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An inducible CRISPR interference library for genetic
interrogation of Saccharomyces cerevisiae biology
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Genome-scale CRISPR interference (CRISPRi) is widely utilized to study cellular processes in

a variety of organisms. Despite the dominance of Saccharomyces cerevisiae as a model

eukaryote, an inducible genome-wide CRISPRi library in yeast has not yet been presented.

Here, we present a genome-wide, inducible CRISPRi library, based on spacer design rules

optimized for S. cerevisiae. We have validated this library for genome-wide interrogation of

gene function across a variety of applications, including accurate discovery of haploinsuffi-

cient genes and identification of enzymatic and regulatory genes involved in adenine and

arginine biosynthesis. The comprehensive nature of the library also revealed refined spacer

design parameters for transcriptional repression, including location, nucleosome occupancy

and nucleotide features. CRISPRi screens using this library can identify genes and pathways

with high precision and a low false discovery rate across a variety of experimental conditions,

enabling rapid and reliable assessment of genetic function and interactions in S. cerevisiae.
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T
echnologies that generate systematic genetic perturbations
have revolutionized our ability to rapidly determine
the genetic basis of diverse cellular phenotypes and beha-

viors1–7. CRISPR-Cas9 technology8–10, owing to its high fidelity
and relatively low off-target effect, has become the dominant
method for systematic, high-throughput genetic screening in
diverse eukaryotic systems11–14. Nuclease-deactivated Cas9
(dCas9) has facilitated genome-wide screens further by enabling
transient modulation of target gene expression15,16. This is
achieved by fusing dCas9 to an inhibitory or activating domain to
repress (CRISPRi) or activate (CRISPRa) gene expression17–22.
At the same time, the use of array-based oligonucleotide
synthesis has enabled production of large-scale spacer libraries
for use in genome-wide applications. Compared with the tradi-
tional genome engineering techniques, such as knock out
collections3,7,23–25, CRISPRi enables the systematic interrogation
of all biological processes under different genetic backgrounds
and environmental conditions. This technology has been applied
in a wide range of organisms from bacteria to human cell lines, to
downregulate the expression of both essential and nonessential
genes. This has enabled a diverse set of studies from character-
izing the role of long non-coding RNAs, to identifying the con-
tributing factors to drug resistance, and many other biological
phenomena16,17,26–29.

One complicating factor in the use of CRISPRi technology is
balancing the efficacy of targeting with limiting the off-target
activity of CRISPR/dCas9 machinery. Hence, many studies have
aimed to determine the rules for efficient gRNA design16–19. For
example, in K562 human myeloid leukemia cells, optimal gRNAs
are found to target a window of −50 bp to +300 bp relative to the
transcription start site (TSS) of a gene26. In Saccharomyces cere-
visiae, however, the ideal guide positioning differs from human
cell lines. Smith et al.22 found that the optimal window is a 200 bp
region immediately upstream of the TSS. The same group in a
subsequent study refined their earlier findings which showed that
the region between TSS and 125 bp upstream of TSS is more
effective for CRISPR-mediated repression30. In addition, they
showed a positive correlation between guide efficiency and
chromatin accessibility scores.22. The positioning and design rules
of gRNAs are therefore organism specific. Recently, Lian et al.31

developed a multi-functional genome-wide CRISPR (MAGIC)
system for high-throughput screening in S. cerevisiae. Although
they successfully used a combinatorial approach to map the
furfural resistance genes, their system did not utilize yeast-specific
design rules22. More importantly, their CRISPR system is not
inducible. Constitutively expressed library design hinders
context-dependent repression of gene function, and makes it
difficult to survey the role of dosage-sensitive genes in arbitrary
phenotypes of interest. Without inducibility, the cells with spacers
targeting dosage-sensitive genes will have a lower fitness as early
as the cells are initially transformed. Therefore, an inducible
design will help maintain cell populations harboring gRNAs
targeting dosage-sensitive and dosage-insensitive genes at the
same level. More importantly, it avoids the accumulation of
suppressor mutations that could arise during long-term propa-
gation of strains with spacers affecting fitness.

Although Smith et al.22 introduced a limited diversity inducible
CRISPRi system, a genome-wide inducible CRISPRi library is
lacking. Here, we introduce an inducible genome-scale library,
dedicated for CRISPRi in S. cerevisiae, and designed based on the
previously described rules22,30. We demonstrate the efficacy of
this library in targeting essential genes and identifying dosage-
sensitive ORFs. In addition, the library enabled us to identify
genes involved in adenine and arginine biosynthesis using only a
single round of selection. Thus, this CRISPRi library and protocol
can be used to efficiently and inexpensively perform genome-wide

knockdown screens to discover the genetic basis of any selectable
phenotype. In addition, the ability to easily perform CRISPRi
screens in a desired genetic background of interest can enable
rapid profiling of genetic interactions between a desired allele and
knockdowns of all the genes in the genome.

Results
Design and construction of a whole-genome CRISPRi library.
We developed our CRISPRi library largely based on the design
principles of Smith et al.22. They created a single-plasmid inducible
system expressing a single gRNA and the catalytically inactive
Streptococcus pyogenes Cas9 (dCas9) fused to the MXI1 transcrip-
tional repressor17. The gRNA is under the control of a tetO-modified
RPR1 RNA polymerase III promoter regulated by a tetracycline
repressor (tetR), which is also expressed by this plasmid18,32.
Therefore, the expression of the gRNA is induced by the addition of
anhydrotetracycline (ATc) to the growth medium. In addition, a
NotI site between the tetO and the gRNA scaffold enables the rapid
cloning of spacers. TetR and dCas9-Mxi1 are expressed from the
GPM1 and TEF1 promoters, respectively. For compatibility with an
ongoing project in our group, we have replaced the URA3 selection
marker in PRS416 withHIS3. We call this plasmid amPL43 (Fig. 1a).
In order to validate the effectiveness of our system, we cloned gRNAs
targeting ERG25, ERG11, and SEC14 genes in amPL43. This system
demonstrates a low background activity18 (Fig. 1b, Supplementary
Data 1). Upon addition of ATc, the target genes are repressed when
compared with the samples without ATc (per qRT-PCR, Supple-
mentary Data 1, Fig. 1c). The repression was seen as early as one
hour after induction and could reach as much as 10-fold over a
period of 24 hours, depending on the target.

