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An Inequality for a Functional of Probability 
Distributions and Its Application to Kac's 

One-Dimensional Model of a Maxwellian Gas 

Hiroshi Tanaka 

1. Introduction 

Let ~ be the class of 1-dimensional probability distributions f with 

0 < ~ 2 ( f ) < ~ ,  

where ~2 (f)  denotes the second moment of f. Taking a probability space (f2, P) 
which is big enough to carry Gaussian random variables, we introduce a functional 
e defined for f e ~  by 

e I f ]  = i n f E  { IX-  YI2}, 

where the infimum is taken over all pairs of random variables X and Y defined 
on (f2, P) and distributed according to f and g respectively; here g is the Gaussian 
distribution with mean 0 and variance a 2 =~2 (f)- e I-f] is sometimes denoted 
by e IX] when X is a random variable with distribution f. It should be noticed 
that the value of e [ f ]  does not depend upon a choice of the probability space 
(f2, P). The purpose of this paper is to present some basic properties of e (especially, 
the inequality (2.2)) together with an application to the central limit theorem and 
then to show that the functional e is monotone decreasing along Boltzmann 
solutions of Kac's one-dimensional model of a Maxwellian gas. Some of our 
results can be generalized to the case of R 3; for example, the functional e similarly 
defined in R 3 decreases along solutions of Boltzmann's problem for the 3-dimen- 
sional Maxwellian gas, but this will be discussed in another occasion. 

2. Basic Properties of e and a Proof of the Central Limit Theorem 

Theorem 1. Let f ~ ,  and denote by g the Gaussian distribution with mean 0 and 
variance tr2= o~ 2 (f). Let X and Y be random variables with distributions f and g, 
respectively. Then, e l f ]  = E { I X -  y]2} if and only if X=F-I(G(Y))  almost surely, 
where F-1 is the right continuous inverse function of the distribution function F 
corresponding to f and G is the distribution function corresponding to g. 

In the proof of this theorem the probability space is chosen as follows: f2 is 
the unit interval [0, 1) and P is the Lebesgue measure in f2. The proof is carried 
out in 3 steps. 

Step 1. (X(co)-X((o')) (r(og)-  r(~o'))>0 for almost all (09, o9') (P| Suppose 
the contrary holds. Then for some e >0  at least one of the following events has 
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positive P|  

{(09,09')ef2xO: X ( 0 9 ) - X ( 0 9 ' ) < - 3 a  and Y(09)- Y(09')>38} (1) 

{(09, 09')~ O • f2: X(09)-X(09 ' )>3e  and Y(09)- Y(09')< - 3 e } .  (2) 

We assume that the event (1) has positive probability for simplicity. Then, for 
some integers Jl, J2, kl, k2 with Jl + 1 <J2 and kl + 1 < k2, the event 

= ~'(09, co'): Jl e < X(09) < (Jl + 1) e, j: e < X(oY) < (j: + 1) e 

ka z < Y(09') < (kl + 1) ~, k 2 ~ < Y(09) <-- (k 2 q- 1) g 3 

has positive P|  If we set 

A =  {09: ja a<X(09)<(jl + l)e, k2 e< Y(09)<(k2 + l)e } 

A'=  {~0:J2 ~ < X(09) < (J2 + 1) e, k 1 ~< Y(09)<(kl + 1) e}, 

then d = A x A' and hence P(A) > O, P(A') > 0. Next, we take an irrational number 2 
and denote by T the Weyl automorphism: coef2~09+2(mod 1). Then there 
exists an integer n = 0  such that P ( A n T - " A ' ) > O .  If we set B = A n T - " A ' ,  
B' = T"B, go = T", then P(B) = P(B') > 0 and B ~ B' =~J. We now define 

IX(go (09)) for 09eB 

X# (091 = IX(go-'(091) for 09eB' 

IX(o)  for 09~Bt..)B'. 

