
An Industrial Study on the Risk of Software Changes

Emad Shihab and
Ahmed E. Hassan
Software Analysis and
Intelligence Lab (SAIL)

Queen’s University, Canada
{emads,

ahmed}@cs.queensu.ca

Bram Adams
Lab on Maintenance,

Construction and Intelligence
of Software (MCIS)

École Polytechnique de
Montréal, Canada

bram.adams@polymtl.ca

Zhen Ming Jiang
Research In Motion

Waterloo, ON, Canada

ABSTRACT
Modelling and understanding bugs has been the focus of much of
the Software Engineering research today. However, organizations
are interested in more than just bugs. In particular, they are more
concerned about managing risk, i.e., the likelihood that a code or
design change will cause a negative impact on their products and
processes, regardless of whether or not it introduces a bug. In this
paper, we conduct a year-long study involving more than 450 de-
velopers of a large enterprise, spanning more than 60 teams, to bet-
ter understand risky changes, i.e., changes for which developers
believe that additional attention is needed in the form of careful
code or design reviewing and/or more testing. Our findings show
that different developers and different teams have their own crite-
ria for determining risky changes. Using factors extracted from the
changes and the history of the files modified by the changes, we
are able to accurately identify risky changes with a recall of more
than 67%, and a precision improvement of 87% (using developer
specific models) and 37% (using team specific models), over a ran-
dom model. We find that the number of lines and chunks of code
added by the change, the bugginess of the files being changed, the
number of bug reports linked to a change and the developer experi-
ence are the best indicators of change risk. In addition, we find that
when a change has many related changes, the reliability of devel-
opers in marking risky changes is negatively affected. Our findings
and models are being used today in practice to manage the risk of
software projects.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—complexity measures, per-
formance measures

Keywords
Change Risk, Change Metrics, Code Metrics, Bug Inducing Changes

1. INTRODUCTION
Risk management plays a crucial part in successful project man-

agement. This is especially true for software projects. For example,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT’12/FSE-20, November 11–16, 2012, Cary, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1614-9/12/11 ...$10.00.

a survey of 600 firms showed that 35% of them had at least one run-
away project [6]. Another study showed that, industry-wide, only
16.2% of software projects are on time and on budget. Of the rest,
52.7% are delivered with reduced functionality and 31.1% are can-
celled before completion. The main reason for this large amount of
late projects is the lack of proper software risk management (i.e.,
activities used to manage the possibility of harm or loss) [6, 10].

Due to the importance of risk management in the success of soft-
ware projects, researchers and industry have become more inter-
ested and active in the area of software risk management [13, 23].
One line of work that received a large amount of attention recently
is software bug prediction, where code and/or historical metrics are
used to predict where bugs might appear in the future (e.g., [26,
35]). In fact a recent literature review showed that in the past ten
years more than 200 papers were published on defect prediction
alone [17].

However, organizations are interested in effective management
of risk in general, which covers more than just bugs. For exam-
ple, a recent initiative on managing technical debt aims at studying
how compromises that developers make today will affect their soft-
ware in the future [30]. Risky changes could introduce bugs but
they could also delay the release of projects, and/or negatively im-
pact customer satisfaction. For example, changes that might have a
widespread impact on the code (e.g., switching threading models)
or on the user (e.g., making the software application autosave every
1 min instead of 30 seconds, for optimization reasons) are consid-
ered risky, regardless of whether or not they introduce bugs. The
risk is caused by the uncertainty introduced by the changes.

A risky change ideally requires additional attention through care-
ful code/design review and possibly more testing. This is why or-
ganizations are interested in identifying risky changes as soon as
possible, so that there are enough time and resources available for
risk mitigation. Although prior work investigated mitigation strate-
gies (e.g., code reviews [32]) and bug-introducing changes [20],
the risk of changes, which is at the core of the software creation
process, has rarely been studied.

In this paper, we sought to better understand risk at a fine gran-
ularity, i.e., the individual software changes. We conducted a year-
long study where developers from a large commercial company
were asked to specify, at commit time, whether or not they consider
their change to be risky. When assigning a change to be risky they
are indicating that they wish additional attention to be considered
for that change throughout the organization. The study involved
more than 450 developers, spanning over 60 teams.

We use this large, unique data set to understand risky changes
and find that:

• The interpretation of risk varies between different developers
and teams. Therefore, prediction models that factor in the de-
veloper and/or team that made the change perform consider-
ably better than general prediction models that aim to predict
risk. This finding has implications on prior work on bug-
introducing changes (e.g., [12, 20, 33]) and for future work
related to risky and bug-introducing changes.

• We can build high accuracy models to automatically identify
risky changes with a recall of 67% and a precision that is
87% (developer models) vs. 37% (team models) better than
a random model. Our industrial partner found these models
to be of great value in their risk management processes, es-
pecially for changes done by inexperienced developers.

• Each developer and team has their own factors that best model
change risk. However, in general, the number of lines and
chunks of code added by the change, the bugginess of the
files being changed, the number of linked bug reports to a
change and the developer experience are the best indicators
of change risk.

• Risk and bugginess are related, yet different concepts. In
general, developers are accurate when classifying buggy changes
as being risky changes. However, changes that have many re-
lated changes are more likely to be incorrectly classified.

Organization of the Paper. Section 2 discusses the related work.
Section 3 describes the data used in our study, while Section 4 in-
troduces the case study setup. Section 5 presents our preliminary
analysis on change risk assignment, followed by the results of our
case study in Section 6. Section 7 discusses the differences be-
tween bug-introducing and risky changes. Section 8 reflects on the
lessons learned and future work. Finally, Section 9 presents the
limitations of our study and Section 10 concludes the paper.

2. RELATED WORK
The domains most closely related to this paper are software risk

management, bug prediction and bug-introducing change predic-
tion.
Software Risk Management. Prior work by Boehm [6] proposed
principles and practices of software risk management. In this work,
Boehm outlines the six phases (i.e., risk identification, analysis, pri-
oritization, management, resolution and monitoring) of risk man-
agement. Dedolph [10] studied the role of software risk manage-
ment practices at Lucent Technologies in order to understand why
risk management is often neglected. He discusses examples of suc-
cessful risk management. Freimut et al. [13] study the implementa-
tion of software risk management in an industrial setting. They pro-
posed Riskit, a systematic risk management method, and showed
that Riskit provides benefit for the risk management team with ac-
ceptable costs.

Our work is different from prior work on software risk manage-
ment in that we are interested in the risk of one particular change at
a time and not the risk of the entire project. Therefore, our work is
done at a much finer granularity. Also, prior work on software risk
management is concerned about all types of risk in the project, e.g.,
risk due to technicalities, risk due to personnel and/or risk due to
work environment. Although our definition of risk is much wider
than bugs alone, we still focus on the risk due to software changes
only.
File level bug prediction. Researchers in this domain train pre-
diction models to predict bug-prone locations (e.g., files or direc-
tories). Complexity metrics (e.g., McCabe’s cyclomatic complexity

metric [22] and the Chidamber and Kemerer (CK) metrics suite [8]),
size (measured in lines of code) [15,19,21], and the number of prior
changes and bugs are good predictors of buggy locations [1, 2, 18,
21, 26, 27, 29, 35].

