An Inequality for Certain Functional of Multidimensional Probability Distributions

Hiroshi MURATA and Hiroshi TANAKA (Received September 10, 1973)

§1. Introduction and the results

Denote by \mathscr{P} the class of all probability distributions f in \mathbb{R}^d such that $\int |x|^2 f(dx) < \infty$ and $\int (x_i - \mu_i)^2 f(dx) > 0$ $(1 \le i \le d)$, where $\mu = (\mu_1, \dots, \mu_d)$ is the mean vector of f. For each $f \in \mathscr{P}$, denote by g_f the Gaussian distribution with the same mean vector and variance matrix as those of f. We introduce a functional e on \mathscr{P} by

$$e[f] = \inf E\{|X - Y|^2\}, \qquad f \in \mathcal{P},$$

where the infimum is taken over all pairs of \mathbb{R}^d -valued random variables X and Y defined on a probability space (Ω, \mathcal{F}, P) and distributed according to f and g_f respectively. We also write e[X] for $e[f_X]$, where f_X is the probability distribution of a random variable X.

In the one dimensional case, the functional e was introduced and its basic properties were studied in [4] with an application to Kac's one-dimensional model of a Maxwellian gas. The purpose of this paper is to extend some results in [4] to the multi-dimensional case, that is, we will prove the following theorems.

THEOREM 1. Let X and Y be random variables with probability distributions $f \in \mathcal{P}$ and g_f respectively, and assume that $e[f] = E\{|X-Y|^2\}$. Then, X is equal to some Borel function of Y almost surely.

THEOREM 2. Let X_1 and X_2 be independent random variables with probability distributions belonging to \mathcal{P} . Then,

$$e[X_1 + X_2] < e[X_1] + e[X_2]$$

unless both X_1 and X_2 are Gaussian. In other words, the functional equation

$$\mathbf{e}[f_1 * f_2] = \mathbf{e}[f_1] + \mathbf{e}[f_2], \qquad f_1, f_2 \in \mathcal{P}$$

gives a characterization of Gaussian distributions.

§ 2. Proof of the theorems

The proof of Theorem 1 will be given in a series of lemmas. In what follows, $<\cdot, \cdot>$ denotes the usual inner product in \mathbb{R}^d .

LEMMA 1. From the same assumption as in Theorem 1, it follows that

 $< X(\omega) - X(\omega'), Y(\omega) - Y(\omega') > \ge 0$

for almost all (ω, ω') with respect to $P \otimes P$.

PROOF. In proving this lemma, we may assume that the basic probability space (Ω, \mathcal{F}, P) is chosen as follows: Ω is the unit interval [0, 1), \mathcal{F} is the class of Borel sets of Ω and P is the Lebesgue measure in Ω . Suppose the conclusion of the lemma is false. Then, there exists $\varepsilon > 0$ such that the set

$$\widetilde{A} = \{ (\omega, \omega') \in \Omega \times \Omega : < X(\omega) - X(\omega'), Y(\omega) - Y(\omega') > < -\varepsilon \}$$

has strictly positive $P \otimes P$ -measure. Now for integers $n, N \ge 1$ and for any lattice point $\mathbf{m} = (m_1, ..., m_d) \in \mathbb{Z}^d$, we set

$$\begin{split} A_{\mathbf{m}}^{n} &= \prod_{i=1}^{d} \left[m_{i} 2^{-n}, \ (m_{i}+1) 2^{-n} \right) \\ X_{n}(\omega) &= \mathbf{m} 2^{-n} \quad \text{for} \quad \omega \in X^{-1}(A_{\mathbf{m}}^{n}) \\ Y_{n}(\omega) &= \mathbf{m} 2^{-n} \quad \text{for} \quad \omega \in Y^{-1}(A_{\mathbf{m}}^{n}) \\ \tilde{A}_{n,N} &= \left\{ (\omega, \ \omega') \in \Omega \times \Omega \colon \frac{\langle X_{n}(\omega) - X_{n}(\omega'), \ Y_{n}(\omega) - Y_{n}(\omega') \rangle \langle -\varepsilon}{|X_{n}(\omega)|, \ |X_{n}(\omega')|, \ |Y_{n}(\omega)|, \ |Y_{n}(\omega')| \langle N} \right\}. \end{split}$$

