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Abstract: This paper introduces an indoor-monitoring LiDAR sensor for patients with Alzheimer
disease residing in long-term care facilities (LTCFs), and this sensor exploits an optoelectronic analog
front-end (AFE) to detect light signals from targets by utilizing on-chip avalanche photodiodes
(APDs) realized in a 180 nm CMOS process and a neural processing unit (NPU) used for motion
detection and decisions, especially for incidents of falls occurring in LTCFs. The AFE consists of an
on-chip CMOS P+/N-well APD, a linear-mode transimpedance amplifier, a post-amplifier, and a
time-to-digital converter, whereas the NPU exploits network sparsity and approximate processing
elements for low-power operation. This work provides a potential solution of low-cost, low-power,
indoor-monitoring LiDAR sensors for patients with Alzheimer disease in LTCFs.

Keywords: Alzheimer; APD; CMOS; LiDAR; LTCF; NPU; optoelectronic

1. Introduction

Early fall detection is an essential aspect of providing the necessary medical response
in a timely manner to older patients with Alzheimer disease or senile dementia residing
in long-term care facilities (LTCFs) or homes [1–3]. With the advancement of sensing and
signal processing technologies, various fall detection methods have been proposed. Using
a wearable device is a common approach [4], but this requires patients to manage and wear
an extra device, which can be bothersome to those who have physical conditions. However,
image-based fall detection has been gaining popularity due to the emergence of artificial
intelligence (AI)-based high-accuracy image recognition and its easy applicability without
involving patients. However, high accuracy and the convenience of image-based fall detec-
tion come at the cost of increased privacy concerns. The ability to visually monitor patients
24 h a day makes them reluctant to adopt it despite its healthcare benefits. In addition,
AI-based image recognition often requires the high processing power of computing clouds.
Sharing personal images with third parties for AI processing raises even more privacy
concerns [5]. Without addressing the privacy concerns, patients will be reluctant to adopt
such monitoring systems, which may lead to health-related consequences. To address this
problem, researchers have investigated the use of non-traditional imaging technologies,
such as mmWave [6] and ultra-wideband [7], for privacy-preserving monitoring. Simi-
larly, a solution for a privacy-preserving yet accurate AI-based fall detection technique
is required.

Recently, light detection and ranging (LiDAR) sensors have received a great deal of at-
tention in various fields, such as navigation systems for robots, indoor mapping on mobile
devices, and in-home patient monitoring. Because LiDAR sensors generate images with
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depth information but without detailed red, green, and blue (RGB) information that differ-
entiates individuals, it is considered more suitable for privacy-sensitive applications [8,9].
Figure 1 shows examples of 2D RGB images [10] and the 3D depth images generated from
the 2D RGB images by a neural network [11]. As shown in these examples, 3D depth images
can be utilized for detecting the posture of objects, but it does not reveal their identities.
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Figure 1. Comparison of RGB and depth images: (a) non-fallen and (b) fallen (left: RGB images, right:
depth images). Images from the Fallen People Dataset (FPDS) [8].

In this paper, we propose a design for a LiDAR sensor and a neural processing unit
(NPU) that exploit privacy-preserving fall detection at edges. Figure 2 illustrates the
feasible usage of the proposed indoor-monitoring LiDAR sensor, which includes a single-
chip LiDAR analog front-end (AFE) integrated circuit and an NPU, equipped in the living
room of an LTCF. Currently, most LiDAR sensors exploit the principle of the pulsed time-
of-flight (ToF) mechanism so that light pulses can be emitted from a transmitter to targets
located within a feasible range, and their reflected signals can be detected by an optical
receiver. By knowing the speed of light, the target distance can be measured using the time
interval between the transmitted (aka START) pulse and its reflected (aka STOP) one. Even
for indoor home-monitoring applications, the dynamic range of the received pulses (or
echoes) should be wide enough, i.e., greater than 1:1000, thus providing a fast response.