There are some key differences between the aforementioned work
and our work. First, our focus is on modelling risk, not only bugs.
Bugs are a special case of risk. Second, we perform our modelling
at the change level instead of at the file level. This difference is im-
portant. Flagging risky changes makes it easier to address the risk
since changes can be flagged while they are still fresh in the devel-
oper’s mind and fixed before they are integrated with the rest of the
code base. In contrast, bug prediction flags files later in the release
cycle, at which time a developer may have forgotten the issues sur-
rounding their changes [20]. Furthermore, changes can be easily
assigned to the developer who made the change, in contrast to files
in bug prediction, which are changed by many developers, making
it hard to decide who to assign the file to. Finally, changes provide
the necessary context to address the flagged issue, whereas in bug
prediction in some cases a bug spans many files that are changed
together.
Change level bug prediction. The majority of the change-level
related work aims to predict bug-introducing changes. On the other
hand, our aim is to understand and identify risky changes (which
are a superset of bug-introducing changes).

Sliwerski et al. [33] studied bug-introducing changes in Mozilla
and Eclipse. They find that bug-introducing changes are part of
large transactions and that bug fixing changes and changes done
on Fridays have a higher chance of introducing bugs. Eyolfson et
al. [12] study the correlation between a change’s bugginess and the
time of the day the change was committed and the experience of
the developer making the change. They perform their study on the
Linux kernel and PostgreSQL and find that changes performed be-
tween midnight and 4AM are more buggy than changes committed
between 7AM and noon and that developers who commit regularly
produce less buggy changes. Yin et al. [34] performed a study that
characterizes incorrect bug-fixes in Linux, OpenSolaris, FreeBSD
and a commercial operating system. They find that 14.8 - 24.2%
of fixes are incorrect and affect end users, that concurrency bugs
are the most difficult to correctly fix and that developers responsi-
ble for incorrect fixes usually do not have enough knowledge about
the code being changed. Kim et al. [20] use change features like
the terms in added and deleted deltas, terms in directory/file names,
terms in change logs, terms in source code, change metadata and
complexity metrics to classify changes as being buggy (i.e., bug-
introducing) or clean (i.e, not bug-introducing).

Our work complements prior work on bug-introducing changes
in a number of ways. First, we use a more general definition of
change risk, assigned by developers who make the changes, which
includes bug-introducing changes, i.e., bug-introducing changes are
a special case of risky changes. Second, we perform our study on
a large commercial system, whereas most of the prior work is per-
formed on open source systems. Third, we quantify the effect of
factors that indicate risky changes and compare them to those of
bug-introducing changes.

Mockus and Weiss [25] assess the risk of Initial Modification Re-
quests, called IMRs, which are groups of code changes, of the 5ESS
commercial project. They predict the potential of an IMR to cause
a failure (i.e., introduce a bug) using IMR diffusion, size, interval,
purpose and experience metrics. Czerwonka et al. [9] present their
experiences with CRANE, a tool used within Microsoft for failure
prediction, change risk analysis and test prioritization.

Our work complements the work by Mockus and Weiss [25] in
a number of ways. First, we provide recommendations at a finer

granularity (i.e., at the individual change level). Second, our unique
data set allows us to study the risk as viewed by the developers
making the changes, i.e., the risk is assigned by the individual de-
velopers making the changes instead of simply using the potential
of change to cause a failure. Third, our work studies the impact of
more factors and quantifies the effect of the important factors. Also,
our work is different than the work by Czerwonka et al. [9] in two
ways. First, in their definition of risk, the authors use the likelihood
of a change to introduce a bug as a proxy for risk. Second, the au-
thors perform their analysis at the granularity of a binary, which is
generally made up of hundreds or thousands of files (i.e., equiva-
lent to an IMR). In contrasts, our work is performed at the change
level, a granularity much finer than the binary level. To the best of
our knowledge, our study is the only study that focuses on studying
the risk of a change assigned by developers.

3. CASE STUDY DATA
In this section, we describe the software system and the data used

in our study.

3.1 The Software System
Our study is performed on a large, well established commer-

cial software system. The system is written mainly in Java, with
lower-level functionality implemented in the C/C++ language, and
is used by tens of millions of users across the globe. The system
is developed by many different teams, of which more than 60 were
involved with our study, and has been in development for over 20
years. The current size of the code base is in the order of several
millions of lines of code.

3.2 Change Data
To conduct our study, we used change-level information. Changes

(or commits) are submitted to the Source Configuration Manage-
ment (SCM) system by developers to perform maintenance tasks
(e.g., fix bugs) or enhance features (e.g., implement new function-
ality). A change is done by one developer and may touch one or
more files. The SCM stores meta-data about each change, such as
the change ID, date and time of the change, the developer’s name,
the change type (e.g., bug fix?), whether the change fixes a previ-
ous change, the files touched and how many lines and chunks of
code were added, deleted or modified for each file, together with
a short description of the change. For the purpose of our study,
an optional field (drop-down menu) was provided for developers to
indicate whether they consider their change to be risky or not. By
default, the drop-down is blank, indicating an unclassified change.
Developers are then given the option to assign the right level of
change risk.

The general rule communicated to all developers regarding risky
changes is that a change is considered risky if additional attention
like careful code reviewing and possibly more testing is deemed
necessary. On the other hand, a non-risky change is one where
the change does not need any special treatment in terms of code
review or testing. The change can be safely integrated into the code
without having any (expected) negative impact.

The change data was extracted and parsed in order to extract
different factors that we use to perform our study. The factors are
detailed later in Section 4.

3.3 Summary of Data
We observed and collected changes made between December

2009 and December 2010. Our final data set contained changes
made by over 450 unique developers, spanning more than 60 dif-
ferent teams. For the most part, each team was responsible for one

component. In rare cases, large components were assigned multiple
teams (e.g., the multimedia component would have two teams, an
audio team and a video team). Since assigning the risk to changes
is optional, we found that, on average, developers assigned risk to
more than 40% of all the changes they submitted. After removing
sync and branch changes (which did not modify any code), our final
data set contained a total of over 7,000 changes with risk assigned.

Given the fact that such data is rarely available to researchers,
we were extremely grateful to have such a rich data set to perform
our study. Due to confidentiality restrictions, we are not able to be
more specific about the exact numbers or provide any more details
about the used data. That said, we believe that the details given
provide sufficient context about our study.

4. CASE STUDY SETUP
We begin by presenting the various factors used to study the risk

of changes. Then, we describe the modelling techniques used and
our evaluation criteria for the generated models.

The goal of our study is to better understand risky changes, so
that they can be addressed by practitioners and their risk can be
mitigated. In particular, we would like to identify risky changes and
determine which factors are associated with them. We formalize
our study into the following research questions:

RQ1 Can we effectively identify risky changes?

RQ2 Which factors play an important role in identifying risky
changes? What is the effect of these factors on the riski-
ness of a change?

To answer the aforementioned questions, we study a number of
factors that we use to empirically study risky changes.

4.1 Studied Factors
Table 1 shows all of the factors used in our study. For each factor,

we provide its type (e.g., numeric), an explanation of the factor and
the rationale for using the factor in our study.

