
 1

An Indirect Genetic Algorithm for Set Covering Problems

Journal of the Operational Research Society, 53 (10): 1118-1126, 2002.

Uwe Aickelin, School of Computer Science, University of Nottingham, NG8 1BB UK,

uxa@cs.nott.ac.uk

Abstract

This paper presents a new type of genetic algorithm for the set covering problem. It differs from previous

evolutionary approaches first because it is an indirect algorithm, i.e. the actual solutions are found by an external

decoder function. The genetic algorithm itself provides this decoder with permutations of the solution variables

and other parameters. Second, it will be shown that results can be further improved by adding another indirect

optimisation layer. The decoder will not directly seek out low cost solutions but instead aims for good

exploitable solutions. These are then post optimised by another hill-climbing algorithm. Although seemingly

more complicated, we will show that this three-stage approach has advantages in terms of solution quality, speed

and adaptability to new types of problems over more direct approaches. Extensive computational results are

presented and compared to the latest evolutionary and other heuristic approaches to the same data instances.

Keywords: Heuristics, Optimisation, Scheduling.

Introduction

In recent years, genetic algorithms have become increasingly popular for solving complex optimisation problems

such as those found in the areas of scheduling or timetabling. The general approach in the past was to directly

optimise problems with a genetic algorithm often coupled with a post optimisation phase, i.e. both optimisation

phases are directed towards lowering the cost of solutions. The new approach presented here is different in two

respects. First, a separate decoding routine, with parameters provided by the genetic algorithm, solves the actual

problem. Second, the aim of this decoder optimisation is not to achieve the lowest cost solutions in the first

instance. Instead, good solutions with other desirable qualities are found, which are then exploited by a post

optimisation hill-climber.

Although sounding more complicated, this approach actually simplifies the algorithm into three separate

components. The components themselves are relatively straightforward and self-contained making their use for

other problems possible. For instance, we are currently working on a genetic algorithm to optimise the set

partitioning problem. To do this the genetic algorithm module can be left intact. The decoder module will

undergo only very slight changes with most changes being made in the hill-climbing module. Thus, this

approach is particularly suitable for people who have expert knowledge of the problem to be optimised but who

do not know evolutionary computation, because only the non-evolutionary parts have to be adjusted to the new

problem.

 2

The approach has grown out of the observation that there is no general way of including constraints into genetic

algorithms. This is one of their biggest drawbacks, as it does not make them readily applicable to most real

world optimisation problems. Some methods for dealing with constraints do exist, notably by use of penalty and

repair functions. However, their application and success is problem specific.
1
 In the modular approach, problems

involving constraints are solved by the decoder module, which frees the genetic algorithm from constraint

handling.

The work described in this paper has two objectives. First, to develop a fast, flexible and modular solution

approach to set covering problems and second, to add to the body of knowledge on solving constrained problems

using genetic algorithms indirectly. We use a modular three-stage approach. First, the genetic algorithm finds the

‘best’ permutation of rows and good parameters for stage two. The decoder routine, a simple heuristic, then

assigns good columns to rows in given order. Finally a post-hill-climber optimises the solutions fully.

The Set Covering Problem

In this paper, we consider the set covering problem. This is the problem of covering the rows of an m-row, n-

column, zero-one m×n matrix aij by a subset of the columns at minimal cost. Formally, the problem can be

defined as follows:

Defining xj = 1 if column j with cost cj is in the solution and xj = 0 otherwise.

{ }

{ } { } { } (3),...,1,,...,11,0,

(2),...,11 subject to

(1) Minimise

1

n

1

njmiax

mixa

xc

ijj

n

j

jij

j

jj

∈∈∀∈

∈∀≥∑

∑

=

=

Constraint set (2) guarantees that each row i is covered by at least one column. If the inequalities in these

equations are replaced by equalities, the resulting problem is called the set partitioning problem, where over-

covering is no longer allowed. The set-covering problem has been proven to be NP-complete
2
 and is a model for

several important applications such as crew or railway scheduling. A more detailed description of this class of

problem and an overview of solution methods is given by Caprara, Fischetti and Toth.
3,4

 3

Genetic Algorithms

Genetic algorithms are generally attributed to Holland
5
 and his students in the 1970s, although evolutionary

computation dates back further.
6
 Genetic algorithms are meta-heuristics that mimic natural evolution, in

particular Darwin’s idea of the survival of the fittest. Canonical genetic algorithms were not intended for

function optimisation.
7
 However, slightly modified versions proved very successful.

8
 Many examples of

successful implementations can be found in Bäck,
9
 Chaiyaratana and Zalzala

10
 and others.

11

In short, genetic algorithms copy the evolutionary process by processing a population of solutions

simultaneously. Starting with usually randomly created solutions better ones are more likely to be chosen for

recombination with others to form new solutions; i.e. the fitter a solution, the more likely it is to pass on its

information to future generations of solutions. Thus new solutions inherit good parts from old solutions and by

repeating this process over many generations eventually very good to optimal solutions should be reached. In

addition to recombining solutions, new solutions may be formed through mutating or randomly changing old

solutions. Some of the best solutions of each generation are kept whilst the others are replaced by the newly

formed solutions. The process is repeated until stopping criteria are met.

