An Inequality for Doubly Stochastic Matrices*

Charles R. Johnson** and R. Bruce Kellogg**
Institute for Basic Standards, National Bureau of Standards, Washington, D.C. 20234

(June 30, 1976)

Abstract

Interrelated inequalities involving doubly stochastic matrices are presented. For example, if B is an n by n doubly stochastic matrix, x any nonnegative vector and $y=B x$, then $x_{1} x_{2} \cdots x_{n} \leq$ $y_{1} y_{2} \cdots y_{n}$. Also, if A is an n by n nonnegative matrix and D and E are positive diagonal matrices such that $B=D A E$ is doubly stochastic, then det $D E \geq \rho(A)^{-n}$, where $\rho(A)$ is the PerronFrobenius eigenvalue of A. The relationship between these two inequalities is exhibited.

Key words: Diagonal scaling; doubly stochastic matrix; Perron-Frobenius eigenvalue.

An n by n entry-wise nonnegative matrix $B=\left(b_{i j}\right)$ is called row (column) stochastic if $\sum_{i=1}^{n} b_{i j}=1$ for all $i=1, \cdots, n\left(\sum_{i=1}^{n} b_{i j}=1\right.$ for all $\left.j=1, \cdots, n\right)$. If B is simultaneously row and column stochastic then B is said to be doubly stochastic. We shall denote the Perron-Frobenius (maximal) eigenvalue of an arbitrary n by n entry-wise nonnegative matrix A by $\rho(A)$. Of course, if A is stochastic, $\rho(A)=1$.

It is known precisely which n by n nonnegative matrices may be diagonally scaled by positive diagonal matrices D, E so that (1)

$$
B=D A E
$$

is doubly stochastic. If there is such a pair D, E, we shall say that A has property (${ }^{*}$). In this event it is our interest to obtain inequalities on D and E. In the process, certain related inequalities for doubly stochastic matrices are noticed.

It was first realized by Sinkhorn [4] ${ }^{1}$ that if A is entry-wise positive and square, then A has property (*). The proof amounts to showing that the process of alternately scaling A to produce a row stochastic matrix, and then a column stochastic matrix, and then continuing the process, actually converges to a doubly stochastic matrix. The hypothesis of positivity, however, can be weakened somewhat. If there exists no single permutation matrix P such that

$$
P^{T} A P=\left(\begin{array}{ll}
A_{11} & 0 \\
A_{21} & A_{22}
\end{array}\right)
$$

where A_{11} and A_{22} are square, then A is called irreducible. If there is a pair of permutation matrices P, Q such that $C=P A Q$, then we shall say that A and C are equivalent. If, further, A is equivalent to no matrix of the form

[^0]\[

\left($$
\begin{array}{ll}
A_{11} & 0 \tag{2}\\
A_{21} & A_{22}
\end{array}
$$\right)
\]

where A_{11} and A_{22} are square, then A is termed completely irreducible. It is an easy calculation to show that A has property (${ }^{*}$) if and only if each matrix equivalent to A does, and it is equally clear that for A to have property (*) it must have the zero-nonzero sign pattern of a doubly stochastic matrix. For example, if A has property $\left({ }^{(*)}\right.$) and if A is of form (2) this means we must then have $A_{21}=0$. It has further been shown [1] that when A is completely irreducible the alternate scaling process of Sinkhorn still converges and thus A has property (*). Since property (${ }^{*}$) is preserved under direct summation, we may summarize as follows.

REMARK 1: A square nonnegative matrix A has property (*) if and only if A is completely irreducible or A is equivalent to a direct sum of completely irreducible matrices.
Thus, property $\left({ }^{*}\right)$ depends only on the zero pattern of A. It is also a straightforward calculation (following [4]) that

Remark 2: If A has property (*), then the product DE of (1) is unique.
Our first observation is both necessary for later proofs and of interest by itself.
Theorem 1: If $\mathrm{B}=\left(\mathrm{b}_{\mathrm{ij}}\right)$ is an n by n doubly stochastic matrix and $\mathrm{x} \geq 0$ is any nonnegative vector, then, for $\mathrm{y}=\mathrm{Bx}$, we have

$$
\begin{equation*}
\prod_{i=1}^{n} x_{i} \leq \prod_{i=1}^{n} y_{i} . \tag{3}
\end{equation*}
$$

If B is completely irreducible, equality holds in (3) if and only if the right-hand side is 0 or all components of x are the same. Furthermore, among all irreducible nonnegative square matrices B satisfying $\rho(\mathrm{B}) \leq 1$, only those diagonally similar to doubly stochastic matrices satisfy (3) for all $\mathrm{x} \geq 0$.