We group the studied factors into six different dimensions:
Time: The main motivation for using this dimension is to study
whether the time when changes are made has an impact on their
risk, since prior work used time factors to model bug introducing
changes in Open Source software [12, 33] .
Size: Prior work showed that churn is a good indicator of bugginess
at the file [28] and IMR [25] level. IMRs consist of multiple Mod-
ification Requests (MR), which are made up of multiple changes,
hence they are at a much coarser granularity than our changes. We
investigate whether the size of a change (measured in number of
added, deleted and changed lines) is also a good indicator of change
risk. Furthermore, we use size as a proxy for complexity since prior
work showed that complexity measures are highly correlated with
size [15]. In addition to counting the number of lines, we also con-
sider the number of locations (i.e., chunks) that these lines were
spread over.
Files: Prior work showed that process metrics, such as the number
of prior bugs, are a good indicator of future bugs [26, 35]. There-
fore, this dimension considers the history of the files being modi-
fied by the change. For example, if a file has been changed many
times in the past, then a change that modifies this file may be more
risky. Since most other metrics only provide a snapshot view at the
time the change was made, using the history of the files modified
by the change is a way of incorporating history into our change risk
models.
Code: The motivation behind using the code dimension is to study
whether the code being modified (e.g., API code) by the change is

a good indicator of whether or not a change is risky. Since the soft-
ware system under study is written in different programming lan-
guages, we introduced four boolean variables that indicate whether
or not a change modifies Java code, C++ code, other code (e.g.,
html or xml pages) or API code. The type of code being modi-
fied provides insight into whether the change deals with application
layer code or lower level OS code. The file extension was used to
determine the type of changed code.
Purpose: Prior work showed that the purpose of an IMR (e.g.,
whether it was a bug fixing change) is a good indicator of its failure
potential [25]. We study whether the purpose of a change impacts
its risk.
Personnel: Prior work showed that the experience of the develop-
ers changing an IMR is a good indicator of its risk [25]. Therefore,
we also investigate the impact of the developer experience in iden-
tifying risky changes.

In total, we extracted 23 different factors that covered six differ-
ent dimensions. It is important to note that all of our factors can
be easily extracted from the change log stored in widely available
source code control repositories. This was pointed out by the in-
dustrial partner to be a major advantage of this work and makes
this work applicable to any company or project that uses source
code control repositories.
4.2 Logistic Regression Models

In this work, we are interested in identifying risky changes and
determining which factors best indicate risky changes. Similar to
prior work [35], we use a logistic regression model. A logistic
regression model correlates the independent variables (i.e., the 23
factors in Table 1) with the dependent variable (i.e., whether or not
a change is risky).

The output of our logistic regression model is a probability (be-
tween 0 and 1) of the likelihood that a change is risky. Then, it is
up to the user of the output of the logistic regression model to de-
termine a threshold at which she/he will consider a change as being
risky. Generally speaking, a threshold of 0.5 is used. For example,
if a change has a likelihood of 0.5 or higher, then it is considered
risky, otherwise it is not.

However, the threshold is different for different data sets and the
value of the threshold affects the precision and recall values of the
prediction models. In this paper, we determine the threshold for
each model using an approach that examines the tradeoff between
type I and type II errors [25]. Type I errors correspond to files
that are identified as being risky, while they are not. Having a low
logistic regression threshold (e.g., 0.01) increases type I errors: a
higher fraction of identified changes will not really be risky. A
high type I error leads to a waste of resources since many non-risky
changes need to be reviewed in vain. On the other hand, the type II
error is the fraction of risky changes that are not identified as being
risky when they should be. Having a high threshold can lead to
large type II errors, and thus missing many risky changes.

To determine the optimal threshold for our models, we perform a
cost-benefit analysis between the type I and type II errors. Similar
to previous work [25], we vary the threshold value between 0 to
1, in increments of 0.01, and use the threshold where the type I
and type II errors are equal. We report the thresholds used for each
model in the results tables of Sections 5 and 6.

Initially, we built the logistic regression model using all 23 fac-
tors. Having a large number of factors is beneficial since it allows
us to conduct a comprehensive study (i.e., take into account many
factors in our models). However, using many factors in our models
introduces the risk of having issues due to multi-collinearity. Multi-
collinearity is caused by having highly correlated factors in a single
model, making it difficult to determine which factors are actually

Table 2: Confusion Matrix
True class

Classified as Breakage No Breakage
Breakage TP FP

No Breakage FN TN

causing the effect being observed and introducing high variance
to the corresponding coefficients [7]. To alleviate such collinear-
ity issues, we employ feature selection [14] to remove all redun-
dant (i.e., highly correlated) factors from our models. In particular,
we use the cfs selector [16], which performs the feature selec-
tion based on correlation and entropy. To ensure that the effect of
the independent variables is statistically significant, we perform an
ANOVA analysis and retain all variables with p-value < 0.05. We
provide a list of the factors used in our models in Tables 6 and 7.

4.3 Evaluating the Accuracy of Our Models
We use two criteria to evaluate the performance of the logistic

regression models: Predictive Power and Explanative Power.

4.3.1 Explanative Power
Explanative power ranges between 0-100%, and quantifies the

variability in the data explained by the model, i.e., how well the
model fits the data. When calculating the explanative power, the
model is built using all of the data (i.e., we do not split the data into
training and testing sets). In addition, we report and compare the
variability explained by each factor used in the model, to determine
which of the factors are most important. The relative importance of
each factor is determined by comparing its explained variability to
that of the other factors in the model.

4.3.2 Predictive Power
Predictive power measures the accuracy of the model in mod-

elling the risk of a change. We calculate recall and relative pre-
cision based on the classification results in the confusion matrix
(shown in Table 2).
Recall: is the percentage of correctly classified risky changes rela-
tive to all of the changes that are actually risky: Recall = TP

TP+FN
.

A recall value of 100% indicates that every risky change was clas-
sified as being risky.
Relative Precision: is the improvement in precision by our pre-
diction model over the precision of a baseline model. In our case,
the baseline model is a model that randomly predicts risky changes.
For example, if a baseline model randomly predicts risky changes
and achieves a precision of 20%, while our proposed prediction
model achieves a precision of 40%, then the relative precision is
given as 40

20
= 2X . In other words, using our model provides twice

the precision of the baseline model. The higher the relative preci-
sion value the better the model is at classifying risky changes. We
use relative precision instead of actual precision for confidential-
ity reasons, since precision allows one to infer the ratio of risky-
changes in our dataset.

When evaluating the predictive power of our models, we employ
10-fold cross validation [11], where the data set is divided into 10
sets, each containing 10% of the data. One set serves as the testing
data and the remaining nine sets are used as training data. The
model is trained using the training data and its accuracy is tested
using the testing data. In our results, we report the average from
the 10-fold cross validation.

5. PRELIMINARY ANALYSIS
Prior to delving into our case study, we discuss our initial find-

ings concerning change risk assignment. We started our analysis by

Table 1: Factors Used to Study Risky Changes
Dim. Factor Type Explanation Rationale

Ti
m

e

Hour Numeric Time when the change was made, measured in
hours (0-23).

Changes performed at certain times in the day, e.g., late
afternoons, might be done by over-worked or less aware
developers, hence, these changes may be more risky [12].

Weekday Numeric Day of the week (e.g., Mon, Tue) when the change
was performed.

Changes performed on specific days of the week (e.g., Fri-
days) are not as carefully examined and might be more
risky [33].

Month
day

Numeric Calendar day of the month (1-31) when the change
was performed.

Changes performed during specific periods, i.e., begin-
ning, mid or end of the month might be rushed to meet
end-of-the-month quotas and are likely to be more risky.

Month Numeric Month of the year (0-11) when the change was per-
formed.

Changes performed in specific months, e.g., later in the
year or during holiday months like December, when less
developers and expertise are available, might be more
risky.