However, constrained optimisation with genetic algorithms remains difficult. The root of the problem is that

simply following the building block hypothesis, i.e. combining good building blocks or partial solutions to form

good full solutions, is no longer enough, as this does not check for constraint consistency. For instance, the

recombination of two partially good solutions, which beforehand satisfied all constraints, might now no longer

be feasible. To solve this dilemma, many ideas have been proposed,
1
 however none so far has proved to be

superior and widely applicable.

In this work, we will follow a new way of dealing with constraints: an indirect route. For the set covering

problem this means that the genetic algorithm no longer optimises the actual problem directly. Instead, the

algorithm tries to find an optimal ordering of all rows to be covered. Once such an ‘optimal’ ordering is found, a

secondary decoding routine assigns columns following a set of rules.

The objective of this approach is the overcoming of the problem known as epistasis. For a detailed explanation

of this phenomena see Reeves,
12
 but briefly it describes the inability of the genetic algorithm to assemble good

 4

full solutions from promising sub-solutions due to non-linear effects between parts of different sub-solutions.

For instance, in the presence of constraints sub-solutions might be feasible in their own right, but once combined

they violate some constraint. Traditional genetic algorithms cannot cope with this well, and such algorithms can

be deceived to search in the wrong areas.

The indirect approach presented here is one possible way of alleviating these problems. By decoupling the actual

solution space from the search space of the genetic algorithm, the epistasis within the evolutionary search is

reduced. Our earlier work showed that this is a promising idea to pursue with good results achieved for complex

manpower scheduling and tenant selection problems.
13,14

 Here, we will take these ideas one step further by

introducing yet another indirect step. Rather than immediately trying to find the optimal solution through the

decoder, we instead aim for good and further exploitable solutions. These are then in turn processed by a post-

hill-climber. This approach is based on observations made whilst designing a traditional direct genetic algorithm

for a nurse scheduling problem.
15
 There it was found that by aiming for balanced solutions in the first instance

and then subsequently optimising those, superior results could be achieved. Here similar observations are made.

The actual genetic algorithm component of our algorithm follows closely traditional evolutionary approaches

using a permutation-based encoding. This means that a solution, as handled by the genetic algorithm, is a

permuted list of all rows to be covered. For instance, if there were five rows to be covered, one possible solution

might look like (2, 4, 5, 1, 3). To arrive at an actual solution to the set covering problem detailing which columns

will be used, this permutation is then post-processed by the decoder routine as described in the next section.

We will use an elitist and generational approach; i.e. most of the population is eliminated at one time leaving the

fittest individuals. An alternative to this would have been a steady-state approach where one or two members of

the population are replaced at a time. The inherently higher convergence pressure of this approach could possibly

be off-set by higher mutation rates. However, following preliminary experiments the generational approach that

had worked well in the past seemed to be superior and was therefore adopted for this study. The steady-state

approach will be investigated further in future research.

Fitness is measured as the cost of the target function (1). For this particular implementation, the decoder routine

ensures that all solutions are feasible. For more generic approaches, this condition will not always be desirable

 5

and / or possible to be upheld as simply finding any feasible solution might be extremely difficult. In those cases

a penalty function approach, penalising solutions proportional to their violation of the constraints,
16,17

 seems a

sensible approach. Such an approach led to success in our earlier work.
13,14

To avoid bias from ‘super-fit’ individuals, which potentially could take over the population, and to enhance

diversity of selection later in the search when solutions and thus fitness values will begin to converge, a rank-

based selection mechanism is used. After the fitness value is evaluated for each solution, all solutions are ranked

according to this measure, with ties broken by taking the member with the lower index as numbered during the

initialisation. Subsequent roulette wheel type selection is based on these ranks. For instance in a population with

200 members, the fittest individual would be assigned rank 200, the second fittest rank 199 etc, down to rank 1

for the least fittest member. This results in the best individual being chosen roughly twice as often as an average

individual and far more often than below average members.

Due to the nature of the permutation-based encodings, traditional crossover operators such as 1-point or uniform

crossover cannot be used as they could lead to infeasible permutations. Instead, order-based crossovers have to

be employed. Unless otherwise stated, the operator used in all experiments is the permutation uniform-like

crossover (PUX) with p = 0.66.
13
 This is a robust crossover proven for different problems and encodings. For the

mutation operator a simple swap operator that exchanges the position of two genes is used. A summary of the

basic indirect genetic algorithm used can be seen in Table 1.

The Decoder

At the heart of our approach lies the decoder function. It is this sub-algorithm that transforms the encoded

permutations into actual solutions to the problem; i.e. it transforms the strings of row numbers into columns used

to cover these. As outlined before, the thinking behind this is that the genetic algorithm cannot cope well with

the epistasis present in the original problem. However, it can find promising regions in the simplified search

space that can then be exploited by the decoder. Thus once an ‘optimal’ ordering has been found a relatively

simple decoding routine should be able to assign the right values, i.e. once the rows have been sorted the decoder

tries to find the corresponding columns.

What qualities should such a decoder therefore possess? It seems that at least, it

 6

• Must be computationally efficient.

• Must be deterministic, i.e. the same permutation always yields the same solution.

• Must be able to reach all solutions in the solution space.

• Should produce good solutions.