Then, there exists N such that $P \otimes P(\tilde{A}_{n,N}) > 0$ for all sufficiently large n. Fixing such an N, we choose an n so that $P \otimes P(\tilde{A}_{n,N}) > 0$ and

(2.1)
$$2^{-n+3}N\sqrt{d}+2^{-2n+2}d < \varepsilon.$$

Since

$$\widetilde{A}_{n,N} = \bigcup (X^{-1}(\Lambda_{\mathfrak{m}_1}^n) \cap Y^{-1}(\Lambda_{\mathfrak{m}_2}^n)) \times (X^{-1}(\Lambda_{\mathfrak{m}_1}^n) \cap Y^{-1}(\Lambda_{\mathfrak{m}_2}^n))^{\diamond}$$

where the union is taken over all quartets $(\mathbf{m}_1, \mathbf{m}'_1, \mathbf{m}_2, \mathbf{m}'_2)$ satisfying

(2.2)
$$\begin{cases} <\mathbf{m}_{1}2^{-n}-\mathbf{m}_{1}'2^{-n}, \ \mathbf{m}_{2}2^{-n}-\mathbf{m}_{2}'2^{-n}><-\varepsilon\\ |\mathbf{m}_{1}2^{-n}|, \ |\mathbf{m}_{1}'2^{-n}|, \ |\mathbf{m}_{2}2^{-n}|, \ |\mathbf{m}_{2}'2^{-n}|< N, \end{cases}$$

there exist $\mathbf{m}_1, \mathbf{m}_1', \mathbf{m}_2, \mathbf{m}_2' \in \mathbb{Z}^d$ (satisfying (2.2)) such that

An Inequality for Certain Functional of Multidimensional Probability Distributions 77

$$P(A) > 0, \ A = X^{-1}(\Lambda_{m_1}^n) \cap Y^{-1}(\Lambda_{m_2}^n),$$
$$P(A') > 0, \ A' = X^{-1}(\Lambda_{m_1}^n) \cap Y^{-1}(\Lambda_{m_1}^n).$$

By (2.1) and (2.2), we see that

(2.3)
$$\langle x-x', y-y' \rangle < 0$$
 for any $x \in \Lambda_{m_1}^n, x' \in \Lambda_{m_1}^n, y \in \Lambda_{m_2}^n, y' \in \Lambda_{m_2}^n$

Next, we take an irrational number λ and denote by T the (ergodic) Weyl automorphism $\omega \in \Omega \to \omega + \lambda \pmod{1}$. Then there exists an integer k such that $P(A \cap T^{-k}A') > 0$. We set $U = T^k$, $B = A \cap U^{-1}A'$, B' = UB. Since $B \cap B' = \phi$ and $U: B \to B'$ is measure-preserving, we can define a new random variable X^* with probability distribution f by

$$X^{\sharp}(\omega) = \begin{cases} X(U(\omega)) & \text{for } \omega \in B \\ X(U^{-1}(\omega)) & \text{for } \omega \in B' \\ X(\omega) & \text{for } \omega \notin B \cup B' \end{cases}$$

From (2.3), we see that for $\omega \in B$

$$|X(U(\omega)) - Y(\omega)|^{2} + |X(\omega) - Y(U(\omega))|^{2}$$

$$<|X(\omega) - Y(\omega)|^{2} + |X(U(\omega)) - Y(U(\omega))|^{2},$$

and this inequality combined with the fact that U is measure-preserving gives us $E\{|X^* - Y|^2\} < E\{|X - Y|^2\}$. This is a contradiction, and the proof is finished.