Si
ze

Lines
Added

Numeric The number of lines added as part of the change. Changes that add more lines add new functionality that
has not been tested as thoroughly, therefore, they might
be more risky.

Chunks
Added

Numeric The number of chunks (i.e., different sections)
added as part of the change.

Changes that add more chunks, i.e., are more spread out,
are harder to make and hence are considered more risky.

Lines
Deleted

Numeric The number of lines deleted as part of the change. Changes that delete more code might remove too much or
remove code incorrectly, making the change more risky.

Chunks
Deleted

Numeric The number of chunks (i.e., different sections)
deleted as part of the change.

Changes that delete more chunks, i.e., are more invasive,
are harder to make and are more risky.

Lines
Modi-
fied

Numeric The number of lines modified as part of the
change.

Changes that modify more lines have a higher chance of
making incorrect changes and are therefore more risky.

Chunks
Modi-
fied

Numeric The number of chunks (i.e., different sections)
modified as part of the change.

Changes that modify more chunks, i.e., are more invasive,
are harder to make and are considered more risky.

Churn Numeric The total number of lines added, deleted and mod-
ified as part of the change.

Changes that have high churn are harder to make and are
considered more risky [28].

Fi
le

s

Number
of Files

Numeric The number of files modified by the change. Changes that touch more files require a higher degree of
knowledge of the different files and are therefore more
risky [18, 33].

No. file
devs

Numeric The number of unique developers that modified the
changed files. If a change modifies multiple files
we use the number of developers of the file that
has the most developers.

Files that have been changed by many developers are hard
to modify. A change that touches a file that has been mod-
ified by many different developers is more risky [5].

No. file
changes

Numeric The number of past changes to the files modified
by the change. If a change modifies multiple files,
we use the number of changes of the file with the
most past changes.

Files that are changed often are hard to modify. A change
that touches such a file is more risky [26].

No. file
fixes

Numeric The number of past bug fixes to the files modified
by the change. If a change modifies multiple files,
we use the number of bug fixes of the file with the
most past bug fixes.

Files that are fixed often tend to be buggy. A change that
touches such files is more risky [35].

File
buggi-
ness

Numeric The ratio of bug fixes to total changes of a file. If
a change touches more than one file, we use the
value of the file with the largest file bugginess.

Files may be changed often to make additions or general
improvements, however if most of those changes are fixing
bugs, then a change that touches such files is more risky.

C
od

e

Modify
Java

Boolean Indicates whether the change modifies Java code. Changes that modify code are changing application be-
haviour and hence are more/less likely to be risky.

Modify
CPP

Boolean Indicates whether the change modifies C++ code.
For this project, only low-level functionality was
implemented in C++.

Changes that change low-level functionality are more
risky.

Modify
Other

Boolean Indicates whether the change modifies anything
other than Java and C++ code, e.g., documentation
files.

Changes that do not change code are less risky.

Modify
API

Boolean Indicates whether the change modifies any APIs. Changes that modify APIs can potentially affect all client
code using the API, hence they are more likely to be risky.

Pu
rp

os
e Bug

Fix?
Boolean Indicates whether the change fixes a bug. Changes that fix a bug are more complex and are therefore

more risky [33].
No. of
Linked
Bug
Reports

Numeric Indicates the number of bug reports that are linked
to the change.

Changes that are linked to multiple bug reports need to
make larger changes and are therefore more risky.

Pe
rs

on
ne

l Dev.
Experi-
ence

Numeric Indicates the experience of the developer who
made the change. Experience is measured as the
number of previous changes (from the start of the
project) done by the developer.

Changes done by experienced developers are less risky [5].

Table 3: Role of Developer and Team Name on Change Risk
Classification

Predictive Power Explanative
Power

Component Precision Recall Thresh. Deviance
Explained

All Factors 1.32X 59.4% 0.482 4.4%
All Factors +
Team

1.42X 67.5% 0.496 14.2%

All Factors +
Developers

1.72X 77.5% 0.496 32.6%

building a general model based on the changes of all the develop-
ers combined, similar to prior work (e.g., [20]). The results of the
model are shown in the first row (labeled “All Factors”) of Table 3.
This table also contains the threshold value used for the logistic re-
gression prediction model that we determined based on the training
data set (not the testing data set).

Our findings show that our model achieves good predictive power
(i.e., precision and recall), however, the explanative power of the
model is very low. We qualitatively examined a random subset of
50 risky changes to try and understand this low explanative power.
We found that, although all developers were given the same cri-
teria to label risky changes, the concrete interpretation of risk is
ultimately a concept that depends on the individual developers and
teams. For example, teams that worked on application-level code
were less likely to mark their changes risky unless they were large.
On the other hand, members of the UI team would mark their
changes risky if they thought that their changes would impact other
parts of the code, regardless of the size of the change. The same
was observed for developers as well, each had their own criteria for
marking risky changes.

Following this finding, we decided to investigate whether or not
the team and the developer assigning the risk played a role in the
assigned change risk. In our case, a team is composed of multiple
developers and each team works on one component. We added the
team name to the initial model as an additional factor. The results
were much better, as shown in the second row of Table 3 (labeled
“All Factors + Team”). Adding the team name improves both pre-
dictive and explanative power, indicating that when the risk of a
change is considered one needs to discriminate between changes
from different teams. Next, we added the developer name to the
model containing all factors, as shown in the third row of Table 3
(labeled “All Factors + Developers”). We observe that adding the
developer name to the model improves the predictive and explana-
tive power even further.

Our findings here show that, although all developers where given
the same rule to classify risky changes, the risk assigned to a change
depends on the developer that is assigning the risk and the team that
the developer belongs to. Based on these findings we recommend
that developer or team specific models should be built when mod-
elling change risk. Building one model to model the risk of all
changes (i.e., changes from different developers) is not an effective
solution.�

�

	
Even when all developers are given the same rule to classify
risky changes, the risk of a change varies and depends on
the developer that is assigning the risk and the team that the
developer belongs to.

6. CASE STUDY
In this section, we answer the research questions posed earlier.

In particular, we examine the accuracy of our approach in identify-
ing risky changes. Then, we determine the most important factors
when identifying risky changes, as well as the specific impact of
the factors.

RQ1. Can we effectively identify risky changes?
Motivation: In order to address and assign the proper quality as-
surance efforts, we need to be able to effectively identify risky
changes. Our goal is to examine whether it is feasible to build
accurate models that flag risky changes.
Approach: In the previous subsection, we showed that the team
and the developer play a major role in the accuracy of the change
risk models. Therefore, we now build specific models at two levels:
the developer level and the team level. At the developer level, we
build a specific model for each developer (instead of one global
model with the developer name as an independent variable). At
the team level, we build a specific model for each team. Since
these models are tailored to the individual teams and developers,
we expect them to be more accurate than a global model that does
not consider the team or developer.

In order to build the logistic regression models, we need to make
sure that enough data was available for each developer. Therefore,
we selected developers who made at least 20 changes over the year
studied. Since we are building developer-specific models, we also
require that a developer has both risky and non-risky changes. This
is needed to train our models (i.e., we cannot train a good model
using only risky changes or only non-risky changes). Therefore, we
required that at least 20% of a developer’s changes belong to either
class, risky or non-risky. Then, we ranked the developers based
on the total number of changes they committed and built models
for the top 10. Ideally, we would want to make predictions for the
developers with the most committed changes, since a manual risk
assessment would be too time consuming for them. For developers
that have fewer changes, manual examination might be a viable
solution.