After confirming the effectiveness of this mode of CRISPR-
inhibition, we constructed a genome-wide CRISPRi library to
target all S. cerevisiae genes. To this end, we obtained and ranked
all possible spacer sequences targeting every open reading frame
(ORF) based on its distance to the TSS and its nucleosome
score22,30. We then selected the top six gRNAs for each ORF. The
dCAS9-MXI1-mediated repression could affect the genes on both
plus and minus strands18. Therefore, some of the selected
sequences could be targeting a neighboring gene with a shared
intergenic region. For example, a portion of the gRNAs targeting
PTA1 could affect ERV46 (Fig. 1d). For genes that share a gRNA
with another gene, we selected up to six additional sequences
unique to those genes (see Methods). In order to evaluate the
guide design parameters, we included ~5000 gRNAs that target
further upstream of TSS or downstream of TSS. Altogether, we
designed >51,000 gRNAs, with between 6 and 12 sequences per
gene (Supplementary Data 2). As a negative control for gRNA
activity, we introduced 500 synthetic randomly shuffled gRNAs
with no matches in the yeast genome (Supplementary Data 3).

This oligonucleotide library was synthesized on a 92918-format
chip and cloned into amPL43 using universal adapter sequences.
In brief, the pooled oligonucleotides were amplified by PCR,
cloned using Gibson Assembly33, and transformed into DH5α E.
coli (>100× colonies/gRNA). The transformed bacteria were
grown in a semisolid LB as individual colonies to minimize
competition between the strains. Semisolid 3D media provides a
more cost-effective and less labor-intensive method for large-scale
libraries than conventional 2D plating. The pooled plasmid
library was transformed into BY4741 using the standard LiAc/
PEG method34 with minor modifications, and grown in semisolid
SC-His+glu media (two or three biological replicates, Supple-
mentary Fig. 1) for 48 h, pooled, and resuspended in SC-His+glu
media, and frozen for future use.

The short gRNA sequences can act as unique identifiers of
individual strains and, like barcodes, can be quantified using
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next-generation amplicon sequencing. To prepare the library for
sequencing, the plasmids were extracted from yeast samples, and
the targeting region was PCR amplified with flanking Illumina
adapters and submitted for sequencing. We generated two
independently cloned biological replicates of the library in
bacteria. At the realized sequencing depth, our first replicate
included >41,000 gRNAs, targeting all of the yeast ORFs except
YBR291C, while >36,000 gRNAs were present in the second
replicate, targeting all but five of the yeast ORFs (YBL023C,
YIL171W, YJL219W, YOR324C, YPR019W; Fig. 1e and Supple-
mentary Fig. 2). The two bacterial replicates are highly correlated
(Fig. 1f, Pearson correlation R= 0.75). The loss in the number of
gRNAs after cloning could be attributed to limited sequencing
depth (~7 million reads for the first replicate and ~4 million reads
for the second replicate) or synthesis errors. Biological replicates
from the two bacterial libraries were transformed into yeast.
There is a strong correlation between the frequency of reads of
the gRNAs in the bacterial plasmid library replicates and those

transferred to yeast demonstrating that there is no systemic bias
as a result of the transformation. (Fig. 1f, Supplementary Fig. 3).
The five separate biological replicates of the yeast library gave
highly reproducible diversity and abundance (Supplementary
Fig. 4 and Supplementary Data 4). The gRNA library does not
show a bias for any specific GO Term and shows good
representation across compartments, functions, and biological
processes (Supplementary Fig. 5).

High-throughput identification of dosage-sensitive genes. To
demonstrate the utility of our CRISPRi library for high-
throughput genotype-phenotype mapping, we set out to deter-
mine whether we could systematically discover dosage-sensitive
genes by using a simple outgrowth experiment. We focused on
determining how well these dosage-sensitive genes corresponded
to genes previously found to be haploinsufficient in yeast2. One of
the major advantages of our library is its inducibility. Inducible
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Fig. 1 CRISPRi library design and properties. a Schematic of amPL43 expression vector for inducible CRISPRi library in S. cerevisiae. b The expression fold

change of each target: ERG25 (three replicates), ERG11 (five replicates), and Sec14 (four replicates), as a result of presence of sgRNA, without induction

after 24 hours, as measured by qPCR. The mean for each sample is represented by a solid line. c The expression fold change of each target: ERG25 (three

replicates), ERG11 (three replicates), and Sec14 (two replicates), as a result of gRNA induction by ATc, was calculated over time by qPCR. The mean for

each sample is represented by a solid line. d Schematic depicting the genomic region of PTA1 and ERV46. The gRNAs targeting the region between the two

genes, depending on their proximity to each gene, could affect both genes. e Histogram depicting the number of gRNAs per gene in two library replicates.

The dashed blue line denotes the median: ~6. f Scatter plot depicting the frequency of reads per gRNA between select biological replicates of the CRISPRi

library. Pearson Correlation R value is reported for each pair.
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gRNA expression allows us to efficiently target dosage-sensitive
genes for short intervals and determine their phenotypic out-
come. To this end, we inoculated semisolid media with the
equivalent of 1 OD660 of the library (with an average of ~450
copies of each library member) with and without ATc induction
(250 ng/mL). The use of semisolid media reduces direct compe-
tition between strains, helping to maintain a more uniform
representation of gRNAs. The fitness consequence of knocking
down every yeast gene can be determined using the depletion or
enrichment of the barcodes in the library in a comparison of
induced and uninduced samples. Under these conditions, we
expect that the gRNAs targeting haploinsufficient genes should be
significantly depleted in the induced library (ATc+).