Figure 3a depicts a block diagram of the proposed indoor-monitoring LiDAR sensor, in
which the reflected light pulses are detected by an optical detector (typically an avalanche
photodiode or APD) in the receiver. Then, the corresponding photocurrents are generated
from the APD, converted to voltage signals, and amplified by an analog front-end (AFE)
circuit that comprises a transimpedance amplifier (TIA) and a post-amplifier (PA). There-
after, a time-to-digital converter (TDC) estimates the distance to targets by measuring the
time interval between the emitted pulse and the reflected one.
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A digital signal processor, i.e., the neural processing unit (NPU) in this work, is
used for motion detection and decisions in cases of falling incidents occurring in LTCFs.
Figure 3b shows a block diagram of the proposed low-power NPU, which conducts feature
extraction for motion detection. In particular, a low-power NPU is required because the
indoor-monitoring LiDAR sensor should always be turned on, even with a limited battery,
hence providing a data-sparsity-aware NPU with approximate processing elements. This
architecture includes a dedicated hardware accelerator for computing layers. Moreover,
the timing delay should be effectively reduced to instantly detect fall incidents. By re-
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ducing parameters such as weights and activations, it is possible to reduce the amount
of computation.

For this purpose, we present an optoelectronic AFE receiver with an on-chip P+/N-well
APD realized using low-cost 180 nm CMOS technology, which enables circumvention of
the complicated integration issue of an optical device onto an integrated circuit. Moreover,
a two-dimensional modified Vernier TDC is employed to generate 4-bit binary codes for
the estimation of target distance. Then, a quantized convolutional neural network (CNN) is
designed to determine the falling state of patients in an LTCF. Hardware generation and its
evaluation are carried out, revealing that the proposed system can fulfil the classification of
patient states in real time.

This paper is organized as follows: Section 2 describes the realization of the LiDAR
AFE with an on-chip P+/N-well APD as an optical detector and provides the measured
results. Section 3 describes the realization of the NPU and provides the measured results.
Then, conclusions are drawn in Section 4.

2. LiDAR AFE

As aforementioned, the LiDAR AFE consists of an on-chip APD for photocurrent
generation, a TIA for converting the incoming photocurrents to voltages, a PA for boosting
the voltage signals, an output buffer, and a TDC for the estimation of target distance.

2.1. Circuit Description

Figure 4a illustrates a cross-sectional view of the P+/N-well APD realized in a standard
180 nm CMOS process, where shallow-trench isolation (STI) is exploited as a guard ring
to prevent edge breakdown [2]. Figure 4b depicts a schematic diagram of the TIA, in
which a voltage-mode CMOS feedforward input configuration is employed to improve the
transimpedance gain, i.e., to almost 2× higher than that of a conventional voltage-mode
inverter (INV) input stage [2,3].

Figure 4c shows a schematic diagram of the CI-PA, which consists of four inverters
and two diode-connected output buffers. Therefore, the output voltages (VON and VOP)
can be enhanced by merging the input signals (VCFN and VCFP) with other small portions
of another path (gmb). Provided that the value of gma is 4 times larger than that of gmb,
the amplitude and phase mismatches can be considerably reduced [10]. Yet, this CI-
PA introduces amplitude mismatches between two outputs in the case of short-distance
detection because gma may vary severely with respect to the variation in vgs. Therefore, the
circuit design should be carefully conducted to match ∂gman/∂vgs with ∂gmap/∂vgs, where
gman and gmap represent the transconductance of NMOS and PMOS at the input inverter
stage, respectively.
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Post-layout simulations conducted by using the model parameters of a standard
180 nm CMOS process reveal a transimpedance gain of 87.4 dBΩ, a bandwidth of 630 MHz,
and a noise current spectral density of 5.69 pA/

√
Hz. Here, the on-chip APD is mod-

eled as an ideal current source with a parasitic capacitance of 0.5 pF and a current gain
corresponding to the responsivity of 2.72 A/W [2].
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Figure 4d shows a block diagram of a two-dimensional (2D)-modified Vernier TDC,
which converts a narrow pulse to a wide digital signal using a resettable T-latch [12].