For the team models, we aggregated developers based on the
team that they belong to. We ranked the teams based on the total
number of changes and built models for the top 10 teams. Teams
that have the most changes will benefit the most from our models
since manual risk assessment of their changes will be a resource
intensive task. As mentioned earlier for developers, for teams that
have fewer changes, manual examination might be a viable solu-
tion.
Results - Developer Level: Table 4 shows the predictive and ex-
planative power results for the top 10 developers. In terms of pre-
dictive power, our models achieved very promising results. On av-
erage the model achieves 1.87X relative precision (or a 87% im-
provement in precision over the baseline model), while achieving
an average recall of 67.7%.

On average, the explanative power of our models is 20.8%. This
explanative power is comparable to models that have been built in
previous work to predict post-release bugs in files [3, 7].
Results - Team Level: Table 5 presents the results for the team
level models. On average, the team level models achieve a rela-
tive precision of 1.37X and an average recall of 67.9%. In terms
of explanative power, the team level models achieve an average ex-
planative power of 13.3%.

As suggested by our preliminary analysis, the developer models
outperform the team models in terms of predictive and explanative
power. The main reason for this is the fact that the team models are
less specific, since they incorporate changes from more developers.

Table 4: Performance of Developer-Level Change Risk Classi-
fication

Predictive Power Explanative
Power

Dev. Precision Recall Thresh. Deviance
Explained

Dev1 1.58X 66.8% 0.464 22.6%
Dev2 1.50X 55.1% 0.43 22.0%
Dev3 2.03X 64.1% 0.32 15.3%
Dev4 2.76X 75.5% 0.302 42.6%
Dev5 1.69X 76.6% 0.544 12.3%
Dev6 1.61X 64.9% 0.518 18.5%
Dev7 1.28X 48.0% 0.394 8.0%
Dev8 1.82X 65.2% 0.416 19.9%
Dev9 1.72X 81.8% 0.55 27.4%
Dev10 2.72X 77.8% 0.482 19.0%

Avg. 1.87X 67.6% - 20.8%

However, an advantage of team level models is that they are more
practical, since we would need less models to be built (all develop-
ers of a team could share the same model). More importantly, team
level models can be used by new developers who join the team; this
is not possible with developer models.
Final Remarks: Another point worth addressing is the fact that rel-
ative precision values range between 1.5X - 2.76X for developers,
and 1.09X - 1.76X for teams, and recall values range between 48.0
- 81.8% for developers, and 57.2 - 80.9% for teams. This range is
due to the fact that different developers and teams have a different
distribution of risky to non-risky changes. For example, Dev4 had
more changes and a better balance of risky to non-risky changes
than Dev7. Therefore, our prediction models were able to provide
better accuracy for Dev4 than Dev7. That said, we believe that the
average improvements provided by our prediction models are high
enough to make them useful in practice.�

�

	
We can accurately identify risky changes, achieving average
recall of 67% and precision improvement of 87% (for de-
veloper models) and 37% (for team models), over a baseline
model.

RQ2. Which factors play an important role in
identifying risky changes? What is the effect of
these factors on the riskiness of a change?
Motivation: In addition to identifying risky changes with high ac-
curacy, we are interested in knowing which factors are good indica-
tors of risky changes and by how much these factors affect the risk-
iness of a change. Knowing which and by how much each factor
relates to risky changes helps practitioners determine what factors
they should consider carefully when determining which changes to
carefully examine.
Approach: To study the importance of the factors in the prediction
models, we perform an ANOVA analysis and examine the relative
contribution (in terms of explanative power) of each factor to the
logistic regression model.

In addition, similar to prior work [24], we measure the effect of
each factor by building a model where all metrics are set to their
median values (boolean factors are set to 0). Then, we double the
median (boolean factors are set to 1) of one of the factors (while
holding all other factors at their median values) and measure the
difference in the modeled probabilities. The effect of a factor can

be positive or negative. A positive effect indicates that a higher
level of a factor corresponds to an increase in change risk, while a
negative effect indicates that a higher level of a factor corresponds
to a decrease in change risk.

The analysis is done for the models of the top 10 developers and
teams mentioned in Tables 4 and 5, respectively. However, due to
space limitations, we only show the results for the developers and
teams 1, 5 and 10 in details since they represent the high, medium
and low range of the top 10 developers and teams. Afterwards, we
summarize and discuss all of the models in general.
Results - Developer Level: Table 6 shows the most important fac-
tors for Dev1, Dev5 and Dev10. Only the factors used in the final
model (i.e., after applying feature selection and checking for sta-
tistical significance) are shown. The Explanative Power column
shows the variability explained by each factor. The higher the de-
viance explained of the factor, the more important it is to the model.
We use this measure as a way of gauging the importance of the fac-
tors. For example, for Dev1 the “Chunks Added” factor is the most
important factor in determining the risky changes. This means that
if a future change is made by Dev1 and there are many “Chunks
Added”, one has to be cautious about the change since it likely a
high risk change.

The Effect column in Table 6 shows the effects of each factor for
Dev1, Dev5 and Dev10. All of the factors have a strong positive
effect with change risk. Comparing the different factors shows that
for Dev1, the number of bug reports linked to a change (e.g., the
change addresses a major bug or multiple bugs) has the strongest
relationship with change risk. For Devs5 and 10, the number of
code lines added also has a strong positive relationship with change
risk. In addition, file bugginess has an extremely large positive
relationship with change riskiness for Dev10.
Results - Team Level: Table 7 shows the most important factors
for Team1, Team5 and Team10. In all three models, code additions
(either the number of code chunks added or lines added) are strong
indicators of risky changes. Once again, we find that all of the
factors have a positive effect with risky changes, i.e., higher values
indicate higher risk. For Team1, the number of bug reports linked
to a change has a strong effect on risky changes. For Team5, we
find that the number of fixes to the file modified by the change has
the strongest effect. We were not able to calculate the effect for the
hour metric, since doubling the median does not make sense (i.e.,
doubling hour 23 to be 46 does not make sense). For Team10, we
find that the number of lines added and file bugginess both have a
strong and positive relationship with change risk.

From the aforementioned results, we make two noteworthy ob-
servations. First, each developer and team has their own set of fac-
tors that best predict the risk of their changes. Second, the models
are very simple, containing at most 3 or 4 factors. This simplicity
makes these models more attractive to practitioners, who can easily
apply and interpret such simple models in practice.
Results - Summary In addition to providing the important metrics
for developers and teams 1, 5 and 10, we provide a summary of
the important factors in each dimension for all of the 10 studied
developers and teams in Table 8. The most important factor in each
dimension is shown in the column labeled “Most Important Fac-
tor”. The “Importance” column shows the number of the top 10
developers that a dimension was important for. For example, the
lines added factor was the most important factor for 7 of the top 10
developers (as shown in the second row of Table 8). On the other
hand, factors in the time dimension were not important for any of
the top 10 developers.