LEMMA 2. Let X and Y be \mathbb{R}^d -valued random variables defined on a probability space (Ω, \mathcal{F}, P) , and assume that Y has a non-degenerate Gaussian distribution g. If

$$\langle X(\omega) - X(\omega'), Y(\omega) - Y(\omega') \rangle \ge 0$$

holds for almost all (ω, ω') with respect to $P \otimes P$, then there exist a regular conditional probability distribution $P_y(\cdot)$ of X given Y and a set $A(\subset \mathbb{R}^d)$ of Lebesgue measure 0 such that $P_y \otimes P_{y'}(\Gamma_{y,y'}) = 1$ holds for all y, $y' \notin A$, where

$$\Gamma_{y,y'} = \{ (x, x') \in \mathbb{R}^{2d} : \langle x - x', y - y' \rangle \ge 0 \}.$$

PROOF. Let Λ_m^n and Y_n be the same as in the proof of the preceding lemma, and let $P_y^{(n)}(\cdot)$ be a regular conditional probability distribution of X given Y_n ; it is given by

$$P_{y}^{(n)}(\Gamma) = P\{X^{-1}(\Gamma) \cap Y^{-1}(\Lambda_{\mathbf{m}}^{n})\}/g(\Lambda_{\mathbf{m}}^{n}),$$

for $\Gamma \in \mathscr{B}(\mathbb{R}^d)$, $y \in \Lambda_{\mathfrak{m}}^n$. If we set

$$\Psi_n(y) = \int_{\mathbb{R}^d} \psi(x) P_y^{(n)}(dx)$$

for a bounded continuous function ψ , then $\{\Psi_n(y), \mathscr{B}_n, g\}$ is a martingale, where \mathscr{B}_n is the σ -field generated by $\{\Lambda_m^n, m \in \mathbb{Z}^d\}$. Therefore, by the convergence theorem of martingales the set

$$B_{\psi} = \{ y \in R^d \colon \lim_{n \to \infty} \Psi_n(y) \text{ exists} \}$$

has full g-measure. Take a coutable family $\{\psi_k\}_{k\geq 1}$ which is dense in $C_0(\mathbb{R}^d)$, the space of real valued continuous functions on \mathbb{R}^d vanishing at infinity, and let B be the intersection of all B_{ψ_k} , $k\geq 1$. Then g(B)=1. Moreover, it is easy to see that for each $y \in B$ the limit $L_y(\psi)$ of $\Psi_n(y)$ as $n \to \infty$ exists for any $\psi \in C_0$ (\mathbb{R}^d) and defines a unique measure $P_y(\cdot)$, that is,

$$\lim_{n\to\infty}\int \psi(x)P_y^{(n)}(dx) = \int \psi(x)P_y(dx), \ \psi \in C_0(\mathbb{R}^d).$$

Now we define $P_y(\cdot)$ for $y \notin B$ to be an arbitrary probability measure on \mathbb{R}^d and put $A = B^c \cup \{y: P_y(\mathbb{R}^d) \neq 1\}$. We also redefine $P_y(\cdot)$ for y such that $P_y(\mathbb{R}^d) \neq 1$ to be an arbitrary probability measure. Then g(A) = 0 and $P_y(\cdot)$ is a regular conditional probability distribution of X given Y. To show that A and $\{P_y(\cdot)\}$ have the desired property, we first notice that

$$< X(\omega) - X(\omega'), Y_n(\omega) - Y_n(\omega') > \ge -\sqrt{d}2^{-n+1}|X(\omega) - X(\omega')|$$

holds for almost all (ω, ω') with respect to $P \otimes P$ and hence

(2.4)
$$P_{y}^{(n)} \otimes P_{y'}^{(n)}(\Gamma_{y,y'}^{(n)}) = 1$$

for almost all (y, y') with respect to $g \otimes g$, where

$$\Gamma_{y,y'}^{(n)} = \{ (x, x') \in \mathbb{R}^{2d} : \langle x - x', y - y' \rangle \ge -\sqrt{d} 2^{-n+1} |x - x'| \}.$$

But, since $P_{y,y'}^{(n)}(\cdot)$ is constant on each Λ_m^n , the equality (2.4) holds for all (y, y'). Because $\Gamma_{y,y'}^{(n)} \downarrow \Gamma_{y,y'}$ as $n \uparrow \infty$, we have $P_{y'}^{(n)} \otimes P_{y'}^{(n)}(\Gamma_{y,y'}^{(n_0)}) = 1$ for $n \ge n_0$; letting $n \uparrow \infty$ and using the facts that $P_{y}^{(n)}$ converges to P_y for $y \notin A$ and that $\Gamma_{y,y'}^{(n_0)}$ is closed, we obtain $P_y \otimes P_{y'}(\Gamma_{y,y'}^{(n_0)}) = 1$ for $y, y' \notin A$. Since n_0 is arbitrary, the lemma is proved.