Let us consider each of the above, in turn. Firstly, the decoder has to be computationally efficient, because it will

be used once for each new solution. Thus, a genetic algorithm with 200 members in the population, to be run for

500 generations, will involve approximately 100,000 decoder executions. In traditional evolutionary algorithms,

the fitness evaluation function is the most time-critical component. This shows a parallel between the fitness

evaluation and the decoder. One could say that in many respects the decoder is an extended fitness evaluation

function, since it evaluates the fitness after first decoding the solution by assigning values to the variables. It

follows from the frequency of its use that the decoder must be kept computationally simple. This fits with our

early conjecture that if the ordering is right, a simple decoder will achieve good solutions.

Secondly, we expect the decoder to be deterministic in the sense that the same input, i.e. a particular permutation

of rows, always produces the same output, i.e. a particular set of columns. Although at first glance restricting,

this characteristic is necessary to fit in with evolutionary algorithm theory. One of the foundations of the

workings of these algorithms is the idea that fitter individuals will receive proportionally more samplings.

However, in our case, fitness can only be measured after a string has been processed by the decoder. This fitness

is then associated with the original string for reproduction purposes. If one string could decode into different

solutions these would most likely have different fitness values. This could potentially confuse the genetic

algorithm, as the fitness of particular solution parts is then not always the same, which is contrary to the

fundamental building block hypothesis.
5

The third criterion is that we want to be able to reach all possible solutions. This seems a sensible thing to ask at

first, however on closer inspection it might not be necessary and possibly not even desirable to do so. The reason

is that one strength of having a multi-level approach is that we can possibly cut down on the size of the solution

space we search. For instance, high cost or infeasible solutions will generally not be in the user's interest.

Therefore, we will construct a decoder that purposely biases the search towards promising regions by cutting out

 7

undesirable areas. However, by doing so we do run the risk of excluding good and possibly the optimal solution

from the search. We will give an example of such a case in the next section and we will show how this possible

hazard can be minimised by having intelligent weights.

Finally, we ask that the decoder is capable of producing good solutions. Clearly this is what it is designed for and

should come as no surprise. However, as we will point out later, it might pay not to aim for the seemingly best

solution straight away and rather go for a solution that is further exploitable by a hill-climber. As mentioned

above, the decoder has to be kept computationally fast, so too complicated hill-climbing or other routines cannot

be incorporated. It would often be a waste of time to apply these resource intensive hill-climbers to the whole of

the population. Thus, the approach outlined in the following will be one of two stages. The decoder searches for

promising feasible but not yet fully optimised solutions. These are then further exploited and optimised by a

secondary decoder or hill-climber. We will show that such a two tier algorithm is superior to a single stage

decoder.

How to choose a column?

Having established some theoretical background for the decoder, we now need to build one for the set covering

problem at hand. As outlined above, the genetic algorithm is feeding permutations of the row indices into the

decoder and the desired output is a low-cost list of columns used to cover all rows. For instance, an example for

5 rows and 10 columns might look as follows: The evolutionary algorithm provides the following permutation of

rows: (2, 3, 4, 5, 1). This is then fed into the decoder, which assigns the following columns (4, 6, 4, 7, 1). As can

be seen, the total number of columns used is less than or equal to the total number of rows to be covered as

columns may cover more than one row.

To achieve this the following scheme is proposed using a methodology that ensures all solutions are feasible as

every row is covered at least once. In order to build solutions, the decoder will cycle through all possible

candidate columns for each row and then choose the column most suited based on the following criteria:

(1) Cost of the column. (C1)

(2) How many uncovered rows does it cover? (C2)

(3) How many rows does it cover in total? (C3)

 8

For each candidate column a (weighted) score S will be calculated based on the above criteria, i.e. S = w2C2 +

w3C3 - w1C1. The inclusion of criteria 1 and 2 is self-explanatory. Criterion 3 is included to be fairer to late-

coming columns, i.e. those that cover many rows at low cost, but, because of the order of rows, are not

considered in the beginning. The idea behind this is that by including such columns, others might become

redundant and can then be removed. How can C1, C2 and C3 be measured? The first and the third criteria are

straightforward, as the cost information as well as the total number of rows a column covers are parameters of

the model. No calculations are required at all. The second criteria needs to be calculated for each candidate by

taking into account rows already covered by other columns. From all possible candidates the column with the

highest score is chosen. Possible weights for the score components are discussed in the following.

The presented decoder is computationally simple as required, but does it meet all the other criteria discussed in

the previous section? Encoded permutations should always decode to the same solution, provided that ties are

broken in a deterministic way. For the remainder of this paper all ties will be broken on a first come first served

basis. It is less clear if the decoder is capable of reaching all solutions in the solution space. Clearly all infeasible

solutions have been cut out. This is in line with our discussion above, purposely biasing the search. However,

one might argue that some useful information might be lost by excluding all infeasible solutions a priori, as some

of them might contain good information. Based on experimental experience, it seems that on balance by

excluding all infeasible solutions more is gained than by including infeasible ones that unnecessarily distract and

burden the search.

However, the proposed decoder is not capable of reaching all feasible solutions either. Firstly, by choosing

candidates with high scores, the search is biased towards the inclusion of low cost columns. Thus, certain

columns with very high costs might never be considered at all by the decoder, which, in most cases, should be a

sensible decision. Of more concern, low-cost columns might also be excluded if a certain fixed set of weights is

used. Consider a row R that can only be covered by two columns CO1 and CO2. Further, let us assume that CO1

is cheaper than CO2 but only covers row R whilst CO2 covers row R plus an additional row. Depending on how

the weights are set, either CO1 or CO2 will always be chosen to cover R. If, unfortunately, the weights have

been set wrong, a column required for the optimal solution could be excluded.