We grew three library replicates for 24 h, extracted plasmids
from pooled samples, and prepared amplicons for next-
generation sequencing (see Methods). We calculated the log-
fold change of reads between samples with and without ATc, for
these replicates. To calculate the statistical significance of gRNA
depletion, we simulated a library of synthetic scrambled genes by
sampling the scores from the synthetic randomly shuffled gRNAs
to create a baseline (see Methods). Not all gRNAs will efficiently
repress the expression of their target gene22. Therefore, we only
focused on the impact of the most effective gRNAs for a given
gene. To this end, we sorted the gRNAs for each gene based on
their ratio and designated the mean of the most effective three
gRNAs as the score for that gene (see Methods). We used the
synthetic scrambled gene distribution to calculate z scores from
the gene depletion scores for each replicate. Next, we averaged the
z scores for the biological replicates using Stouffer’s method. The
gene depletion scores between the replicates were well correlated
(Fig. 2a). This correlation is much stronger for the haploinsuffi-
cient genes, which demonstrates the reproducibility of the
repression as the result of gRNA induction (Fig. 2b). The gRNAs
targeting known haploinsufficient genes are significantly depleted
in the induced sample compared with the uninduced sample
(p value < 1 × 10−15, Wilcoxon signed-rank test). We used the
background distribution of synthetic scrambled genes to define a
depletion score threshold, measure false discovery rate (FDR),
and determine which genes are significantly affected as the result
of gRNA induction at a given FDR (see Methods). With only a
single round of growth selection, and three replicates, we were
able to correctly categorize ~85% or ~81% of haploinsufficient
genes with FDR < 10% or FDR < 5%, respectively (Fig. 2c, d and
Supplementary Data 5 and 6).

A major advantage of our inducible CRISPRi system is the
ability to interrogate the role of essential genes in any selectable
phenotype. In order to explore this capacity, we set out to
determine what percentage of known essential genes are also
dosage sensitive under our experimental conditions. The
sensitivity and specificity of CRISPRi-based discovery of essential
genes are limited by fundamental biological factors. On the one
hand, although essential genes are associated with functions that
are indispensable to cellular life, it has been shown that not all
essential genes are dosage sensitive2. This implies that reducing
the dosage of even some of the essential genes to 50% would not
measurably affect cellular fitness. On the other hand, essential
genes are overrepresented among dosage-sensitive genes2. There-
fore, it is of interest to determine what percentage of known
essential genes show dosage sensitivity and therefore can be
detected by systematic CRISPRi knockdown. Indeed, we observed
that the majority of essential genes exhibit significantly lower
gene depletion scores (Fig. 2d, p value < 1 × 10−15, Wilcoxon
signed-rank test). Overall, we observed that ~67% of essential
genes show dosage sensitivity based on their gene depletion scores
(FDR < 10%, Supplementary Fig. 6a). Surprisingly, our analysis
showed that 37% of nonessential genes show dosage sensitivity.

However, 76% of the nonessential genes detected here as dosage-
sensitive have been previously shown to decrease fitness when
mutated5,35. Therefore, our results are in line with a low false
discovery rate, bolstering the utility of this library for systematic
genetic analysis of phenotypes.

Next, we explored the association of factors such as stranded-
ness, distance to TSS, secondary structure free energy, and
nucleosome occupancy score to the gRNA depletion score in our
library in a systematic fashion. As can be seen in Fig. 3a, gRNAs
located between TSS and 150 bp upstream of TSS are particularly
effective for detecting dosage-sensitive essential genes, with the
strongest effect for the guides targeting 50 bp upstream of TSS,
thus further refining yeast-CRISPRi design rules30. In addition, as
may be expected, a higher nucleosome score seems to reduce the
effectiveness of gRNA mediated transcriptional repression, with
the most effective gRNAs having a nucleosome score near zero
(Fig. 3b). As for the gRNAs targeting nonessential genes, we did
not observe any dependency between the gRNA depletion score
and the distance to TSS or the nucleosome occupancy score
(Fig. 3c, d). In addition, we observed an inverse association
between the stability of the gRNA’s secondary structure and its
efficacy, for both essential and nonessential genes (Supplementary
Fig. 6b, c). Finally, we investigated whether gRNAs’ effectiveness
in the context of our library is influenced by the strandedness of
gRNA targeting. To minimize the effect of other factors, we only
focused on gRNAs targeting dosage-sensitive essential genes that
have a nucleosome occupancy score less than 0.1 and are within
125 bp upstream of TSS. The mean of the gRNA depletion score
for gRNAs with the PAM on the same strand as the ORF was
−1.32 while the mean for the gRNAs on the opposite strand was
−0.95 (Fig. 3e, p value ~4.2 × 10−7, Wilcoxon signed-rank test).
In addition, the gRNAs with the PAM on the same strand as TSS
are most effective when located between 50 and 75 bp upstream
of the TSS, whereas the gRNAs with the PAM on the opposite
strand, have a maximum efficacy between 25 and 50 bp upstream
of the TSS. In addition, the most effective gRNAs with the PAM
on either strand have lower nucleosome occupancy scores
(Fig. 3f–i).

Finally, to systematically assess the factors contributing to
gRNA efficacy, we developed a random forest model to classify
effective guides based on the distance of PAM to TSS, sequence
features (GC Content, longest run of each poly nucleotide, mono-
and di-nucleotide composition at each position), nucleosome
occupancy score and stability of sgRNA. We trained a classifier to
discriminate between the most effective 20% and the least
effective 20% of gRNAs targeting dosage-sensitive essential and
haploinsufficient genes. To avoid overfitting, we implemented
threefold cross-validations and repeated the process for 10
different partitions. Our model is highly predictive of activity
in the test set of genes, with an area under the curve (AUC) of
0.874 ± 0.005 and area under the precision–recall curve (AUPRC)
of 0.862 ± 0.005 (Fig. 4a, b, only the best replicate is shown). The
class prediction probability showed a Spearman correlation ~0.51
with the observed score (Fig. 4c).