By definition a set valued function S: $y \in \mathbb{R}^d \to S(y) \subset \mathbb{R}^d$ is said to be monotone, if there exists a set $A(\subset \mathbb{R}^d)$ of Lebesgue measure 0 such that the inequality

$$\langle x-x', y-y' \rangle \ge 0$$
 for $x \in S(y), x' \in S(y')$

holds whenever $y, y' \notin A$.

78

LEMMA 3. Let S: $y \in \mathbb{R}^d \to S(y) \subset \mathbb{R}^d$ be monotone. Then, S(y) consists of a single point for almost all y.

PROOF. First we consider the case d=1, and let I(y) be the smallest closed interval containing S(y). Then, the monotone property of S implies that I(y)and I(y') are non-overlapping if $y \neq y'$, $y, y' \notin A$ (a null set in the definition of monotonicity). Therefore, I(y) consists of a single point for almost all y, and hence so does S(y). Next, we consider the case d>1. Given $k(1 \leq k \leq d)$ and $z = (z_1, ..., z_{d-1}) \in \mathbb{R}^{d-1}$, we define a set valued function S_k^z on \mathbb{R}^1 by

$$S_{k}^{z}(\eta) = \begin{cases} \xi \in R^{1} : (w_{1}, ..., w_{k-1}, \xi, w_{k}, ..., w_{d-1}) \in S(y) \\ \text{for some } w = (w_{1}, ..., w_{d-1}) \in R^{d-1} \end{cases}$$

where $y = (z_1, ..., z_{k-1}, \eta, z_k, ..., z_{d-1})$. We put

$$A_{k}^{z} = \{ \eta \in R^{1} : (z_{1}, ..., z_{k-1}, \eta, z_{k}, ..., z_{d-1}) \in A \}$$
$$B_{k} = \{ z \in R^{d-1} : A_{k}^{z} \text{ is a null set} \}.$$

Then, by Fubini's theorem B_k^c and A_k^z for each $z \in B_k$ are null sets, and from the monotone property of S it follows that S_k^z is monotone for each $z \in B_k$. So, the result for the case d=1 implies that, for each $z \in B_k$, $S_k^z(\eta)$ is a single point for almost all η . Let D_k be the set of all $y \in \mathbb{R}^d$ such that the projection to the k-th coordinate reduces S(y) to a single point, and put $D = \cap D_k$. Then, D^c is a null set, and S(y) is a single point for each $y \in D$, as was to be proved.

The proof of Theorem 1 is now completed as follows. From the first two lemmas, it follows that there exist a null set A and a regular conditional probability distribution $P_y(\cdot)$ of X given Y with the property stated in Lemma 2. If we define $S(y), y \in \mathbb{R}^d$, as the smallest closed set of full P_y -measure, then $S(y) \times S(y') \subset$ $\Gamma_{y,y'}$ provided y, $y' \notin A$, or what is the same, the mapping S: $y \in \mathbb{R}^d \to S(y)$ is monotone. Therefore, by Lemma 3 S(y) is a single point for almost all y; this means that X is equal to some Borel function of Y almost surely.