 9

To overcome these problems of fixed weights and to avoid having to find good weights in the first place, e.g. via

complex parameter optimisation, the following extension to the algorithm is proposed. In addition to searching

for the best possible permutation of row indices, the genetic algorithm will simultaneously search for good

weights:
18,19

 To the end of the string, as many additional genes are attached as there are weights / criteria. So, for

instance, in the case of five rows and three criteria, the string will now look like this: (2, 3, 4, 5, 1; w1, w2, w3),

where w1, w2 and w3 are the weights for the criteria as set out previously.

Originally, these weights are randomly initialised in a sufficiently large range to include suitable values. To

avoid the problems of missing values and premature convergence, the weights also take place in a simple

mutation operation. In every generation, there is a chance, equal to the mutation probability, that a weight is reset

to a random value. In addition, these additional weight genes will not undergo normal crossover and, instead, the

rank-weighted average of both parents will be passed on to the children. Thus, the weights found in better

parents will dominate and eventually the population will converge to one set, or a few sets, of weights suitable to

the particular set of data. Thus, more important criteria will have higher weights assigned to them.

The final component of the optimisation process is a simple hill-climbing routine employed after the decoder has

finished. This is necessary because it will usually happen that rows are covered by more than one column,

possibly in such a way that some columns are redundant and can be removed from the solution without

influencing feasibility. The hill-climber we use will be a simple improvement routine that cycles once through all

used columns in descending cost order starting with the most expensive column. If a column is found redundant,

it is removed and the solution value is adjusted accordingly.

The following example will clarify the decoder’s functioning. First, the genetic algorithm performs its work

creating new solutions via selection, crossover and mutation. For a simple example of five rows and three

criteria, one string produced might be (2, 3, 4, 5, 1; 10, 30, 15). This tells the decoder to find a suitable column

for row 2, then one for row 3 etc. The score for each candidate will be calculated using a weight of 10 for the

first criterion, a weight of 30 for the second and of 15 for the third. So, the decoder would start looking at all

columns that can cover row 2 first. For each column i that covers row 2 a score Si is then calculated as 30 x the

number of uncovered rows it covers + 15 x total number of rows it covers – 10 cost of the column. For instance,

 10

if a column with a cost of 5, covers 3 rows, all of which are yet to be covered, it score would be 30 x 3 + 15 x 3 –

10 x 5 = 85.

Once the columns with the highest score have been chosen (or, in the case of a tie, the first such column), the

decoder moves on to covering the next row, in this example row 3. Before moving on, the cover provided by the

chosen column(s) is updated. If row 3 is already covered by the column(s) chosen so far, then the decoder

proceeds to find a cover for row 4. In subsequent stages, the scores calculated for candidate columns must take

into account other columns that have already been picked. This influences the second criteria, the number of

uncovered rows the column covers. The decoder will then proceed in this fashion until a cover for the last row,

(here, row 1) has been found. Before calculating its fitness, the solution goes through the simple hill-climber,

outlined above, removing redundant columns.

Tables 2 and 3 report the results found with the above version of decoder under the 'Basic' column label. For the

genetic algorithm part only one crossover operator (PUX) with p = 0.66 was used. Thus, it is a uniform-like

crossover whilst at the same time showing similar proprieties as PMX regarding the number of genes retaining

absolute and relative positions.
13
 All experiments were carried out on a 450 MHz Pentium II PC using the

freeware LCC compiler system. To compare solutions times with those of other researchers, these were adjusted

in the manner suggested by Caprara, Fischettit & Toth, to DECstation 5000/240 CPU seconds.
3
 This leads to

some unavoidable approximations, but gives sufficient accuracy to provide some insights. The tables show the

best results out of 10 runs for each data instance and the average solution time over all 10 runs with the stopping

criteria as specified above.

The data used is taken From Beasley’s OR library
20
 and is identical to that used in the papers our results are

compared to. These comparisons are with a direct genetic algorithm labelled BeCh
21
 and a Lagrangean-based

heuristic labelled CFT.
3
 In all, 65 data sets were used, ranging in size from 200 rows x 1000 columns to 1000

rows x 10000 columns and in density (average proportion of rows covered by a column) from 2% to 20%.

Summarised results can be seen in table 2 and figure 1and detailed results in table 3. As can be seen from the

tables, the results are encouraging, but weaker than those found by other researchers. In particular results are

poor for the larger data sets and take very long to compute. Hence, further refinements of our strategy are

required.

 11

The experiments were also repeated for a set of fixed weights, i.e. all individuals using the same set of weights

throughout the whole optimisation process rather than using adjusting weights as proposed above. The values of

the fixed weights were chosen as the weight set used by the overall best individual in the final generation of each

run. Thus, the weights were not necessarily the same for all ten runs on a problem set of data. The results of

these experiments, which are not reported here in detail, were of significantly poorer quality. This leads us to

believe that adjusting weights is superior to finding the ‘best’ set of weights. Finally, adjusting weights allows

the algorithm to change the weights as the search progresses, for example by putting more weight on the

covering criteria early in the search, and relatively higher weights on the cost criteria later on. This effect has

been observed. Perhaps the biggest advantage of permitting weights to be adjusted is the fact that more variety

exists within the algorithm, ultimately leading to a more thorough exploration and better solutions.

