a stroke, as shown in the right-hand figure.

A.6 Basic identities

On the basis of the above definitions, some basic identities are available:

uH = −Rrθ̇, (119)

uV = Rrψ̇, (120)

uN = uHSβ + uVCβ, (121)

uP = uHCβ − uVSβ, (122)

see Fig. 35. Note the minus sign in the first equation, since velocity is defined in terms of the free
stream velocity relative to the wing, so the velocities above are the opposite to those of the wing
in still air. The last two equations are simply from resolving velocities in the spherical coordinate
system to the wing-local system.
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The above equations can be used to find the velocities at local points of the wing. The subscript
E is used for an arbitrary point on the wing. The local wing semichord is b, and the hinge location
in wing-fixed coordinates is a:

uPE = uP, (123)

uNE = uN + bβ̇(ζ − a), (124)

uNl = uN + bβ̇(−1 − a), (125)

uNm = uN + bβ̇(−a), (126)

uNr = uN + bβ̇( 1
2 − a), (127)

uNt = uN + bβ̇(1 − a). (128)

Equation (123) indicates that, in the wing-fixed coordinate system, the rotational velocity will
manifest itself purely as a normal component. Equations (125)–(128) are just special cases of
eqn (124). Also, all velocities at the hinge will scale linearly with the radius:

u = r uT. (129)

As

resultant force
resultant force

Full Actuator Disc Partial Actuator Disc

ui induced velocity

ui2 induced velocity

ui induced velocity

ui2 induced velocity

Figure 42: Swept area used to determine induced velocity, based on momentum theory, after [11].
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Some basic identities can be formed for forces by resolving between coordinate systems:

FV = FNCβ + FPSβ, (130)

FH = −FNSβ + FPCβ, (131)

FN = FVCβ − FHSβ, (132)

FP = FVSβ + FHCβ, (133)

FL = FVCψ, (134)

FD = FHCθ , (135)

The last two equations are the forces experienced by the body in the rectangular coordinate system.
Also, the definition of ‘drag’ makes it always positive forwards and spanwise forces have been
ignored. In the spherical coordinate system the model used predicts no spanwise force (see the
Polhamus model in Section 5). In the rectangular coordinate system any spanwise force caused
by one wing is assumed to be cancelled by the opposite wing, due to symmetry.
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