Therefore, this 2D-modified Vernier TDC enables alleviation of the timing walk error
by steepening up both rising edges of the START and STOP signals. Both the START and
STOP signals of the resettable T-latch are delayed by each inverter chain. The T_START
signal is delayed by 3 ns, while the T_STOP signal is delayed by 2 ns at each delay line.
Hence, the timing resolution of the 2D-modified Vernier TDC can be 1 ns. In this work,
the maximum time interval is designed to be 15 ns, with six START delay lines and three
STOP delay lines. Correspondingly, this 15 ns time interval is translated to the maximum
detection distance of 4.5 m. Meanwhile, timing comparators are implemented using S-R
latches, which determine whether the START signal is ahead of the STOP signal at each
point in the Vernier plane. Figure 5 depicts an example of the simulated waveforms of
the 2D-modified Vernier TDC with a time interval of 10 ns. It can be clearly seen that it
generates 15-bit code of 000001111111111, which is converted to 4-bit binary code 1010 via
a thermometer-to-binary encoder.

Sensors 2022, 22, x FOR PEER REVIEW 6 of 15 
 

 

and gmap represent the transconductance of NMOS and PMOS at the input inverter stage, 
respectively. 

Post-layout simulations conducted by using the model parameters of a standard 180 
nm CMOS process reveal a transimpedance gain of 87.4 dBΩ, a bandwidth of 630 MHz, 
and a noise current spectral density of 5.69 pA/√Hz. Here, the on-chip APD is modeled as 
an ideal current source with a parasitic capacitance of 0.5 pF and a current gain corre-
sponding to the responsivity of 2.72 A/W [2]. 

Figure 4d shows a block diagram of a two-dimensional (2D)-modified Vernier TDC, 
which converts a narrow pulse to a wide digital signal using a resettable T-latch [12]. 

Therefore, this 2D-modified Vernier TDC enables alleviation of the timing walk error 
by steepening up both rising edges of the START and STOP signals. Both the START and 
STOP signals of the resettable T-latch are delayed by each inverter chain. The T_START 
signal is delayed by 3 ns, while the T_STOP signal is delayed by 2 ns at each delay line. 
Hence, the timing resolution of the 2D-modified Vernier TDC can be 1 ns. In this work, 
the maximum time interval is designed to be 15 ns, with six START delay lines and three 
STOP delay lines. Correspondingly, this 15 ns time interval is translated to the maximum 
detection distance of 4.5 m. Meanwhile, timing comparators are implemented using S-R 
latches, which determine whether the START signal is ahead of the STOP signal at each 
point in the Vernier plane. Figure 5 depicts an example of the simulated waveforms of the 
2D-modified Vernier TDC with a time interval of 10 ns. It can be clearly seen that it gen-
erates 15-bit code of 000001111111111, which is converted to 4-bit binary code 1010 via a 
thermometer-to-binary encoder. 

 
Figure 5. Simulation results of the proposed LiDAR AFE (with a time interval of 10 ns). 

  

Figure 5. Simulation results of the proposed LiDAR AFE (with a time interval of 10 ns).