Further Enhancements

Although promising, the results found so far are no match for those found elsewhere in the literature for the same

data sets.
3,20
 In this section, we will suggest some further algorithm enhancements, namely a modification of the

cost criterion, the introduction of a fourth criterion and the use of different crossover operators. The first two

enhancements are intended mainly to improve the look-ahead capacity of the decoder, which currently is

restricted to criterion 3, the total number of rows covered by a column. By 'look-ahead' we mean the capability

of making good early choices that are not too ‘greedy’ and allow for equally good choices towards the end of the

string. With these improvements in place, we hope our algorithm will show significantly improved results when

applied to the set covering problems.

One of the most important criteria when choosing a column is its cost, as the overall aim is to arrive at a low cost

solution. When comparing columns for a particular row, comparing the cost of the columns provides indeed a

like-for-like comparison. However, in terms of looking ahead, simply comparing the cost of a column is not the

best possible move. Consider the following example: Two columns CO1 and CO2 have only the cover of row R

in common. Furthermore, both cover nine rows in total, all of which are currently uncovered. CO1 has a cost of

8 whilst CO2 has a cost of 10. Therefore, it seems at first glance that CO1 is the better choice.

 12

One might agree that for the particular row R currently under investigation CO1 dominates CO2. However, what

about the remainder of the rows they cover? It might well be that CO2 with a cost of 10 is a cheap way of

covering those other eight rows, if only more expensive columns would be available to do so. Equally, it could

be the case that CO1 is a cheap option for R, but an expensive one for the remainder of the rows it covers as

possibly cheaper columns could do that. Hence, it seems to be sensible to use rank-based cost information rather

than a direct cost-based one. To implement this, the original cost criterion C1 could be split into the following

two sub-criteria:

• The average column’s cost rank for all uncovered rows it would cover. (C1a)

• The average column’s cost rank for all rows it would cover. (C1b)

For example a column that covers five rows in total and whose cost amongst all columns covering each of the

five rows are ranked 3
rd
, 5

th
, 3

rd
, 1

st
 and 2

nd
 would have an average all row cost rank of (3 + 5 + 3 + 1 + 2) / 5 =

2.8. The average uncovered rows cost rank would be determined in a similar fashion. The score of a candidate

column is now calculated as S = w2C2 + w3C3 - w1(C1a + C1b). Summarised results for this new type of decoder

are reported in Table 2 under the 'New Cost' label. One can see that the quality of solutions has improved,

although not yet to the same level as the best evolutionary approach by Beasley. The results also show the extent

of the additional computational burden being introduced by these extra calculations proving how time critical

any changes to the decoder routine are, especially for the larger data sets.

To improve our algorithm further, it seems we have to extend its look-ahead capabilities more. Currently, the

decoder tries to get it right the first time, i.e. the decoder attempts to find the best possible solution straight away.

That is, on the first (and only) pass over the permutation, the decoder has to identify the best possible match for

each row. Towards the end of the string, when many columns have already been fixed, it seems a reasonable

assumption that the decoder will make sensible choices for the remaining rows to be covered. However, early on

in the search, even with its improved cost criterion, many choices will still be made arbitrarily. To overcome this

limitation, the following fourth criterion for choosing candidate columns is introduced:

• Will the inclusion of the candidate make another column redundant? If so, what is the cost of that

redundant column? (C4)

 13

Unfortunately, in this form C4 is not a very viable approach because the calculations required to establish the

criterion for every candidate for each row would be so computationally expensive as to dwarf the remainder of

the algorithm. In the light of this, it was decided to change the criterion into the following, which should be a

good indicator whilst being far less expensive computationally.

• How many rows does a column share with those already chosen? (C4a)

Which leads to the following new equation to calculate the score of each candidate S = w2C2 + w3C3 - w1(C1a +

C1b) + w4C4a.

This new criterion in conjunction with criterion 3 (how many rows does a column cover in total) has the effect

that overlapping cover is encouraged, whilst still taking into account the cost and efficiency criteria. How can

this be a good thing? Because solutions will go through the hill-climber, skimming off redundant and expensive

columns at negligible extra computational time. One could look at this as having introduced a second level of

‘indirectness’. The goal is not to get the best solution straight away, but instead a solution that is well balanced

and can then be exploited by another simple algorithm. As the results in table 2 under the '4 Criteria' label show,

this works very well here with results much improved and now very similar to the best evolutionary ones.

Additionally, computation times have been significantly reduced particularly for larger data instances. This is

attributed to faster convergence made possible by the synergy effects between the new criterion and the hill-

climber.

The final enhancement of our algorithm will be to use a variety of crossover operators (from conservative to

aggressive), controlled by the genetic algorithm. Three different order-based crossover operators are used: 1-

Point equivalent crossover,
22
 Partial Mapping Crossover PMX

23
 and Permutation based Uniform-like Crossover

PUX.
13

When comparing the performance of these three crossover operators individually, little difference in overall

solution quality was noticed (no results provided). The final results presented in tables 2 and 3 under the 'IGA'

(Indirect Genetic Algorithm) label are for an algorithm where the choice of crossover is left to the evolutionary

 14

process itself. This is achieved by adding one additional gene to the string, which indicates the type of crossover

used, i.e. 1 = 1-point, 2 = PUX, 3 = PMX. Originally initialised at random, during reproduction the children are

created using the crossover of the fitter parent. Both children then inherit this crossover type. To avoid bias and

premature convergence, the crossover parameter also undergoes mutation with the same mutation probability as

the remainder of the string. A mutation in this case equals a new random initialisation.