We next analyzed which features contributed most to the
predicted activity in the classifier (Fig. 4d, see Methods). Overall,
the distance of PAM to the TSS had the greatest percentage
contribution (~54–65%, p value < 10−10, Wilcoxon signed-rank
test), whereas overall sequence features represented the second
largest effect on the model (~34–49%, p value < 10−10, Wilcoxon
signed-rank test). Nucleosome occupancy contributed to a lesser
extent (~2–8%, p value < 10−3, Wilcoxon signed-rank test),
whereas additional individual parameters including gRNA
secondary structure, strandedness and GC content were not
deemed as significant by the model (p value > 0.1, Wilcoxon
signed-rank test). We next investigated the contribution of each

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-01452-9

4 COMMUNICATIONS BIOLOGY |           (2020) 3:723 | https://doi.org/10.1038/s42003-020-01452-9 | www.nature.com/commsbio

www.nature.com/commsbio


nucleotide at each location between 10 bp upstream and down-
stream of the target spacer (Fig. 4e, f). This analysis demonstrated
that the bases located at 1, 2, 4, 9, 10, 11, 12, and 20 base pairs
upstream of PAM contribute significantly to the efficacy of gRNA
(p value < 0.01, hypergeometric test). Out of these positions,
gRNAs with an “A” at position −9 are predicted to have the
highest contribution to an effective gRNA. In addition, the
gRNAs without a poly-T stretch are more effective.

The classifier presented here detects important biological
features in the context of the library. However, this model has
some inherent limitations owing to the limited range and
interdependence of our library’s features. Our library was
designed based on the rules previously described by Smith
et al.22, and therefore the features of the library have a limited
diversity. For example, the gRNAs are mostly located within 200

bp upstream of the TSS and nucleosome occupancy scores were
low. The strong bias toward optimal features could in part explain
why the strandedness was not deemed to have a significant
predictive power for the model (p value > 0.1, Wilcoxon signed-
rank test). Furthermore, features such as GC content, nucleotide
compositions at each position, and stability of secondary
structure can be highly interdependent. Since the gRNAs in this
library were not sampled in an unbiased way to randomly cover
all available PAMs in yeast, the results of this predictive model
should be interpreted as significant within the context of this
specific library. Nevertheless, the model captures some of the
biological rules that have been observed previously for other
organisms. Compared with the contributing factors for the
sgRNAs’ predicted efficacy in human cells36, our model shows
that although the distance of PAM to TSS is the most important
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d Violin plots depicting the gene depletion score distribution for the haploinsufficient genes, essential genes, nonessential genes and synthetic scrambled

genes, resulting from 200× random sampling of synthetic randomly shuffled gRNAs, in induced (SC-His+ATc) versus uninduced samples (SC-His-ATc).
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factor in the sgRNA activity, the predicted secondary structure
and homopolymers, besides Poly-Ts, are not as important.
Furthermore, the contribution of each individual parameter was
relatively consistent across replicates, suggesting that the model is
indeed identifying underlying biological factors and not simply

overfitting. Therefore, the random forest classifier could be used
to design a more effective library in the future.

Identification of the genes involved in biosynthesis of adenine
and arginine. Next, we explored whether our CRISPRi-based
approach can efficiently identify smaller sets of genes associated
with specific biological processes. We, thus, chose to identify
the genes involved in two distinct biosynthetic pathways, arginine
and adenine. This was done by CRISPRi profiling, across five
replicates, of induced cells grown in drop-out media for arginine
and adenine, compared with cells grown in media including
the nutrients. As a necessary condition for plasmid maintenance,
histidine is absent in both conditions. We expected gRNAs-
targeting genes that contribute to general cellular fitness to be
depleted to a similar degree for both samples, whereas gRNAs
involved in the biosynthesis of arginine and adenine to be dif-
ferentially affected. As such, we quantified the depletion of
gRNAs in the arginine/adenine/histidine drop-out media against
the histidine drop-out media control. In order to systematically
determine all the pathways that were affected, we used iPAGE37, a
sensitive pathway analysis tool that directly quantifies the mutual
information between pathway membership and the global dis-
tribution of gene depletion scores. The iPAGE results show that
the biological processes for arginine biosynthesis and purine
biosynthetic processes38–44 are significantly informative of the
depletion of gRNAs targeting the pathways (p value < 0.05, ran-
dom shuffling, Supplementary Fig. 7 and Supplementary Data 5
and 6). In addition, the gRNAs targeting the general pathways for
ATP export, nitrogen starvation, and amino-acid biosynthesis
were also depleted. The iPAGE analysis also showed that gRNAs
targeting pathways affecting protein dynamics, such as translation
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Fig. 3 Correlation of gRNA depletion score with distance to TSS,

nucleosome occupancy score, and strandedness. a Scatter plot depicting

the gRNA depletion score for gRNAs targeting dosage-sensitive essential

genes versus the distance from TSS. The red line represents the rolling

average (window of 200). The dashed line signifies 150 bp upstream of

TSS. b Scatter plot depicting the gRNA depletion score for gRNAs targeting

dosage-sensitive essential genes versus the nucleosome occupancy score.

The red line represents the rolling average (window of 200). c Scatter plot

depicting the gRNA depletion score for gRNAs targeting nonessential genes

versus the distance from TSS. The dashed line signifies 150 bp upstream of

TSS. The red line represents the rolling average as above. d Scatter plot

depicting the gRNA depletion score for gRNAs targeting nonessential genes

versus the nucleosome occupancy score. The red line represents the rolling

average as above. e Violin plots depicting the distribution of gRNA

depletion scores for gRNAs on the opposite or same strand as the target

ORF. f Scatter plot depicting the gRNA depletion score for gRNAs targeting

dosage-sensitive essential genes with PAM on the same strand as TSS

versus the distance from TSS. The red line represents the rolling average as

above. The dashed line marks 150 bp upstream of TSS. g Scatter plot

depicting the gRNA depletion score for gRNAs targeting dosage-sensitive

essential genes with PAM on the same strand as TSS versus the

nucleosome occupancy score. The red line represents the rolling average as

above. h Scatter plot depicting the gRNA depletion score for gRNAs

targeting dosage-sensitive essential genes with PAM on the opposite

strand as TSS versus the distance from TSS. The red line represents the

rolling average as above. The dashed line marks 150 bp upstream of TSS.

i Scatter plot depicting the gRNA depletion score for gRNAs targeting

dosage-sensitive essential genes with PAM on the opposite strand as TSS

versus the nucleosome occupancy score. The red line represents the rolling

average as above.
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and import of proteins into the nucleus, are significantly enriched
(p value < 0.05, random shuffling). This suggests that the activity
of these pathways partially affect growth fitness when cells are
simultaneously deprived of arginine and adenine. We also
detected significant depletion/enrichment of pathways associated
with protein sorting, such as endosome to Golgi transport and
retrograde vesicle transport (p value < 0.05, random shuffling).