From Table 8 we observe that, for both developer and team lev-
els, the most important dimensions are the size and file dimensions,

Table 5: Performance of Team Level Change Risk Classifica-
tion

Predictive Power Explanative
Power

Component Precision Recall Thresh. Deviance
Explained

Team1 1.76X 57.2% 0.448 6.9%
Team2 1.57X 80.9% 0.524 22.6%
Team3 1.28X 60.5% 0.486 7.38%
Team4 1.15X 77.3% 0.588 9.0%
Team5 1.14X 57.7% 0.502 5.6%
Team6 1.09X 79.4% 0.59 10.0%
Team7 1.69X 65.6% 0.478 15.6%
Team8 1.43X 69.9% 0.508 16.6%
Team9 1.30X 69.3% 0.506 25.33%
Team10 1.25X 71.2% 0.534 13.9%

Avg. 1.37X 67.9% - 13.3%

Table 6: Most Important Factors for Devs1, 5 and 10
Model Metric Explanative

Power
Effect

Dev1

Chunks Added* 11.7% 142%
Chunks Deleted** 5.8% 120%
Chunks Modified* 2.8% 131%
No. of Linked Bug
Reports*

2.3% 162%

Dev5 Lines Added** 12.3% 274%

Dev10 Lines Added* 9.8% 268%
File Bugginess** 9.2% 1114%

(p < 0.001 ***; p < 0.01 **; p < 0.05 *)

with the number of lines of code added, number of chunks of code
added, number of files and file bugginess being the most important
factors within these dimensions. Purpose (No. of linked bug re-
ports) and Personnel (Dev. experience) factors are the next most
important dimensions, with code (modify CPP, for team level) and
time (hour, for team level) dimensions being the least important.�

�

	
The number of lines and chunks being added, the bugginess
of the files being changed, the number of linked bug reports
to a change and the developer experience are the most im-
portant indicators of risky changes.

7. DISCUSSION
The majority of prior work (e.g., [12, 20]) used bug-introducing

changes as a measure of risky changes. However, we argue that
risky changes are more than just bug-introducing changes. We
believe that risky changes encompass bug-introducing changes as
well as other changes that may have a high impact on the software
product and/or its users.

To better understand this difference, we compare risky changes
to bug-introducing changes by comparing the factors that best in-
dicate risky changes and bug-introducing changes, as well as by
analyzing the classification of bug-introducing changes.

7.1 Factors used to indicate bug-introducing
and risky changes

Similar to the preliminary analysis in Section 5, we build a global
model that includes the risky changes from all developers and we

Table 7: Most Important Factors for Teams1, 5 and 10
Model Metric Explanative

Power
Effect

Team1
Chunks Added** 3.99% 137%
No. of Linked Bug
Reports**

1.68 % 195%

Number of Files* 1.21% 174%

Team5
Chunks Added** 3.08% 120%
No. File Fixes** 1.8% 125%
Hour* 0.75% -

Team10
Lines Added*** 11.7% 134%
File Bugginess* 2.2% 138%

(p < 0.001 ***; p < 0.01 **; p < 0.05 *)

compare it to a model that contains the bug-introducing changes
from all developers. Table 9 shows the factors in the resulting two
models. We find that the number of lines added is an important fac-
tor for both bug-introducing and risky changes, having a higher ef-
fect for bug-introducing changes. However, for risky changes, two
additional factors (i.e., the file bugginess and the number of devel-
opers who touched the changed files in the past) are considered to
be important. This finding gives an indication that risky changes
are likely different from bug-introducing changes, since different
(and in this case more) factors are required to identify them.

7.2 Classification of Bug-Introducing Changes
as Risky Changes

We now investigate how accurate developers are at identifying
bug-introducing changes as risky changes. To do so, we examine
the entire set of 7,000 changes that had been assigned a risk value
by the developers. We examine all of the changes labeled as not
risky and determine how many of those changes introduced a bug,
i.e., how often bug-introducing changes slipped through without
being noticed as risky.

We construct a confusion matrix, similar to the one shown in
Table 10. Due to confidentiality reasons, we are unable to show
the exact numbers for the confusion matrix, i.e., we can only pro-
vide the corresponding ratio of accuracy. We calculate the ratio of
accuracy of developers in classifying bug-introducing changes as

LI
LI+LNI

. That is, we measure the ratio of changes labeled as being
not risky and introducing a bug (i.e., LI) divided by the total num-
ber of changes labeled as being not risky (i.e., LI+LNI). This value
was 3.1%. This means that when developers classify a change as
being not risky, they are correct 96.9% of the time that the change
will not introduce a bug (although it could still cause other issues,
such as delay, which are not considered to be bugs). This high
level of accuracy is encouraging, showing that developers are good
at assessing non-risky changes. However, this now brings up the
question: Why are some bug-introducing changes misclassified by
developers as being non-risky changes?

7.3 Why are Some Bug-Introducing Changes
Misclassified?

Our finding shows that in some cases developers incorrectly clas-
sified bug-introducing changes, marking them as safe changes. In
order to better understand why such changes were incorrectly clas-
sified, we compare all the correctly classified (i.e., marked as not
risky and not introducing a bug) and all the incorrectly classified
(i.e., marked as being not risky and later introducing a bug) changes
on the following:

Table 8: Summary of Most Important Factors for Top 10 Developers and Teams
Developer-Level Team-Level

Dim. Most Important factor Importance Most Important factor Importance
Time - 0 Hour 2
Size Lines Added 7 Chunks Added 10
Files No. of Files & File Bugginess 7 File Bugginess 6
Code - 0 Modify CPP 3

Purpose No. of Linked Bug Reports 2 No. of Linked Bug Reports 4
Personnel Dev. Experience 1 Dev. Experience 4

• Cause for the change: For each change, developers entered
a reason for the change. We compared the percentages of
each of the eight possible causes (shown in Table 11) be-
tween the correctly and incorrectly classified changes. The
purpose of this analysis is to investigate whether there is a
specific cause of a change that is more likely to be incorrectly
classified.

• Bug fixing change?: We compare the percentage of bug-
fixing changes in the correctly and incorrectly classified changes.
The purpose of this analysis is to investigate whether bug fix-
ing changes are more likely to be classified incorrectly.

• Has related changes: If a change has other changes re-
lated to it (e.g., it requires changes made by others or de-
pends on functionality recently modified by other changes),
those changes are explicitly added in the change commit log.
We compared the percentage of changes that have related
changes for the correctly and incorrectly classified changes.
The intuition for looking at related changes is to examine if
changes that have related changes are harder to classify.

• Modifies API: If a change modifies API code, it is flagged
by developers. The main idea is to make other developers
aware that this change could potentially affect other code.
We examine the difference between correctly and incorrectly
classified changes to see whether changes that change API
code are more likely to be incorrectly classified.

Table 11 summarizes our findings. The table presents the av-
erage percentage of changes in each category. For example, the
first row of the table shows that 11.7% of the incorrectly classified
changes were due to unclear requirements, whereas 11.5% of the
correctly classified changes were due to unclear requirements. In
this case, it is clear that a change caused by unclear requirements
has no increased chance of being incorrectly classified. We also see
a very small difference in classification accuracy for changes made
as a side-effect of other changes. Changes due to unclear documen-
tation, due to inadequate testing, due to coding errors, due to design
flaws and bug fixing changes are more likely to be correctly clas-
sified than not. Changes due to a scope change are slightly more
likely to be incorrectly classified. In contrast, changes due to inte-
gration errors (i.e., the change was made to fix an integration error)
and changes that modify API code are twice as likely to be incor-
rectly classified. Also, changes that have related changes are 10
times as likely to be incorrectly classified. This finding indicates
that although developers are aware of the fact that there are related
changes, they are not aware of the potential risk of these related
changes (i.e., since they are marking them as being not risky, these
changes end up introducing bugs later on).