The results show that this improves solution quality further, rivalling those of the best evolutionary approach.

Moreover, average solution time is further reduced to well below that of the approach by Beasley. This can be

understood by examining some optimisation runs. In the early stages of optimisation, the more aggressive

crossover operators PMX and PUX dominate. However, later, when smaller changes are required, the algorithm

switches to 1-point crossover and thereby cutting down on the number of generations needed for convergence

and hence termination.

Conclusions and Further Work

This paper has presented a novel genetic algorithm approach to solving the set covering problem. The algorithm

differs from previous evolutionary approaches by taking an indirect route. This is achieved by splitting the

search into three distinct phases. First, the genetic algorithm finds good permutations of the rows to be covered

along with suitable parameters for the second stage. The second stage consists of a decoder that builds a solution

from the permutations using the parameters provided. However, the best possible solutions are not sought

outright, instead good but further exploitable ones are built. Thirdly, these are then fully optimised using a hill-

climber.

This approach has a number of advantages. Most importantly, the search is conducted in such a way that the

genetic algorithm can concentrate on what it is best at: identifying promising regions in the solution space.

Furthermore, no parameter optimisation is required as this is done by the algorithm itself automatically adjusting

to requirements. By decoupling the decoder from the hill-climber, the former has a better chance of looking

ahead and producing better solutions. The overall results achieved rival in quality those found by the best

evolutionary algorithm whilst significantly less computation time is used.

 15

Nevertheless, more work needs to be done in this promising area. First, the results found are not the best possible

as our algorithm is outperformed by a more problem specific heuristic.
3
 Our results could possibly be further

enhanced by additional criteria to select the columns or a more intelligent form of mutation of the strings. Also,

in light of the fast run times of our algorithm, a relaxation of the stopping criterion might improve results further.

However, we feel that the strength of our approach is in its modularity and hence easy adaptability to new

problems. Once a suitable order-based encoding is found, only the decoding and hill-climbing criteria need to be

changed rather than having to redesign everything. We are currently investigating the use of such a slightly

modified algorithm on the set partitioning problem with encouraging results.

References

1 Michalewicz Z (1995). A Survey of Constraint Handling Techniques in Evolutionary Computation Methods.

In John R. McDonnell, Robert G. Reynolds, and David B. Fogel (editors). Proceedings of the 4
th
 Annual

Conference on Evolutionary Programming, MIT Press, Cambridge, pp 135-155.

2 Garey M and Johnson D (1979). Computers and Intractability: A guide to the theory of NP-completeness.

W.H. Freeman, San Francisco.

3 Caprara A, Fischetti M and Toth P (1999). A Heuristic Method for the Set Covering Problem, Operations

Research 47: 730-743.

4 Caprara A, Fischetti M and Toth P (1999), Algorithms for the Set Covering Problem, working paper, DEIS,

University of Bologna, Italy.

5 Holland J (1976). Adaptation in Natural and Artificial Systems. Ann Arbor, University of Michigan Press.

6 Fogel D (1998). Evolutionary Computation: The Fossil Record. IEEE Press, John Wiley & Sons, New

York.

7 De Jong K (1993). Genetic Algorithms are NOT Function Optimisers. In Whitley D (Editor). Foundations

of Genetic Algorithms 2. Morgan Kaufmann Publishers, San Mateo, pp 5-17.

8 Deb K (1996). Genetic Algorithms for Function Optimisation. In F. Herrera, J.L. Verdegay (Editors.)

Studies in Fuzziness and Soft Computing Volume 8, pp 4-31.

9 Bäck T (1993). Applications of Evolutionary Algorithms. 5th Edition, Dortmund, Germany.

10 Chaiyaratana N and Zalzala A (1997). Recent Developments in Evolutionary and Genetic Algorithms:

Theory and Applications. In Fleming P, Zalzala S. (editors). Genetic Algorithms in Engineering Systems 2:

Innovations and Applications. IEEE Proceedings, Letchworth: Omega Print & Design, pp 270-277.

 16

11 Reeves C (1997). Genetic Algorithms for the Operations Researcher, INFORMS 45: 231-250.

12 Davidor Y (1991). Epistasis Variance: A Viewpoint on GA-Hardness, in Rawlins G (editor), Foundations of

Genetic Algorithms, Morgan Kaufmann Publishers, San Mateo, pp 23-35.

13 Aickelin U and Dowsland K (2001). A Comparison of Indirect Genetic Algorithm Approaches to Multiple

Choice Problems, Journal of Heuristics, in print.

14 Aickelin U and Dowsland K (1999). An indirect genetic algorithm approach to a nurse scheduling problem.

Submitted to Computers and Operations Research.

15 Aickelin U and Dowsland K (2000). Exploiting problem structure in a genetic algorithm approach to a nurse

rostering problem. Journal of Scheduling 3: 139-153.

16 Richardson J, Palmer M, Liepins G and Hilliard M (1989). Some Guidelines for Genetic Algorithms with

Penalty Functions, in Schaffer J (editor), Proceedings of the Third International Conference on Genetic

Algorithms and their Applications, Morgan Kaufmann Publishers, San Mateo, pp 191-197.