This is in line with previous observations that mutations in many
of the arginine biosynthesis genes are known to cause abnormal
vacuole morphology45. Our data, thus, provide additional evi-
dence that arginine deficiency undermines protein sorting func-
tions in S. cerevisiae.

Our screen detected 11 out of 19 genes annotated in core
arginine biosynthesis and adenine biosynthesis pathways (Fig. 5a,
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b, Supplementary Fig. 6d, FDR < 10%). Arginine biosynthesis is a
particularly complex biosynthetic pathway with connections to
several other pathways, such as polyamine and pyrimidine
biosynthesis, and certain degradative pathways40,46. In addition,
transcription of arginine biosynthetic genes is repressed in the
presence of arginine by the ArgR/Mcm1p complex, which
consists of Arg80p, Arg81p, Arg82p, and Mcm1p47. As such,
downregulation of the ArgR/Mcm1p complex genes would be
expected to increase the fitness of the cell in the absence of
arginine in the media. Consistent with this expectation, we found
that the gene depletion scores for these genes were positive,
providing further support for the sensitivity of our CRISPRi
screen to detect positive and negative contributors to a phenotype
of interest (Fig. 5a). Our analysis of gRNA efficiency showed that
the gRNAs with PAM 0–150 bp upstream of each TSS are
particularly effective. Therefore, we explored whether we could
improve the precision of our detection by limiting our analysis to
gRNAs that target 0–150 bp upstream of the TSS, while
maintaining gRNA diversity. As is shown in Fig. 5c, we detected
15 out of 19 adenine and arginine biosynthesis genes (FDR < 10%,
Supplementary Data 5).

It is important to point out that our FDR estimate of 10% is
conservative, since strict gene ontology membership of these
pathways does not capture the full complexity of the highly
interactive genetic and regulatory networks coordinating nucleo-
tide and amino-acid metabolism. For example, in addition to the
genes involved in arginine and adenine biosynthesis, most
depleted genes were involved in protein sorting and other general
amino-acid metabolic pathways such as SSY1 which is known to
sense external amino-acid levels48.

Discussion
Here, we have established a versatile genome-wide functional
screening library for CRISPRi in S. cerevisiae and further refined
the gRNA design rules for efficient transcriptional repression. The
ability to interrogate essential genes, led us to discover that 67% of
essential genes also exhibit dosage sensitivity under our experi-
mental conditions.

Genetic studies in Saccharomyces cerevisiae benefit from a wide
array of techniques for studying loss-of-function phenotypes.
Some of the most widely used methods to study loss-of function
in budding yeast are gene deletion/knock-outs3,7,23–25,
temperature-sensitive mutants49,50, and DAmP mutants35,51.
However, temperature-sensitive mutations are difficult to con-
struct in a systematic manner. Gene deletion libraries can be
constructed in a systematic manner, although essential genes will
not be covered, at least, in a haploid background. Finally, in
DAmP library assays, only 17% of the viable alleles for essential
genes manifest dosage sensitivity in rich media52, and therefore

DAmP may not in general provide a knockdown effect as strong
as CRISPRi. This CRISPRi library has distinct advantages com-
pared with currently available genome-wide methods—the
gRNAs are designed based on S. cerevisiae specific rules, and
more importantly, the repression is inducible, enabling control
over the scale, context, and timing of gene perturbations. The
ability to quantitatively probe the role of essential genes is also a
major advantage of inducible CRISPRi over both uninducible
CRISPRi and other systematic approaches. In fact, our outgrowth
results demonstrate that even under conditions of minimal
competition (colony growth) the gRNAs targeting haploinsuffi-
cient and dosage-sensitive genes are depleted with respect to both
randomly shuffled gRNAs and gRNAs targeting non-dosage-
sensitive genes. After 24 h of outgrowth with limited competition,
the frequency of many of the gRNAs targeting dosage-sensitive
genes had fallen by more than fourfold in the induced media.
This means that after five library passages, the frequency of these
gRNAs would fall to less than one thousandth of their original
levels. In addition, competitive exponential growth in liquid
media would exacerbate the fitness effects further. Therefore,
without inducibility, it would be only a matter of days for the
gRNAs targeting dosage-sensitive genes to drop-out of the assay.
In addition, our use of 3D semisolid agarose to generate and
interrogate large diverse libraries provides a more efficient
approach over traditional 2D plating protocols while, at the same
time, minimizing competitive biases that confound liquid out-
growth. Furthermore, the ability to easily transform the library
into any genetic background of interest will enable rapid, parallel
mapping of genetic interactions for any allele of interest29.

Following our deposit of an earlier version of this manuscript
on biorXiv, another group deposited a pre-print describing a
similar inducible genome-scale CRISPRi library in yeast53. The
library introduced by McGlincy et al.53 and the presented library
here share many similarities, including the general guide RNA
design and the expression vector. But the library presented here
provides distinct advantages—this library is more compact and
less expensive to propagate and analyze. The library introduced
here can be sequenced by performing 75 cycles of sequencing
rather than 150, thereby reducing sequencing cost by ~50%. In
addition, the use of 3D Gel instead of bioreactor makes our
approach more broadly accessible. Furthermore, by averaging the
strongest three spacers we are able to identify the affected genes in
an unbiased fashion, capturing dosage sensitivity in a higher
percentage of essential genes.

The presented CRISPRi library will provide a powerful and
versatile tool for genetic interrogation of yeast biology, and we
anticipate many applications across basic biology and bio-
technology. For example, this library can be transformed into any
mutant background and used to systematically study epistatic

Fig. 4 A random forest model can classify efficient gRNAs. a The receiver operating characteristic curve (ROC) for the classification of efficient sgRNAs

using random forest classification (one of the ten replicates). ROC curve shows strong classifier performance. The individual trends for the three cross-

validation models assessed on their respective testing set are shown in gray. Area under the curve is 0.88. b The Precision–Recall curve for the classification of

the efficient sgRNAs using random forest (one of the ten replicates). The individual trends for the three cross-validation models assessed on their respective

testing set are shown in gray. Area under the curve is 0.87. c Class prediction probability vs. observed gRNA depletion score for the random forest classifier.