Since go: B ~ B '  is measure-preserving 1, X # has still distribution f, and we have 

E {IX* - YI 2 } = i IX(go (09))- Y(09) 12 P(d 09) + ~ IX(go -1  (09)) - -  Y(09) I 2 P(d 09) 
B B' 

+ ~ IX(a))- Y(09)I 2 n(d 09) 
( B ~ B ' )  c 

=~ {Ix(go (09))- Y(09)l e + Ix(09)- Y(go(09))] 2} P(d09) 
B 

+ ~ IX(09)-Y(09)I2p(d 09) 
( B u B ' )  e 

< ~ {[X(09)- Y(09)12 + IX(go(co))- r(go (09))12} P(d 09) 
B 

+ ~ [X(Og)-Y(09)]2p(d09)=E{IX(09)-Y(Og)12}; 
(BuB') c 

the inequality part in the above employs the following elementary fact: if al < a2 
and bl < b2, then (al - b j) 2 + (a2 - b2) 2 < (al - b2) 2 + (a2 - bl) 2. We thus arrive at a 
contradiction. 

Step 2. Let P(y, .) be a regular conditional probability distribution of X given 
Y=y,  and denote by S r the smallest closed interval such that P(y, Sr)= 1. We 
claim that 

Sy and S r, are non-overlapping for almost all (y, y') with respect to g| (2,1) 

I owe the use of the Weyl automorphism for constructing cp to Y.Takahashi.  
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Since P(y, .)| .) is a regular conditional probability distribution of (X(o), 
X(d ) )  given (Y(o~), Y(co'))= (y, y'), we have from Step 1 

~ g (dy) g (dy') ~. ~ Z (x, x', y, y') P(y, dx) P(y', dx') 

= E  {z(X(co), X(o)'), Y(~o), r (d))}  = 1 

where 3/is the indicator function of the set 

F =  {(x, x', y, y')e R" : ( x -  x') (y - y') > O} . 

Therefore, for almost all (y, y') with respect to g|  we have 

~ )~(x, x', y, y') P(y, dx) P(y', dx') = 1. 

So, if we set F1 ={(x, x')eR2: x>x'} ,  then P(y, ")| .) is supported by F 1 for 
almost all (y, y')eF1; but this is a complicated way of saying that (2.1) holds. 

Step 3. From Step 2 one can prove easily that Sy is a single point for almost 
all y with respect to g. Now, this fact combined with the inequality of Step 1 
implies that X is an increasing function of Y (a.s.); this is possible only when 
X = F - I ( G ( Y ) )  almost surely. The "if" part is obvious, since the infimum in the 
definition of e [ f ]  is actually attained by some pair. 

Theorem 2. Let X and Y be independent random variables with distributions fl  
and f2e~,  respectively, and assume that E { X } = E { Y } = O .  Then, for any real 
constants a, b such that a =I = O, b 4 O, 

e laX + b Y] < a 2 e IX] + b 2 e [ Y], (2.2) 

unless both X and Y are Gaussian. 

The proof of this theorem is based upon Theorem 1. It is obvious that 

e [aX + b Y] < a 2 e IX] + b 2 e [ Y] 

holds, and so assuming the equality holds in the above, we will prove f~=gi, 
where gi is the Gaussian distribution with mean 0 and variance a~ = e2 (f~), i = 1, 2. 
If X~ and X2 are independent random variables with distributions ga and g2, 
respectively, then with the obvious notation it follows from Theorem 1 that 

a z e[X] + b2e [ Y] = a 2 E {[F~-1 (GI (X~)) - X1 [2} + b 2 E {[FZ ~ (G2 0(2) ) -  X 2 [z} 

= E {[aVl-l(G1 (Xl))+ brd-l(G2 (X2))-(aXl + bX2)]2}. 