17 Smith A and Tate D (1993). Genetic Optimization Using a Penalty Function, in Forrest S (editor),

Proceedings of the Fifth International Reference on Genetic Algorithms, Morgan Kaufmann Publishers, San

Mateo, pp 499-505.

18 Davis L (1985). Adapting Operator Probabilities in Genetic Algorithms, in Grefenstette J (editor),

Proceedings of the First International Reference on Genetic Algorithms and their Applications, Lawrence

Erlbaum Associates Publishers, Hillsdale New Jersey, pp 61-67.

19 Tuson A, Ross P (1998). Adapting Operator Settings in Genetic Algorithms, Evolutionary Computation 6:

161-184.

20 Beasley J (1990). OR-library: distributing test problems by electronic mail, Journal of the Operational

Research Society 41: 1069-1072.

21 Beasley J and Chu P (1996). A Genetic Algorithm for the Set Covering Problem, European Journal of

Operational Research 94: 392-404.

22 Reeves C (1996). Hybrid Genetic Algorithms for Bin-Packing and Related Problems. Annals of OR 63: 371-

396.

23 Goldberg D and Lingle R (1985). Alleles, Loci, and the Travelling Salesman Problem. In Grefenstette J.

editor. Proceedings of the First International Reference on Genetic Algorithms and their Applications,

Hillsdale New Jersey: Lawrence Erlbaum Associates Publishers, pp 154-159.

 17

Parameter / Strategy Setting

Population Size 200

Population Type Generational

Initialisation Random

Selection Rank Based

Crossover PUX Order-Based crossover

Swap Mutation Probability 1.5%

Replacement Strategy Keep 20% Best of each Generation

Stopping Criteria No improvement for 50 generations

 18

 BeCh21 CFT3 Basic New Cost 4 Criteria IGA

Problem Set Dev. Time Dev. Time Dev. Time Dev. Time Dev. Time Dev. Time

4 0.00% 163 0.00% 6.5 0.22% 33.6 0.00% 112.4 0.00% 76.5 0.00% 93.3

5 0.09% 540.2 0.00% 3.2 0.25% 49.5 0.16% 85.4 0.00% 78.6 0.00% 61.2

6 0.00% 57.2 0.00% 9.4 1.38% 66 0.96% 54.3 0.00% 10.2 0.00% 7.6

A 0.00% 149.4 0.00% 106.6 0.56% 146.4 0.44% 182.4 0.06% 79.2 0.00% 81

B 0.00% 155.4 0.00% 7.4 1.06% 337.2 0.94% 232.4 0.00% 104.7 0.00% 30.4

C 0.00% 199.2 0.00% 66 0.35% 277.2 0.11% 368.22 0.00% 145.3 0.00% 82.8

D 0.00% 230.4 0.00% 17.2 2.47% 721.2 2.02% 1100.2 0.48% 220.4 0.32% 69

E 0.00% 8724.2 0.00% 118.2 0.67% 1592.4 0.59% 2395.7 0.00% 120.5 0.00% 56

F 0.00% 2764.8 0.00% 109 1.54% 2125.2 0.68% 3154.3 0.21% 450.4 0.00% 142.8

G 0.13% 12851.4 0.00% 504.8 4.70% 2827.2 3.84% 4343.2 0.13% 687.4 0.13% 342.8

H 0.63% 6341.6 0.00% 858.2 5.68% 3188.4 4.55% 4123.8 1.88% 701.5 1.30% 412

Overall 0.08% 2925 0.00% 164 1.72% 1033 1.30% 1468 0.25% 243 0.16% 125

 19

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

1.40%

1.60%

1.80%

2.00%

BeCh CFT Basic N Cost 4 Crit IGA

Algorithm

M
e
a
n
 D
e
v
ia
ti
o
n
 f
r
o
m
 O
p
ti
m
a

0

500

1000

1500

2000

2500

3000

3500

BeCh CFT Basic N

Cost

 4 Crit IGA

Algorithm

M
e
a
n
 S
o
lu
ti
o
n
 T
im
e
 [
s]