2.2. Measured Results

The test chips of the proposed LiDAR AFE IC are fabricated in a standard 180 nm
CMOS process. Figure 6 shows the chip microphotograph and its test setup, in which the
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chip core (APD + TIA + PA + OB) occupies an area of 456× 153 µm2. The DC measurements
reveal that the LiDAR AFE IC consumes 51.5 mW from a single 1.8 V supply.
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Figure 7 demonstrates the measured frequency response of the proposed LiDAR AFE
IC, where a single-ended transimpedance gain (Z21) of 95.1 dBΩ and a bandwidth of
608 MHz are measured.
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Figure 8a shows the test setup for the optical measurements, in which the proposed
LiDAR AFE IC is located on a printed circuit (PC) board with 50 Ω terminations, and an
850 nm laser diode generates 1 ns light pulses at an 80 MHz repetition rate with a 10 mW
average power. The distance between the PC board and the laser diode is set to 50 cm.
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Figure 8b demonstrates the optically measured pulse responses, where the consecutive
light pulses are incident on the on-chip CMOS P+/N-well APD with a responsivity of
2.72 A/W, clearly showing differential output pulses. Here, the dark current and the
illumination current of the on-chip APD rise sharply at a breakdown voltage of 11.05 V
owing to the avalanche multiplication process. With an emitted laser power of 1 mW, the
detection range can reach 10 m.

Table 1 compares the performance of the proposed LiDAR AFE IC with other prior
arts. In [2], a CMOS P+/M-well on-chip APD with a 2.72-A/W responsivity was integrated
with the AFE. However, it demonstrated very poorly recovered optical pulses with an
8 mVpp amplitude and a 25 ms pulse width. In [3], a 16-channel off-chip InGaAs PIN-PD
array module with a 0.9-A/W responsivity was utilized. Therefore, it exhibited inherent
hardware complexity in a multi-channel array configuration and, hence, could not avoid
an increase in cost and form factor. Refs. [13,14] exploited off-chip APDs operating at a
905 nm wavelength, which resulted in large power consumption and hardware complexity
in an array configuration of multi-channel receivers. On the contrary, this work provides a
comparable transimpedance gain and bandwidth performance with a lower noise current
spectral density for comparatively low power consumption at little expense of detection
range degradation.
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Table 1. Performance Comparison of the Proposed LiDAR AFE IC with Other Prior Arts.

Parameters This Work [2] [3] [10] [12]

CMOS technology (nm) 180 180 180 350 180

PD

Type APD
(on-chip)

APD
(on-chip)

InGaAs PIN-PD
(off-chip)

APD
(off-chip)

APD
(off-chip)

Cpd (pF) 0.5 0.5 * 0.5 3.0 1.2
Responsivity (A/W) 2.72 2.72 0.9 40 50

Wavelength (nm) 850 850 1550 905 905

TZ gain (dBΩ) 95.1 93.4 76.3 100 86

Bandwidth (MHz) 608 790 720 230 281

Noise current spectral density (pA/
√

Hz) 4.54 12 6.3 6.32 4.68

Detection range (m) 10 † 10 25 34 N/A

Power dissipation (mW) 51.5 56.5 29.8 180 200

* Estimated from the measured breakdown voltage. † Estimated for 1 mW emitter optical power.

Meanwhile, the TDC core occupies an area of 840 × 270 µm2 and consumes 20.9 mW
from a single 1.8 V supply. Figure 9 demonstrates the measured TDC outputs of the LiDAR
AFE IC at (a) 1 ns and (b) 10 ns time intervals. It can be clearly seen that the 4-bit binary
code indicates the delay time between the START and STOP signals.
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However, it should be noted that this LiDAR sensor obtains information about the
target well in the line-of-sight path, but it may be affected by ambient lights or smoke.
Moreover, it may not be able to effectively detect patients in a place with partial coverage.

3. Neural Processing Unit

To establish a system that determines the fallen or non-fallen status of a patient in the
input images from the LiDAR sensor, a quantized convolutional neural network (CNN)
is designed. CNN quantization reduces storage and memory requirements, which is
important for the deployment of CNN models onto small edge devices. We use the Fallen
Person Datasets (FPDS) image dataset [10] as the input.