To make sure that our findings are chosen from a representative
sample, we measured the number of unique developers responsible
for the changes used in this analysis. We found that the incorrectly
classified changes were made by more than 60 unique developers
and the correctly classified changes were made by more than 370
developers.

Table 9: Most Important Factors When Classifying Bug Intro-
ducing Changes

Model Metric Effect

Bug-Introducing Changes Lines Added*** +180%

Risky Changes
Lines Added*** +128%
File Bugginess*** +102%
File Devs*** +131%

(p < 0.001 ***; p < 0.01 **; p < 0.05 *)

Table 10: Risky vs. Bug-introducing Changes
Bug-Introducing

Risky Yes No

High HI HNI
Low LI LNI

Based on these findings, we recommend that developers care-
fully consider their risk assignments for changes that are caused by
integration errors, that have related changes and that modify API
code.
8. LESSONS LEARNT AND FUTURE WORK

After performing our study, we asked the opinions of an expe-
rienced development manager in the company about our findings.
The manager leads one of the teams studied as part of this paper
and is not a co-author of the paper.

The development manager was excited about the findings and
suggested that we build a recommendation tool that can be lever-
aged by him and other team managers to assign quality assurance
efforts for risky changes. Based on the prediction models in Sec-
tion 6, we built a prototype tool that is currently being used by
teams within the company to automatically classify their changes.
The tool is still in its early stages and features are being added to
improve it.

At this early stage, the tool is just starting to be used to classify
risky changes. Instead of having to rely on gut feelings, develop-
ers can now verify their intuition with a tool that can quantify the
risk of a change. Changes that have a mismatch between the tool’s
classification and the manual classification are being investigated in
more detail. Furthermore, our approach is also used to classify the
many “unclassified” changes (e.g., during the period of our study,
nearly 60% of the changes were unclassified).

As for the developer-specific versus team-level models, the man-
ager shared our belief that team-level models are more practical.
However, he suggested that developer-level models would be more
beneficial in cases where new developers join a team for short pe-
riods of time (e.g., when interns join the development team). This
of course assumes that we have enough team history to train the
models on.

The manager pointed out that the strength of this work lies in the
fact that its findings are simple and easy to understand. A model

that is made up of 4-5 factors can be easily understood by man-
agers, so they will know why changes are being flagged. This
makes the model much more appealing than a black-box type so-
lution where changes are flagged without any insight as to the ra-
tionale. In addition, he pointed out that it would be desirable for
the work to also provide a possible course of action to mitigate the
risk of a flagged change. For example, a model that flags a risky
change might suggest the reduction in risk that can be achieved if
unit testing or code reviews were performed on the change.

Table 11: Comparison Between Correctly and Incorrectly
Classified Changes

Category Incorrectly
Classified

Correctly
Classified

C
au

se

Unclear Requirement 11.7% 11.5%
Side-effect of Other Changes 7.3% 6.4%
Unclear Documentation 0.7% 1.5%
Inadequate Testing 0.73% 2.3%
Scope Change 4.4% 3.2%
Coding Error 28.5% 37.2%
Integration Error 2.2% 0.8%
Design Flaw 10.9% 11.5%

Bug fixing change 70.1% 77.9%

Has related changes 70.8% 7.4%

Modifies API 2.9% 1.5%

9. LIMITATIONS
Threats to Construct Validity consider the relationship between
theory and observation, in case the measured variables do not mea-
sure the actual factors.

Changes that introduced bugs were manually mapped in this project
(i.e., the change that caused a bug was mapped to the change that
caused the bug). Although this mapping was done by the project
developers themselves, in certain cases, some changes might not
have been mapped correctly or not mapped at all.

The risk value used in our study was manually assigned to changes
by the developers who made the change. Hence, it is possible that
the wrong risk value is assigned. However, our analysis (in Sec-
tion 7.2) of the percentage of non-risky changes that introduced
bugs showed that developers are accurate 96.9% of the time. Also,
it is important to note that the risk was not assigned by a manager
or any other person. The fact that this risk is assigned by the de-
veloper who made the change makes it very credible. Furthermore,
we are not aware of any other data set that has manually assigned
risk values to changes. That said, it would be ideal to have perfect
knowledge of the risky changes and use these changes to perform
our study. One possibility is to track changes and see which ones
actually required additional review or testing. Another possibility
is to do a pilot study in which multiple people assign a risk value to
a change and the level of inter-rater agreement can be used to have
more confidence in the assigned risk value. Since we do not have
such data yet, we refer this research as future work.

When asked to assign the risk to changes, developers assigned
risk to 40% of the changes. Our results may be affected by the fact
that not all changes were assigned a risk value. However, our re-
sponse rate of 40% from developers is at least as good as other soft-
ware engineering studies, which have a response rate in the range
of 14 - 33% [4, 31].

During our investigation as to how correct developers are in clas-
sifying bug-introducing changes, we looked at how correct devel-
opers are when they mark changes as being non-risky. We did not

look into how correct developers are when marking a change as
risky. The reason is that changes marked as being risky undergo
more scrutiny and might be modified before being integrated into
the code base. Hence, the link between risky changes and bug-
introducing changes is biased. In contrast, our analysis on changes
flagged as non-risky does not exhibit such bias.
Threats to External Validity consider the generalization of our
findings. The studied project was a commercial project written
mainly in Java and C/C++, therefore, our results may not gener-
alize to other commercial or open source projects. That said, we
do believe that some of the findings may hold for similar projects,
especially large, commercial projects from the mobile domain. We
also believe that our finding which shows that risk of changes de-
pends on the developer or team who makes the change may hold
for other software projects.

Some of the factors used in our study are project specific, e.g.,
modify Java and modify CPP factors in Table 1. The goal of us-
ing these metrics was to examine the effect of upper layer (e.g.,
application) versus lower layer (e.g., OS) changes on risk. Differ-
ent projects may use other programming languages or architectural
styles, in which case, our metrics cannot be directly used. How-
ever, we believe that using factors that differentiate between upper
and lower level changes can be done for other projects.

10. CONCLUSION
Organizations are strongly interested in managing risk which is

a considerably more encompassing concept than bugs which has
been extensively studied by the software engineering research com-
munity. While a risky change might not introduce bug, it might lead
to delays and large cost overruns. In this empirical study, the first
of its kind, we looked at a unique data set about the risk of software
changes to better understand the characteristics of risky changes.
The main findings of our study are:

• When studying risky changes, the developer making the change
and the team they belong to need to be considered.

• Risky changes can be effectively identified using factors such
as the number of lines and chunks added by the changes, the
bugginess of the files being changed, the number of bug re-
ports linked to the change and the experience of the developer
making the change.

• We find that developers are accurate 96.1% of the time when
identifying bug-introducing changes. However, developers’
identification of risky changes is less reliable. Especially,
when changes have many related changes.

Our study opens a new avenue for Software Engineering research
related to risk management within software organizations, and not
only bugs, introduced by changes. We plan (and encourage other
researchers) to further develop on the findings of this paper. We see
many potential avenues for future work related to risk management
as a key and important concept in the production of software today.

Furthermore, one of the key lessons that we learned through this
study is that practitioners are willing to get involved in research,
as long as their commitment is kept to a minimum and the data
collection is done in a non-intrusive manner.

Acknowledgments
We would like to thank Research in Motion (RIM) for providing
support and data access for this study. The findings and opinions
expressed in this paper are those of the authors and do not neces-
sarily represent or reflect those of RIM and/or its subsidiaries and
affiliates. Moreover, our results do not in any way reflect the quality
of RIM’s products.