 20

 BeCh21 CFT3 Basic IGA
Problem Size Density Optimum Sol Time Sol Time Sol Time Sol Time
4.1 200x1000 2% 429 429 295 429 2 429 36 429 105
4.2 200x1000 2% 512 512 9 512 1 512 42 512 57
4.3 200x1000 2% 516 516 16 516 2 520 36 516 63
4.4 200x1000 2% 494 494 142 494 10 495 27 494 90
4.5 200x1000 2% 512 512 44 512 2 512 18 512 120
4.6 200x1000 2% 560 560 16 560 19 560 33 560 39
4.7 200x1000 2% 430 430 139 430 3 433 42 430 144
4.8 200x1000 2% 492 492 819 492 22 492 21 492 93
4.9 200x1000 2% 641 641 136 641 2 644 24 641 159
4.10 200x1000 2% 514 514 14 514 2 514 57 514 63
5.1 200x2000 2% 253 253 42 253 3 253 51 253 27
5.2 200x2000 2% 302 302 1333 302 2 307 45 302 81
5.3 200x2000 2% 226 228 11 226 2 228 36 226 39
5.4 200x2000 2% 242 242 10 242 2 242 27 242 120
5.5 200x2000 2% 211 211 15 211 1 211 30 211 87
5.6 200x2000 2% 213 213 30 213 1 213 87 213 15
5.7 200x2000 2% 293 293 195 293 15 293 48 293 135
5.8 200x2000 2% 288 288 3733 288 2 288 69 288 27
5.9 200x2000 2% 279 279 14 279 3 279 78 279 48
5.10 200x2000 2% 265 265 19 265 1 265 24 265 33
6.1 200x1000 5% 138 138 46 138 23 142 60 138 9
6.2 200x1000 5% 146 146 211 146 18 147 69 146 5
6.3 200x1000 5% 145 145 12 145 2 148 60 145 3
6.4 200x1000 5% 131 131 5 131 2 131 60 131 3
6.5 200x1000 5% 161 161 12 161 2 163 81 161 18
A.1 300x3000 2% 253 253 222 253 82 255 180 253 105
A.2 300x3000 2% 252 252 328 252 116 256 162 252 96
A.3 300x3000 2% 232 232 127 232 250 233 147 232 51
A.4 300x3000 2% 234 234 46 234 5 234 87 234 108
A.5 300x3000 2% 236 236 24 236 80 236 156 236 45
B.1 300x3000 5% 69 69 20 69 4 70 519 69 30
B.2 300x3000 5% 76 76 12 76 6 77 252 76 27
B.3 300x3000 5% 80 80 710 80 18 80 351 80 13
B.4 300x3000 5% 79 79 30 79 6 81 405 79 78
B.5 300x3000 5% 72 72 5 72 3 72 159 72 4
C.1 400x4000 2% 227 227 188 227 74 227 312 227 132
C.2 400x4000 2% 219 219 41 219 64 221 240 219 33
C.3 400x4000 2% 243 243 541 243 70 245 420 243 171
C.4 400x4000 2% 219 219 145 219 62 219 213 219 45
C.5 400x4000 2% 215 215 81 215 60 215 201 215 33
D.1 400x4000 5% 60 60 14 60 23 61 633 60 177
D.2 400x4000 5% 66 66 199 66 22 66 498 66 51
D.3 400x4000 5% 72 72 785 72 23 75 840 72 30
D.4 400x4000 5% 62 62 74 62 8 63 1002 63 6
D.5 400x4000 5% 61 61 80 61 10 64 633 61 81
E.1 500x5000 10% 29 29 38 29 26 29 1161 29 17
E.2 500x5000 10% 30 30 14648 30 408 31 2346 30 63
E.3 500x5000 10% 27 27 28360 27 94 27 2163 27 60
E.4 500x5000 10% 28 28 540 28 26 28 1278 28 41
E.5 500x5000 10% 28 28 35 28 37 28 1014 28 99
F.1 500x5000 20% 14 14 76 14 33 14 3510 14 21
F.2 500x5000 20% 15 15 78 15 31 15 1059 15 44
F.3 500x5000 20% 14 14 267 14 249 14 1392 14 234
F.4 500x5000 20% 14 14 210 14 31 14 1863 14 174
F.5 500x5000 20% 13 13 13193 13 201 14 2802 13 241
G.1 1000x10000 2% 176 176 30200 176 147 182 3708 176 144
G.2 1000x10000 2% 154 155 361 154 783 161 2691 155 327
G.3 1000x10000 2% 166 166 7842 166 978 176 1182 166 408
G.4 1000x10000 2% 168 168 25305 168 379 178 2988 168 303
G.5 1000x10000 2% 168 168 549 168 237 174 3567 168 532
H.1 1000x10000 5% 63 64 1682 63 1451 66 3513 63 668
H.2 1000x10000 5% 63 64 530 63 887 67 3123 66 443
H.3 1000x10000 5% 59 59 1804 59 1560 64 2472 59 648
H.4 1000x10000 5% 58 58 27242 58 238 61 3018 59 235
H.5 1000x10000 5% 55 55 450 55 155 57 3816 55 66

 21

Table1: Parameters and strategies used for the indirect genetic algorithm.

Table 2 Summarised results averaged for data sets of same size and density.

Table 3: Detailed Results for the Set Covering Problem

Figure 1: Graphical comparison of different heuristic approaches to the set covering problem.

 22

 23

An Indirect Genetic Algorithm for Set Covering Problems

Contribution Statement

The Set Covering Problem (SCP) is a main model for many important applications in the field of

Operational Research. For instance, it can be used to describe staff scheduling, railway timetabling or

aircraft scheduling type problems. The SCP has been proven to be NP-hard, therefore to solve

problems of the size encountered in practice heuristic algorithms have to be employed.

Amongst these heuristic methods, evolutionary algorithms and in particular genetic algorithms have

become increasingly popular in recent years. These algorithms have been successfully used to solve

NP-hard problems, amongst them the SCP. However often these algorithms were only able to achieve

this by employing problem specific strategies and therefore lacked the flexibility and robustness to be

used for different problems.

The approach presented in this paper is a new type of self-tuning genetic algorithm. This new

algorithm solves the problem indirectly. This has the advantage that the genetic algorithm component

is almost independent from the problem specific decoder component. Hence, it can be re-used for

other problems unchanged. Thus, our approach could be used by users unfamiliar with evolutionary

computation.

Furthermore, we also explain that the decoder itself can remain intact with only minor problem

specific modifications required for different problems. As will be seen, the success of this approach

lies in not seeking 'optimal' solution directly, but by gradually improving solutions over a number of

optimisation steps. Extensive computational results are presented and compare favourably to solutions

found by the latest evolutionary and other heuristic approaches to the same data instances.