3.1. Quantized CNN Model

Object detection is an image-processing algorithm that locates objects within an image
and labels them. YOLO v5 [15] is a state-of-the-art object detection algorithm that can be
trained for our fall detection application. However, the YOLO v5 model has tens of millions
of parameters, which are not suitable for edge AI devices with only a few megabytes of
storage and memory.
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Because of the low-precision computation, computation can be significantly reduced
compared to the existing IEEE 754 floating point format, thereby increasing the frames
per second (FPS) and energy consumption per frame, which are important for targeted
edge devices. The structure of the CNN in our work is based on [10], and it is composed of
multiple convolution layers, batch normalization layers, connected layers, activation layers,
and pooling layers, as shown in Figure 10.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 15 
 

 

 
Figure 10. Convolutional neural network architecture. 

After the final connected layer, a classifier layer determines whether the status is 
“fallen” or “non-fallen”. The model is trained to detect the existence of a fallen person 
regardless of other objects in the scene. If there is a fallen person in the frame, it will be 
detected even if there is another object in the frame, including a non-fallen person. We use 
Theano [16], a Python library for numerical operations designed to define, optimize, and 
evaluate mathematical expressions containing operations of multidimensional arrays re-
quired to compute large neural networks. In addition, we use Lasagne libraries [17], which 
support various feedback networks and a high-level application programming interface 
(API) for easy layer design. The model is trained on the FPDS resized to 32 × 32 pixels and 
quantized to 2 bits. The classification accuracy after training is approximately 67%. 

3.2. Design Flow and Toolchain 
We implement the quantized CNN on the Python Productivity for Zynq (PYNQ) 

board [18]. The FINN framework was developed by Xilinx and facilitates hardware gen-
eration for data flows and architectures for quantized neural networks. We use BNN-
PYNQ [19] based on FINN [20] for the quantization of the trained CNN model. It supports 
the 1-bit or 2-bit quantization of weights and activations. 

The FINN-HLS (high level synthesis) library [21] provided within the framework en-
ables the convenient generation of hardware that can be operated in FPGA through data 
flow and architectural technology for quantized CNNs. 

We use the framework for the efficient development of hardware accelerator design. 
Hardware generation with HLS refers to high-level synthesis and to the creation of real-
world operational hardware through architecture and data flow technologies rather than 
the traditional hardware design method—register-transfer level (RTL). The advantage of 
this method is that it can be developed in a higher-level language than the conventional 
design method, reducing the complexity of development and reducing the time spent. 
The use of HLS can accelerate design space exploration to find an efficient architecture by 
reducing the time to evaluate performance with different hardware structures. We use 
Vivado HLS [22]. 

3.3. Hardware Architecture 
As shown in Figure 11, the hardware consists of the Matrix–Vector–Threshold Unit 

(MVTU) and SIMD structures, where MVTU, a processing element (PE), is the basic unit 
of operation. The structure of the hardware generated in this task can adjust the through-
put of each layer engine by configuring the number of PE and SIMD lanes in the MVTU. 

Figure 10. Convolutional neural network architecture.

After the final connected layer, a classifier layer determines whether the status is
“fallen” or “non-fallen”. The model is trained to detect the existence of a fallen person
regardless of other objects in the scene. If there is a fallen person in the frame, it will be
detected even if there is another object in the frame, including a non-fallen person. We use
Theano [16], a Python library for numerical operations designed to define, optimize, and
evaluate mathematical expressions containing operations of multidimensional arrays re-
quired to compute large neural networks. In addition, we use Lasagne libraries [17], which
support various feedback networks and a high-level application programming interface
(API) for easy layer design. The model is trained on the FPDS resized to 32 × 32 pixels and
quantized to 2 bits. The classification accuracy after training is approximately 67%.

3.2. Design Flow and Toolchain

We implement the quantized CNN on the Python Productivity for Zynq (PYNQ)
board [18]. The FINN framework was developed by Xilinx and facilitates hardware gen-
eration for data flows and architectures for quantized neural networks. We use BNN-
PYNQ [19] based on FINN [20] for the quantization of the trained CNN model. It supports
the 1-bit or 2-bit quantization of weights and activations.