The class prediction probability is based on the probability of the gRNA being classified as efficient by the classifier, and therefore does not have the same

range as the observed gRNA depletion scores. The spearman correlation is 0.505. d Percentage contribution of the features to the predicted efficacy score of

gRNA. The features were the distance of PAM to TSS, sequence features (GC Content, longest run of each poly nucleotide, mono- and di-nucleotide

composition at each position), nucleosome score and stability of sgRNA. The error bars are equivalent to the standard deviation. e -Log of signed p value of the

over and under representation of each nucleotide in every position for the top 20% gRNAs predicted to be efficient compared with all the gRNAs in the model.

For each position, we inferred the significance of having A, G, C, or T at that position. P value was calculated using a hypergeometric test. f The contribution of

each base to the efficacy of gRNA was calculated by shuffling the nucleotides at that position between all of the test set. The box extends from the lower to the

upper quartile values, while whiskers extend 1.5 times the interquartile range from the edge of the box.
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interactions between the mutation(s) and all other gene pertur-
bations. Our focused study of arginine/adenine deprivation, in
fact, demonstrates attractive sensitivity/specificity characteristics
for probing the genetic basis of arbitrary phenotypes and biolo-
gical processes.

Materials and methods
Strains, plasmids, and media. PRS416-MXI1 was ordered from AddGene
(Cambridge, MA, USA). In order to create amPL43, the PRS416-MXI1 backbone
was PCR amplified. His3 was amplified from pSH6254. The primers are listed in

Supplementary Data 7. Gibson assembly (NEB, Ipswich, MA, USA) was used to
create amPL43. The plasmid’s sequence was verified using Sanger sequencing.
gRNA oligo library was purchased from Custom Array (92918-format chip,
Bothell, WA, USA). The library spacers were amplified and extended using 5′-
Library-Extender and 3′-Library-Extender primers as described by Smith et al.22.
To generate the library, amPL43 was maxiprepped (Qiagen, Hilden, Germany) and
cut with NotI. Gibson Assembly was used to clone the oligos in the NotI site of
amPL43. The library was transformed into DH5α E. coli (NEB C2987H). The
transformed bacteria were grown in 1L of semisolid LB plus 100 μg/ml ampicillin
(0.35% Seaprep Agarose, Lonza) to minimize competition between the colonies.
Use of semisolid media would minimize the competition and ensure that the
growth of the colonies would be independent of each other and avoid any potential
jackpotting effects. We sequenced 32 individual colonies to assess the quality of our
cloning method. We did not detect any empty vector or repeat sequences. To pool
the library, the semisolid media was stirred for 10 min using a magnetic stirrer. 50
ml of the library was collected by centrifugation. The pooled library was mini-
prepped (Promega, Madison, WI, USA) according to manufacturer’s instructions.
Two independent library replicates were generated.

Competent BY4741 cells were produced using the standard LiAc/PEG
method34, with minor modifications: 5 mL of SC+ glucose media was inoculated
with a fresh colony of BY4741 and grown overnight in 30 °C shaker. 1 ml of
overnight culture (OD660 ~ 6) was added to 25 mL of SC+ glucose and shaken in
30 °C shaker for 4 h (OD660 ~ 0.7). Cells were pelleted by centrifugation at 3000 g
for 5 min and washed twice in 25 mL sterile water. Next, cells were resuspended in
1 mL sterile water and transferred to 1.5 mL Eppendorf tube and centrifuged for 1
min at 4000 × g and then resuspended in sterile water to a final total volume of 1
mL. In all, 200 µL of competent cells were aliquoted into an Eppendorf tube and
centrifuged for 30 s at
4000 g and the supernatant was removed. Next, 240 µL of freshly made sterile 50%
PEG 3500, 36 µL of sterile 1 M lithium acetate, 50 µL of Salmon sperm DNA
(Thermofisher, Waltham, MA, USA), and 2 µg of plasmid DNA was added to the
cells and the volume was adjusted to 350 µL using sterile water. Then the mixture
was vortexed and incubated at 42 °C for 20 min, vortexed, and again incubated at
42 °C for another 20 min. Transformed cells were centrifuged and supernatant was
removed, and 1 mL of SC+ glucose was added to it. The cells were moved to a
round bottom falcon tube and shaken at 30 °C for 1 h.

We transformed three yeast replicates from the first bacterial library and two
replicates from the second bacterial library. The transformed library was grown in
semisolid SC-His+glu media (0.35% Seaprep Agarose) for 48 h, pooled, and
resuspended in SC-His+glu media plus 20% glycerol and frozen for future use. To
use the frozen library in a future experiment, we need to estimate the number of
colony-forming units (CFU) per microliter in the frozen stock. To this end, we add
25 µL of the thawed library to 1 ml of SC-His+glu media and shake for 2 h at 30 °C.
We, then, plate appropriate dilutions of the outgrowth to estimate the CFU of the
frozen media. To use the frozen stock, we add appropriate amount of thawed stock
to 10 ml of media and shake for 2 h at 30 °C before adding it to the
semisolid media.

To extract the plasmids, 50 OD660 of cells were pooled and resuspended in 2 ml
SE buffer (0.9 M sorbitol, 0.1 M EDTA pH 8.0), 200 µl Zymolyase 100 T (2 mg/ml)
and 2 µl β-mercaptoethanol and incubated at 37 °C for 1 h, followed by standard
mini prep extraction per manufacturer’s instructions (Promega). The pooled
plasmid library was suspended in 50 µL of sterile water. For this study, we
inoculated 250 ml of the following three semisolid media with a number of cells
equivalent to 1 OD660 unit of the library: A) SC-His with ATc, B) SC-His-Arg-Ade
with ATc C) SC-His-Arg-Ade without ATc.