We give the proof of Theorem 2. We remark that Theorem 1 implies the following: if $f \in \mathscr{P}$ and Y is g_f -distributed, then there exists some Borel function φ from \mathbb{R}^d into itself such that $e[f] = E\{|\varphi(Y) - Y|^2\}$, since there exists some pair of random variables (with distributions f and g_f) which gives the infimum value e[f]. Now we take independent Gaussian random variables Y_1 and Y_2 whose mean vectors and variance matrices are the same as those of X_1 and X_2 respectively. Then by the above remark, there exist Borel functions φ_1 and φ_2 such that $e[X_1] = E\{|\varphi_1(Y_1) - Y_1|^2\}$ and $e[X_2] = E\{|\varphi_2(Y_2) - Y_2|^2\}$. We have

(2.5)
$$e[X_1] + e[X_2] = E\{|(\varphi_1(Y_1) + \varphi_2(Y_2)) - (Y_1 + Y_2)|^2\}.$$

Since $\varphi_1(Y_1) + \varphi_2(Y_2)$ has the same distribution as that of $X_1 + X_2$ and $Y_1 + Y_2$ has the same mean vector and variance matrix as those of $X_1 + X_2$, the right hand side of (2.5) (and hence $e[X_1] + e[X_2]$) dominates $e[X_1 + X_2]$. Next, we suppose that $e[X_1] + e[X_2] = e[X_1 + X_2]$. Then, by Theorem 1 there exists a Borel function φ such that

$$\varphi_1(Y_1) + \varphi_2(Y_2) = \varphi(Y_1 + Y_2)$$
 a.s.

This equation implies that φ_1 , φ_2 and φ must be linear and hence X_1 and X_2 must have Gaussian distributions.

§3. Applications

1. Let $X_1, X_2, ...$ be R^d -valued independent random variables with common distribution $f(\in \mathscr{P})$ of mean vector 0. Then, by the same arguments as in [4], we can prove that $e[n^{-1/2}(X_1 + \cdots + X_n)] \rightarrow 0$ as $n \rightarrow \infty$ and hence the probability distribution of $n^{-1/2}(X_1 + \cdots + X_n)$ converges to g_f as $n \rightarrow \infty$; this is the well-known central limit theorem.

2. Let X_1 and X_2 be real-valued independent random variables, and assume that

$$\tilde{X}_1 = X_1 \cos \theta + X_2 \sin \theta$$
, $\tilde{X}_2 = -X_1 \sin \theta + X_2 \cos \theta$

are independent for some θ which is not an integral multiple of $\pi/2$. Then, X_1 and X_2 are Gaussian. This is known as a theorem of M. Kac [3]. There are several proofs (for example, see [1], [2]); here we give a proof based upon Theorem 2 assuming that the probability distributions of X_1 and X_2 are in \mathcal{P} .

By Theorem 2, we have

(3.1)
$$\begin{cases} \mathfrak{e}[\tilde{X}_1] \leq \mathfrak{e}[X_1] \cos^2 \theta + \mathfrak{e}[X_2] \sin^2 \theta, \\ \mathfrak{e}[\tilde{X}_2] \leq \mathfrak{e}[X_1] \sin^2 \theta + \mathfrak{e}[X_2] \cos^2 \theta. \end{cases}$$

Let

$$X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}, \quad A = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}.$$

Then we can prove that e[AX] = e[X], $e[AX] = e[\tilde{X}_1] + e[\tilde{X}_2]$ and $e[X] = e[X_1] + e[X_2]$; here we have used the orthogonality of the matrix A for the first equality and the independence of the components for the last two equalities. Therefore (3.1) holds with "=", and hence X_1 and X_2 are Gaussian by Theorem 2.

An Inequality for Certain Functional of Multidimensional Probability Distributions 81

References

- W. Feller, An Introduction to Probability Theory and Its Applications, Vol. II, 2nd ed., John Wiley & Sons, Inc., New York, 1971.
- [2] Y. Itoh, The information theoretic proof of Kac's theorem, Proc. Japan Acad., 46 (1970), 283-286.
- [3] M. Kac, On a characterization of the normal distribution, Amer. J. Math. 61 (1939), 726-728.
- [4] H. Tanaka, An inequality for a functional of probability distributions and its application to Kac's one-dimensional model of a Maxwellian gas, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete. 27 (1973), 47-52.

Department of Mathematics, Faculty of Science, Hiroshima University