The FINN-HLS (high level synthesis) library [21] provided within the framework
enables the convenient generation of hardware that can be operated in FPGA through data
flow and architectural technology for quantized CNNs.

We use the framework for the efficient development of hardware accelerator design.
Hardware generation with HLS refers to high-level synthesis and to the creation of real-
world operational hardware through architecture and data flow technologies rather than
the traditional hardware design method—register-transfer level (RTL). The advantage of
this method is that it can be developed in a higher-level language than the conventional
design method, reducing the complexity of development and reducing the time spent.
The use of HLS can accelerate design space exploration to find an efficient architecture
by reducing the time to evaluate performance with different hardware structures. We use
Vivado HLS [22].
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3.3. Hardware Architecture

As shown in Figure 11, the hardware consists of the Matrix–Vector–Threshold Unit
(MVTU) and SIMD structures, where MVTU, a processing element (PE), is the basic unit of
operation. The structure of the hardware generated in this task can adjust the throughput
of each layer engine by configuring the number of PE and SIMD lanes in the MVTU. The
amount of computational logic and the number of SIMD lanes are determined under the
constrains of the FPGA used.
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Based on the model defined in FINN, the hardware structure is defined as shown in
Figure 12a for efficient operation. Each layer has its own dedicated engine, and the amount
of calculation per hour can be increased by reducing delay through the streaming structure
in which the calculation result of the previous layer begins to be obtained. Considering the
hardware resources of Pynq-Z1 board and timing constraint, Table 2 shows the numbers of
PEs and SIMD lanes of each layer.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 15 
 

 

The amount of computational logic and the number of SIMD lanes are determined under 
the constrains of the FPGA used. 

Based on the model defined in FINN, the hardware structure is defined as shown in 
Figure 12a for efficient operation. Each layer has its own dedicated engine, and the 
amount of calculation per hour can be increased by reducing delay through the streaming 
structure in which the calculation result of the previous layer begins to be obtained. Con-
sidering the hardware resources of Pynq-Z1 board and timing constraint, Table 2 shows 
the numbers of PEs and SIMD lanes of each layer. 

  
(a) (b) 

Figure 11. PE and SIMD architecture (a) PE architecture, (b) SIMD lanes. 

Table 2. PE and SIMD configuration. 

 Conv1 Conv2 Maxpool Conv3 Conv4 Maxpool Conv5 Conv6 FC FC FC 
PE 16 32 - 16 16 - 4 1 1 1 4 

SIMD 3 32 - 32 32 - 32 32 4 8 1 

 
Figure 12. Heterogeneous streaming architecture (a) Layer-dedicated H/W engine, (b) Pipelined 
streaming architecture . 

In this design, the parameters for operation may be stored in the on-chip memory for 
each layer, as shown in Figure 12a, to reduce unnecessary delay by reducing access to 
separate off-chip memory. Considering the heterogeneous streaming and SIMD structure, 
the most efficient way to operate the hardware is to set the time required to process each 
layer similarly so that there is no delay between the layer calculation engines. Each delay 
can be identified in Figure 12b. We aim to minimize the delay by considering the hardware 
resources and models. The hardware generation result is presented in Figure 13. Through 
a performance evaluation, it is confirmed that 2-bit quantization performs best while fit-
ting in the target FPGA. 

Figure 12. Heterogeneous streaming architecture (a) Layer-dedicated H/W engine, (b) Pipelined
streaming architecture.

Table 2. PE and SIMD configuration.