11. REFERENCES
[1] Erik Arisholm and Lionel C. Briand. Predicting fault-prone

components in a Java legacy system. In ISESE ’06:
Proceedings of International Symposium on Empirical
Software Engineering, pages 8–17, 2006.

[2] Victor R. Basili, Lionel C. Briand, and Walcélio L. Melo. A
validation of object-oriented design metrics as quality
indicators. IEEE Trans. Softw. Eng., 22(10):751–761, 1996.

[3] Nicolas Bettenburg and Ahmed E. Hassan. Studying the
impact of social structures on software quality. In Proc. Int’l
Conf. on Program Comprehension, pages 124–133, 2010.

[4] Nicolas Bettenburg, Sascha Just, Adrian Schröter, Cathrin
Weiss, Rahul Premraj, and Thomas Zimmermann. What
makes a good bug report? In Proceedings of Intĺ Sym. on
Foundations of Software Engineering, pages 308–318, 2008.

[5] Christian Bird, Nachiappan Nagappan, Brendan Murphy,
Harald Gall, and Premkumar Devanbu. Don’t touch my
code!: examining the effects of ownership on software
quality. In Proceedings of Sym. and European Conf. on
Foundations of Software Engineering, pages 4–14, 2011.

[6] Barry W. Boehm. Software risk management: Principles and
practices. IEEE Softw., 8(1):32–41, January 1991.

[7] Marcelo Cataldo, Audris Mockus, Jeffrey A. Roberts, and
James D. Herbsleb. Software dependencies, work
dependencies, and their impact on failures. IEEE Trans. on
Softw. Eng., 99(6):864–878, 2009.

[8] S. R. Chidamber and C. F. Kemerer. A metrics suite for
object oriented design. IEEE Trans. Softw. Eng.,
20(6):476–493, 1994.

[9] Jacek Czerwonka, Rajiv Das, Nachiappan Nagappan, Alex
Tarvo, and Alex Teterev. Crane: Failure prediction, change
analysis and test prioritization in practice – experiences from
windows. In Proceedings of Intĺ Conf. on Software Testing,
Verification and Validation, pages 357–366, 2011.

[10] F. M. Dedolph. The neglected management activity:
Software risk management. Bell Labs Tech. Journal,
8(3):91–95, 2003.

[11] Bradley Efron. Estimating the error rate of a prediction rule:
Improvement on Cross-Validation. Journal of the American
Statistical Association, 78(382):316–331, 1983.

[12] Jon Eyolfson, Lin Tan, and Patrick Lam. Do time of day and
developer experience affect commit bugginess. In
Proceeding of Working Conf. on Mining Software
Repositories, pages 153–162, 2011.

[13] Bernd Freimut, Susanne Hartkopf, Peter Kaiser, Jyrki
Kontio, and Werner Kobitzsch. An industrial case study of
implementing software risk management. In Proc. of
European Software Engineering Conf. and Intĺ Sym. on
Foundations of Software Engineering, pages 277–287, 2001.

[14] Kehan Gao, Taghi M. Khoshgoftaar, Huanjing Wang, and
Naeem Seliya. Choosing software metrics for defect
prediction: an investigation on feature selection techniques.
Softw. Pract. Exper., 41:579–606, April 2011.

[15] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy. Predicting
fault incidence using software change history. IEEE Trans. of
Softw. Eng., 26(7):653–661, July 2000.

[16] M A Hall and L A Smith. Practical feature subset selection
for machine learning. Computer Science, 98:181–191, 1998.

[17] Tracy Hall, Sarah Beecham, David Bowes, David Gray, and
Steve Counsell. A systematic review of fault prediction
performance in software engineering. IEEE Trans. on Softw.
Eng., 99, 2011.

[18] Ahmed E. Hassan. Predicting faults using the complexity of
code changes. In Proceedings of Intĺ Conference on Software
Engineering, pages 78–88, 2009.

[19] Israel Herraiz, Jesus M. Gonzalez-Barahona, and Gregorio
Robles. Towards a theoretical model for software growth. In
MSR ’07: Proceedings of the Fourth International Workshop
on Mining Software Repositories, page 21, 2007.

[20] Sunghun Kim, E. James Whitehead, Jr., and Yi Zhang.
Classifying software changes: Clean or buggy? IEEE Trans.
Softw. Eng., 34(2):181–196, 2008.

[21] Marek Leszak, Dewayne E. Perry, and Dieter Stoll.
Classification and evaluation of defects in a project
retrospective. J. Syst. Softw., 61(3):173–187, 2002.

[22] Thomas J. McCabe. A complexity measure. In ICSE ’76:
Proceedings of the 2nd international conference on Software
engineering, page 407, 1976.

[23] J.A. Miccolis, K. Hively, and B.W. Merkley. Enterprise Risk
Management: Trends and Emerging Practices. Institute of
Internal Auditors Research Foundation, 2001.

[24] Audris Mockus. Organizational volatility and its effects on
software defects. In Proceedings of Intĺ Sym. on Foundations
of Software Engineering, pages 117–126, 2010.

[25] Audris Mockus and David M. Weiss. Predicting risk of
software changes. Bell Labs Technical Journal,
5(2):169–180, 2000.

[26] Raimund Moser, Witold Pedrycz, and Giancarlo Succi. A
comparative analysis of the efficiency of change metrics and
static code attributes for defect prediction. In Proceedings of
Intĺ Conf. on Software Engineering, pages 181–190, 2008.

[27] Nachiappan Nagappan and Thomas Ball. Static analysis
tools as early indicators of pre-release defect density. In
ICSE ’05: Proceedings of the 27th international conference
on Software engineering, pages 580–586, 2005.

[28] Nachiappan Nagappan and Thomas Ball. Use of relative
code churn measures to predict system defect density. In
ICSE ’05: Proceedings of the 27th international conference
on Software engineering, pages 284–292, 2005.

[29] Niclas Ohlsson and Hans Alberg. Predicting fault-prone
software modules in telephone switches. IEEE Trans. Softw.
Eng., 22(12):886–894, 1996.

[30] I Ozkaya, P. Kruchten, R. Nord, and N. Brown. Second
international workshop on managing technical debt, 2011.

[31] Teade Punter, Marcus Ciolkowski, Bernd Freimut, and Isabel
John. Conducting on-line surveys in software engineering. In
Proceedings of Intĺ Sym. on Empirical Software Engineering,
pages 80–88, 2003.

[32] Peter C. Rigby, Daniel M. German, and Margaret-Anne
Storey. Open source software peer review practices: A case
study of the apache server. In Proceedings of Intĺ Conf. on
Software Engineering, pages 541–550, 2008.

[33] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller.
When do changes induce fixes? In Proceedings of Intĺ
Workshop on Mining Software Repositories, pages 1–5,
2005.

[34] Zuoning Yin, Ding Yuan, Yuanyuan Zhou, Shankar
Pasupathy, and Lakshmi Bairavasundaram. How do fixes
become bugs? In Proceedings of Sym. and European Conf.
on Foundations of Software Engineering, pages 26–36, 2011.

[35] Thomas Zimmermann, Rahul Premraj, and Andreas Zeller.
Predicting defects for Eclipse. In Proceedings of Intĺ
Workshop on Predictor Models in Software Engineering,
pages 9–15, 2007.