To prepare the semisolid media, 0.35% of sea prep agarose and media mix was
autoclaved, with the magnetic stir bar left in. The media was cooled down at room
temperature. In our experience, 1L of media can hold up to ~1–5 million colonies.
Therefore, the efficiency of transformation has to be determined. Appropriate
amounts of transformed cells are moved to the semisolid media and are mixed
using a magnetic stirrer for 10 min. The number of colonies can be estimated by
growing 500 microliters of the media on a plate. The semisolid media is chilled in
an ice-bath for 1 h to allow the media to gel. In our experience, the ice-bath level
should be higher than the semisolid media. The media is transferred carefully to 30
°C or 37 °C incubator not to disrupt the gel. The individual colonies should be
visible the next day for bacterial culture and in 2 days for yeast transformation.

Haploinsufficient genes were derived from Deutschbauer et al.2. Nonessential
and essential gene lists were derived from Giaever et al.3.

qPCRS. To measure the fold change in the target gene in the absence of induction,
strains were typically grown in SC-HIS overnight, diluted to an OD660 of 0.07
without 250 ng/mL ATc. As control, we used a BY4741 strain without the sgRNA
construct. We selected a mix of three different gRNAs per target gene. The
sequences for the selected gRNAs are reported in Supplementary Data 7. The cells
were grown at 30 °C and a sample was taken from each tube at 24 h. RNA was
extracted using Norgen Biotek Total RNA Purification Kit (Norgen Biotek, ON,
Canada) and cDNA was made using Maxima H First Strand cDNA Synthesis Kit,
with dsDNase (Thermofisher). ERG25, ERG11, and Sec14 primers and their cor-
responding spacers were adapted from Smith et al.22. qRT-PCR was performed
using SYBR® Green PCR Master Mix (Life Technologies, Carlsbad, CA, USA) and
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Fig. 5 Identification of adenine and arginine biosynthetic genes. a Bar

plots showing the depletion scores for the known annotated genes involved

in adenine and arginine biosynthesis pathways in addition to arginine

regulatory genes. Dashed gray line marks the threshold for FDR= 10%.

b Violin plots depicting the gene depletion score distribution for the

adenine arginine deprivation experiment (SC-His-Ade-Arg +ATc vs. SC-

His +ATc), shown for the known adenine/arginine biosynthetic genes, and

synthetic scrambled genes, resulting from 200× random sampling of

synthetic randomly shuffled gRNAs. c Bar plots showing the depletion

scores for the annotated genes involved in adenine and arginine

biosynthesis pathways in addition to arginine regulatory genes, restricted to

gRNAs with PAM located within 150 bp of TSS. Dashed gray line marks the

threshold for FDR= 10%.
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the Quantstudio 5. ΔΔCt of the target genes’ in induced versus uninduced states
as compared with ACT1 level are reported. One of the replicates for
Sec14 sample was excluded for being an outlier (not within mean ± 2× standard
deviation).

To measure the fold change in the target gene as the result of induction, strains
were typically grown in SC-HIS overnight, diluted to an OD660 of 0.07 with/
without 250 ng/mL ATc. We selected a mix of three different gRNAs per target
gene. The sequences for the selected gRNAs are reported in Supplementary Data 7.
The cells were grown at 30 °C and a sample was taken from each tube at 1, 4, 7,
and 24 h. RNA extraction, cDNA synthesis and qRT-PCR were performed
as above.

Design of the gRNA Library. The gRNA sequences and their relative location to
TSS, as well as the nucleosome occupancy scores, were adapted from Smith et al.22.
When possible, the gRNAs that were located between 0 and 200 bp of the TSS, were
sorted based on their nucleosome occupancy score and the top six gRNAs were
chosen. In rare cases, when six gRNAs were not available for any given gene, we
searched for the gRNAs further from TSS. When more than six acceptable gRNAs
were available, up to 12 gRNAs were included.

Next-generation sequencing and analysis. The extracted plasmids were ampli-
fied using “lib-seq” primers in the Supplementary Data 7 for 10 cycles using
Phusion PCR kit (NEB). Each 50 µL PCR reaction consisted of 6 µL of plasmid
library, 10 µL of 5× Phusion HF buffer, 0.5 µL of Phusion DNA Polymerase, 10 µM
Forward Primer, 10 µM Reverse Primer, and 10 mM dNTPs. Three replicate
reactions per sample were amplified. The PCR conditions were: 98 °C for 1 min for
initial denaturing, then 98 °C for 18 s, 66 °C for 18 s, and 72 °C for 30 s for 10
cycles, then 72 °C for 10 min. The products were purified using AMPure XP beads
(1.4:1 bead to DNA ratio, Beckman-Coulter, Brea, CA, USA). The Illumina
adapters and the indices were added by a second PCR using Q5 polymerase (NEB).
Each 50 µL PCR consisted of 2–10 µL of purified PCR from the first PCR, 10 µL of
5× Q5 Reaction Buffer, 10 µL 5× Q5 High GC Enhancer, 0.5 µL of Q5 High-Fidelity
DNA Polymerase, 10 µM Forward Primer, 10 µM reverse primer, 10 mM dNTPs.
The PCRs were done in two steps. First step conditions were: 98 °C for 1 min
for initial denaturing, then 98 °C for 18 s, 62 °C for 18 s, and 72 °C for 30 s for 4
cycles. Second stage of the PCR was 98 °C for 18 s, 66 °C for 18 s, and 72 °C for
30 s for variable cycles and finally 72 °C for 10 min. The number of cycles
should be determined using a parallel qPCR to ensure that the sample does not
saturate. The samples were purified using AMPure XP beads (1.3:1 bead to
DNA ratio). The samples were run on an Illumina Hi-Seq 4000 for 75 cycles
paired-end with a 58–17 breakdown for read 1 and read 2. We used Cutadapt
and Bowtie2 to trim the sequences and map them to the targeting sequences with
a maximum of one mismatch55,56. We calculated the log frequency of the reads as:

logðf Þ ¼ log2
No: of readþ 1

Total number of reads for that sample

� �

ð1Þ

To calculate the depletion scores, we filtered the gRNAs to have a minimum
read frequency of 10−5 in either the treatment or the control group, i.e., they
needed to have a minimum number of reads in the induced or the uninduced
sample. The frequency of reads, the number of gRNAs with a minimum of one
read, and the number of gRNAs passing the threshold are depicted in
Supplementary Fig. 2. When a gRNA is common to two genes, we assigned its
effect to both genes. The distribution of gRNAs per gene in each sample is shown
in Supplementary Fig. 4. The gRNA depletion/enrichment score between sample A
and B was calculated using:

gRNAdepletion score ¼ logðfAÞ � logðfBÞ ð2Þ

To assign a gene depletion or enrichment score, we sorted the gene log-fold
change values of the gRNAs targeting a gene. Then, we averaged the highest top
three values and also bottom three values. We compared the absolute numbers for
the top three and the bottom three gRNAs targeting any given gene and we
assigned the largest absolute value as the depletion/enrichment score for that gene.
If there were less than six but more than three gRNAs present for a gene, for
example, g1–4 sorted based on their values, we compared the average for g1–3 and
g2–4. For genes with three or less gRNAs, we assigned the average of the gRNAs as
the gene depletion score. Previous studies26 used a metric of average phenotype for
the top three most effective gRNAs for each gene. The method presented here has
the benefit that it would account for the possibility that repression of some genes
could, in fact, be beneficial for growth.

To create the synthetic scrambled genes, we utilized the gRNA depletion
scores of the synthetic randomly shuffled gRNAs. We simulated a pool of
synthetic scrambled genes by sampling the depletion scores of the synthetic
randomly shuffled gRNAs, whereas maintaining the distribution of gRNA per
gene in the sequenced CRISPRi library. Synthetic scrambled genes were populated
by considering each yeast ORF and replacing its corresponding gRNAs depletion
scores from the pool of synthetic randomly shuffled gRNAs. This process was
repeated 200 times to generate a distribution of synthetic scrambled genes. The
gene depletion scores were converted to z scores based on the distribution of
synthetic scrambled genes in that replicate. The gene scores (z scores) for the
replicates were then averaged using Stouffer’s method.

We used the depletion z score to classify each gene. For a given z score
threshold, we considered genes with depletion scores below that threshold to
be hits (e.g., dosage sensitive). We assessed true positives based on the genes known
to be in a given category (e.g., haploinsufficient or essential genes) and false
positives based on the pool of synthetic scrambled genes. True positive rate and
false positive rates were calculated for a range of z score thresholds and the
Area Under the ROC Curve was assessed. Given the uneven numbers of
positives and negatives, we calculated the FDR for each decision value (threshold)
using:

FDR ¼
True Positives ðTPÞ

True Positivesþ False Positives ðFPÞ
ð3Þ

where we oversampled the positive genes.
Secondary structure free energy was calculated using RNAfold application from

ViennaRNA package 2.4.14 using default parameters57. The full length sgRNA was
assigned from the approximate TSS (“gtccctatcagtgatagaga”) to the end of sgRNA
scaffold at “tcggtgcttttttctcgag”.

IPAGE. We ran iPAGE37 in continuous mode on the average depletions/enrich-
ment scores of guide RNAs calculated at the gene level as described above. iPAGE
discovers gene categories that are significantly informative (p value < 0.05, random
shuffling) of the average scores. Scores were sorted in 7 bins and only biological
processes categories were considered.

Random forest classifier. As a proxy for sgRNA activity, we collected the
Log2(gRNA Depletion Score) of 3507 sgRNAs corresponding to markedly depleted
essential and haploinsufficient genes from the outgrowth experiment (SC-HIS
+ATc vs SC-HIS -ATc). We then retained two categories for the most efficient
(lowest 20% Log2(gRNA Depletion Score)) and least efficient crRNAs (top 20%
Log2(gRNA Depletion Score)). As features for prediction, we considered the dis-
tance of the PAM of every sgRNA from the TSS (absolute distance and the sign of
the distance), the nucleosome occupancy score22, the free energy of the sgRNA
transcript (calculated using RNAfold), whether the PAM is on the same or opposite
strand as the gene, the GC content of the 20 nucleotides of the sgRNA, and the size
of the longest homo-polymer for each nucleic acid (A, C, G, T). Individual bases in
the 20 nucleotides of the sgRNA as well as 10 nucleotides upstream and down-
stream of the target sequence on the genome were considered as features. The
nucleotide space was represented with one-hot encoding allowing for independent
weights for each possible base58, and both mono-nucleotides and di-nucleotides
were considered at every position.

To predict whether a given sgRNA has efficient inhibitory activity or not, we
trained a Random Forest model to classify gRNAs from the most and least efficient
sgRNA categories using the Random Forest59 scikit-learn python package. We
estimated the overall performance of the classifier under threefold cross-validation
to prevent overfitting the model. For every training set, the features space was
reduced to 130 features using univariate analysis with a chi2 metric (SelectBestK
python routine) and the Random Forest model was trained using these features.
ROC and Precision–recall curves were calculated by varying the predict class
probability and using the three cross-validation models assessed on their respective
test sets. The process was repeated 10 times for different cross-validation partitions
to estimate errors for AUC and AUPRC. We assessed the contribution, Cf, of each
feature by estimating the average accuracy of the model on the test set when all
values of a given feature are permuted across sgRNAs. This measure was converted
to a percentage contribution, Pf , by comparison to the average accuracy of the

unpermuted dataset (Cbase) and the average accuracy of the fully permuted dataset
for all features (Cmin):

Pf ¼ 100 ´
Cbase � Cf

Cbase � Cmin

ð4Þ

which reflects the contribution of each feature to the model as a percentage of the
total accuracy of the model. To calculate the contribution of each individual base
position to the model, we permuted the nucleotides in that particular base and
recalculated the one-hot encoding for the mono- and di- nucleotides of the test
sets. All permutations were repeated 30 times and averages were calculated for each
model. The process was repeated for each cross-validation model and each cross-
validation partition.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
All data generated or analyzed during the course of this study are included in the

Supplementary Data associated with this manuscript (See Supplementary Data 1–7 for

details). The raw sequencing data that support the findings are available at GEO

accession: GSE159409. The two libraries are biological replicates. CRISPRi library

replicate 1 was deposited to Addgene (Addgene ID: 161829). The library replicate 2 will

be available upon request from the corresponding author. AmPl43 was also deposited to

Addgene (Addgene ID: 161830).
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The custom developed code to analyze the sequencing data is available on our GitHub at
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