Conv1 Conv2 Maxpool Conv3 Conv4 Maxpool Conv5 Conv6 FC FC FC

PE 16 32 - 16 16 - 4 1 1 1 4

SIMD 3 32 - 32 32 - 32 32 4 8 1

In this design, the parameters for operation may be stored in the on-chip memory
for each layer, as shown in Figure 12a, to reduce unnecessary delay by reducing access to
separate off-chip memory. Considering the heterogeneous streaming and SIMD structure,
the most efficient way to operate the hardware is to set the time required to process each
layer similarly so that there is no delay between the layer calculation engines. Each delay
can be identified in Figure 12b. We aim to minimize the delay by considering the hardware
resources and models. The hardware generation result is presented in Figure 13. Through a
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performance evaluation, it is confirmed that 2-bit quantization performs best while fitting
in the target FPGA.
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3.4. Evaluation

The FPDS test dataset [10] consists of a total of 973 images, comprising 391 images of
people who have fallen and 830 images of people who have not fallen. The demo system
used in this work is as shown in Figure 14a. Both the PYNQ-Z1 board and the Host PC are
based on Ubuntu and are connected via Ethernet. All commands and files are transferred
between the PYNQ-Z1 board and the Host PC via the SSH protocol. The MicroSD card
inserted into the PYNQ-Z1 board includes not only the OS image (Ubuntu) for the PYNQ-
Z1 board but also the FPDS test dataset image files, the accelerator bitstream to download to
the overlay (programmable logic of the PYNQ-Z1 board), and the weight obtained through
training. The overall operation of the demo system is as shown in Figure 14.

The Host PC also has information about the FPDS test dataset. Based on information,
the Host PC sends a command, including the name of each image file, to the PYNQ-Z1
board in order to perform inference for each test image. After transmission, when the
PYNQ-Z1 board completes the inference, the Host PC requests the file, including the
inference result, from the PYNQ-Z1 board through SFTP.

The inference result file contains the inferred class and the time spent for the inference.
The PYNQ-Z1 board executes the inference code stored inside with the command received
from the Host PC. The inference code first uploads the bitstream stored in the MicroSD
card to the overlay and reads the image corresponding to the test image file name sent
from the Host PC. After upload, neural network acceleration is performed, and when the
subsequent execution is completed, the inference result file is saved onto the MicroSD card.
The Host PC updates the GUI based on the received inference result file. The GUI is as
shown in Figure 14b.
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For each test image, the current test progress (Progress), the current test image, its
depth image converted using [11], the inference result of the original test image, the ground
truth, the prediction result, the accumulated accuracy, and the throughput (FPS) of the
accelerator (current processing speed) are displayed. As a result of performing inference
on the FPGA with the hardware accelerator, the accuracy is 65.5%, which is similar to
the accuracy obtained after training. The precision is 64.8%, and the recall is 40.2%. The
inference speed per image is 205 frames per second (FPS) on average. Our experiments
using SCALE-SIM [23] show that the proposed system is also more energy efficient than
the existing design on conventional processors by multiple orders of magnitude. This is
because the size of the CNN is small enough to fit in the on-chip memory, and, therefore,
off-chip memory access is not necessary.

4. Conclusions

We realized an indoor-monitoring LiDAR sensor that provides a potentially low-cost,
low-power solution for detecting the falls of patients with Alzheimer disease. It consists
of an efficient optoelectronic AFE circuit with an on-chip P+/N-well APD to alleviate
the complicated integration issue of an optical device and a 2D-modified Vernier TDC to
generate 4-bit binary codes for range detection. To the best of the authors’ knowledge, this
is the first attempt to integrate all analog components, including an input optical device,
for indoor-monitoring LiDAR sensors. Moreover, a low-latency neural processor is used
for image processing. We demonstrated that the proposed system can obtain privacy-
preserving depth images of patients and classify them locally without sending them to
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a server. The proposed neural processing is lightweight enough to be implemented on
low-cost processors, yet it is fast enough to perform classification in real time. For practical
deployment, it would be important to install the system so that it can cover as much
space as possible, excluding space that can potentially cause misclassification, such as beds
and sofas. As future work, the proposed system will be further improved to distinguish
various situations, such as sleep and cases of falls, non-falls, and falling down, through
context awareness.
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