Since aXx + bX2 is also G-distributed, we have again from Theorem 1 

aFI-I(G~(Xa))+bFd-~(G2(X2))=F-a(G(aX~ +bX2) ) a.s., (2.3) 

where F is the distribution function of aX + b Y. By the right continuity of the 
functions involved, (2.3) yields 

aFt- I(G1 (x)) + bF2-1(G2 (y)) = F -  ~ (G (a x + b y)) 

for all x, yER ~. This functional equation for unknown F1, F2, F can easily be 
solved; the result is F~ = G1, F 2 = G2, completing the proof. 
4 Z.Wahrscheinlichkeitstheorie verw. Geb., Bd. 27 
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We next list some simple properties of e for later use. 

1. I f f ,  converges to some f ~  as nT~  in such a way that 

lim sup S x2 f,(dx) =0, (2.4) 
N-,~o .~1  Ixl>N 

then lim e I f . ]  = e I-f]. The condition (2.4) is satisfied if for some iv > 2 the absolute 
n.-~ oo 

p-th moments o f f ,  are bounded in n. 

2. Let f o ~  and a2(f0)=a 2 for 0 < 0 < 1 ,  and assume that Stp(x)fo(dx) is 
Borel measureable in 0 for any bounded continuous function r Then for any 
probability measure # on [0, 1) we have 

e [~ fo #(d0)] =< ~ e [fo] #(dO). 

3. By Theorem 1, e admits the expression 

e [ f ]  = 2  S {x2-x G-'(F(x))} f(dx) 

for a continuous probability distribution f in ~. 
The inequality (2.2) will now be applied to give a simple proof of the central 

limit theorem. Let {X.}.=t,2 .... be a sequence of independent identically distrib- 
uted random variables with mean 0 and variance 1. Then the so-called central 
limit theorem states that the distribution of ~.--n-~(X~ +...+X.) tends to a 
Gaussian distribution as nToo. Here we prove that e [ ~ J ~ 0  as n~oo assuming 
E {X~} < ~ 2. This condition implies that 

E{~:}=lE{x~}+a(1-1)<cons t .  (independent of n). (2.5) 

Putting r/k= ~2~, we first prove that e [qk]~0 as k Too. The decreasing property 
of e [qk] is obvious by the inequality (2.2), and so we denote by I the limit of e [qk] 
as k- ,  ~ .  I f f  is a limit distribution of~/k as k ~  oo via some subsequence k~ < k 2 < . . . ,  
and if q and ( are independent random variables with distribution f, then it 
follows from (2.5) and 1 of w 2 that 

e[tl]=lime[tlk~]=lp_.o~ and e [  q--2~] = l im e[t/2~]=/,p_. |  

therefore by Theorem 2 the limit l must be 0. Next, we write an integer n>  1 as 

n= ~ nk where nk=ek 2k with ek=0 or 1. Then, using the inequality (2.2) we have 
k = O  

e [4.] =<ln k~O nk= e [qk_], and hence e [ ~ . ] ~ 0  as was to be proved. 

3. e Decreases along Solutions of Boltzmann's Problem for Kac's Model 
of a Maxwellian Gas 

Given f l , f 2 ~  i~ and 0~[0, 270, we denote by Bo(fl,f2 ) the probability distri- 
bution of Xt cos 0 + X 2 sin 0, where Xt and X 2 are random variables with distri- 

2 This condition is assumed just to simplify the proof. Without this e [~.] still tends to 0. 
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butions fl  and f2 respectively. We also put 

2~t 

In Kac's one-dimensional model of a Maxwellian gas, the distribution u(t, dx) of 
molecular speeds at time t > 0  is determined by the solution of Boltzmann's 
problem 

Ou(t, .) = B(u(t), u ( t ) ) -u( t ,  .). (3.1) & 

The solutions of this equation can be obtained by Wild's sum [21. If the initial 
distribution has a density, then so does the solution, and it is known that the 
entropy increases along the solution with time, while the solution itself tends to a 
Gaussian distribution as tToo. McKean [11 gave detailed discussions on this 
subject; he gave also other functionals which are (or, at least are expected to be) 
monotone along the solutions of (3.1) together with an interesting conjecture 
about them. But, among these functionals, the entropy and Linnik's functional 
are the only ones which were used effectively in the investigation of the asymptotic 
properties of the solutions of (3.1). In this section, we prove that the functional e 
decreases monotonically to zero along the solutions of (3.1); this statement itself 
implies automatically that the solutions of (3.1) tend to Gaussian distributions 
as t l ' ~ .  

Theorem 3. Let u(t) be the solution of (3.1) with initial distribution f e~.  Then, 
(i) e [u(t)l is decreasing in t, and (ii) if f has finite fourth moment, e [u(t)] decreases 
to 0 as tT~ .  

The following corollary is an immediate consequence of the above theorem 
and 3 of w 2. 

Corollary. Let ~o be the subclass of ~ consisting of continuous probability 
distributions, and put eo[ f ]=  S xG -1 [F(x)] f (dx). Then the functional eo is in- 
creasing along the solutions of (3.1) with initial distributions e ~ e. 

The proof of Theorem 3 will be given in several steps. 

Proof 1. Let ~ (f),  n > 1, be the (finite) set of probability measures from 
defined inductively as follows: (i) ~ ( f )  consists of a single element f, and (ii) 
~n(f) is the set of all probability measures of the form B(f l , f2)  with f l e ~ ( f ) ,  
f 2 e ~ 2 ( f ) ,  nl + n2 =n. Then, the solution u(t) of (3.1) with initial distribution f 
can be expressed as Wild's sum 

or3 

u(t) = e -t ~. (1 -- e-t) "-1 p,( f ) ,  (3.2) 
n = l  

where p, ( f )  stands for a convex combination of elements in ~ (f),  n > 1 ([2], see 
also [11). 

2. If f denotes the even part of f, say f (dx )=�89  then it is 
easy to see that B(fl,f2)=B(f~,f2). Therefore, if fl  and f2 have the same second 
4* 
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moment, it follows from 2 of w 2 and Theorem 2 that 

1 2~ 
e [B (f~, fE)] = e [B (f~, f2)] =<-~n AS e [Bo (f~, j~)] dO 

13 

1 2~ 
=2re < o ~ {@ I-~1"] COS2 0 + e I-L] sinE 0} dO < e [ f t ]  +2 e [f2] , 

because e [ f ]  < e [ f ] .  Therefore we have e [p,(f)]  < e I f ] ,  and hence by Wild's 
sum (3.2) and 2 of w 2 we see that 

e [u (t)] < e [ f ]  (t > 0); (3.3) 

the equality holds if and only if f is a Gaussian distribution. (3.3) implies the 
part (i) of the theorem. 

3. If S x4 f (dx)<~,  then by (3.1) the function g( t )=Sx 4 u(t, dx) satisfies the 
differential equation 

d~(t) 3 1 
dt - 4 t r4-  m(t), ~rE=~2(f), 

which implies that c~(t)-~3tr 4 as t ~ ,  and hence ~(t) is bounded. Next, let u~ be 
a limit distribution of u (t) as t 1" ~ via some subsequence tl < tE < ' " .  Since ~ (t) is 
bounded, we have e [u~] = lira e [u (t,)] = l ime [u (t)] by 1 of w 2. If u~o (t) denotes 

the solution of (3.1) with initial distribution uo~, then an application of Wild's sum 
shows that u= (t) = lim u (t, + t) and hence e [u| (t)] = lim e [u (t, + t)] = e [u~]. 

n ~ o G  t ~ t 3  

Therefore u~ must be a Gaussian distribution from the preceding step, as was to 
be proved. 

Note. After sending the manuscript to the editor, I was informed from T.Yanagimoto of a simple 
proof of Theorem 1 based upon the following Hoeffding's formula: if F denotes the joint and F x and F r 
the marginal distribution functions of X and Y, then 

E(XY)-E(X) E(Y)= ~ ~ [f(x, y)-Fx(x ) Fr(y)] dx d e 
- ~  - o o  

provided the expectations on the left hand side exist. 
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