Proof: From the arithmetic-geometric mean inequality [2]

$$
\begin{equation*}
\prod_{i=1}^{n} x_{i}^{\gamma_{i}} \sum_{i=1}^{\leq} \sum_{i}^{n} \gamma_{i} x_{i} \tag{4}
\end{equation*}
$$

where $x=\left(x_{1}, \cdots, x_{n}\right)^{T}$ is any nonnegative vector, and $\gamma=\left(\gamma_{1}, \cdots, \gamma_{n}\right)$ is a vector of nonnegative numbers satisfying $\sum_{i=1} \gamma_{i}=1$. Equality holds in (4) if and only if the x_{i} 's corresponding to nonzero γ_{i} 's are all equal. Now, suppose $B=\left(b_{i j}\right)$ is row stochastic and $y=B x, x \geq 0$. It follows from (4) that

$$
\begin{equation*}
\prod_{i=1}^{n} x_{j} x_{j} \leq \sum_{i=1}^{n} b_{i j} x_{j}=y_{i}, \quad \text { for } i=1, \cdots, n \tag{5}
\end{equation*}
$$

Taking a product over i of both sides, we arrive at

$$
\begin{equation*}
\prod_{j=1}^{n} x_{j} \sum_{i=1}^{n} b_{i j} \leq \prod_{i=1}^{n} y_{i} \tag{6}
\end{equation*}
$$

If B is doubly stochastic, $\sum_{i=1}^{n} b_{i j}=1$ for each $j=1, \cdots, n$, and it follows that (3) holds.
To analyze the case of equality, it is clear that equality holds in (3) if either x is a vector of equal components or the right-hand side of (3) is 0 . On the other hand, if equality holds in (3) and the righthand side of (3) is not 0 , then equality must hold in (5) for each $i=1, \cdots, n$. This means that for each i, the x_{j} 's corresponding to nonzero $b_{i j}$'s are all equal. This, in turn, implies, by virtue of equality holding in (5) for all i, that $y=Q^{T} x$ for some permutation matrix Q. Since $B Q Q^{T} x=y$, we have that $B Q$ has $Q^{T} x=y$ as a Perron-Frobenius eigenvector (corresponding to $p(B Q)=1$). If B is completely irreducible, then $B Q$ is irreducible, and, since $B Q$ is doubly stochastic, its Perron-Frobenius eigenspace is one-dimensional (because of the irreducibility) and is spanned by $(1,1, \cdots, 1)^{T}$. Therefore all components of $Q^{T} x$, and thus of x, are the same. It should be noted that even in case B is completely irreducible it is possible that the right-hand side of (3) be 0 for a nonnegative nonzero vector x. For example, let

$$
B=\left(\begin{array}{ccc}
1 / 3 & 1 / 3 & 1 / 3 \\
1 / 6 & 1 / 6 & 2 / 3 \\
1 / 2 & 1 / 2 & 0
\end{array}\right) \quad \text { and } x=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Thus, the second statement of the theorem is proven. It should also be noted that the case of equality in (3) may similarly be analyzed if B is equivalent to a direct sum of completely irreducibles. It is enough to assume B is equal to a direct sum of completely irreducibles. Then, in addition to equality occurring in (3) when the right-hand side is 0 , equality occurs precisely when the components of x are equal within each piece corresponding to a direct summand of B.

For the third statement, it is enough to assume that B satisfies $\rho(B)=1$. It then follows from the irreducibility of B that there is a positive diagonal matrix D such that $D B D^{-1}$ is row stochastic (D^{-1} is obtained from the Perron-Frobenius eigenvector of B, which is positive). Since $B x=y$ if and only if $\left(D B D^{-1}\right) D x=D y,(3)$ holds for $D B D^{-1}$ if it holds for B, so that we may as well assume B is row stochastic. Then, if B is not doubly stochastic, some column sum is <1, so let $\theta=\Sigma_{i} b_{i j}<1$. Let $x_{i}=1, i \neq j$, and $x_{j}=1+\epsilon$. Then (3) becomes

$$
1+\epsilon \leq \prod_{i}\left(1+b_{i j \epsilon}\right)=1+\theta \epsilon+0\left(\epsilon^{2}\right)
$$

which is impossible if $\epsilon>0$ is small enough. This completes the proof of the theorem.
It should be noted that essential portions of theorem 1 may also be demonstrated by a maximization argument.

Example: The assumption of irreducibility in the third statement of theorem 1 cannot, in general, be relaxed. If $B=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$ then B satisfies (3) for all $x \geq 0$ and $\rho(B)=1$, but B is not similar to a doubly stochastic matrix.

An alternate form of (3) is
Corollary 1: If $\mathrm{B}=\left(\mathrm{b}_{\mathrm{ij}}\right)$ is an n by n doubly stochastic matrix, then for any n real numbers $\mathrm{t}_{1}, \cdots, \mathrm{t}_{\mathrm{n}}$, satisfying $\mathrm{t}_{\mathrm{i}} \geq-1, \mathrm{i}=1, \cdots, \mathrm{n}$, we have

$$
\prod_{i=1}^{n}\left(1+t_{i}\right) \leq \prod_{i=1}^{n}\left(1+\sum_{j=1}^{n} t_{j} b_{i j}\right) .
$$

Our primary observation concerns row stochastic matrices with property (*).
Theorem 2: If A is a row stochastic matrix with property (${ }^{*}$) and D and E are the positive diagonal matrices guaranteed by (1) then

$$
\begin{equation*}
\operatorname{det} \mathrm{DE} \geq 1 \tag{7}
\end{equation*}
$$

Furthermore, equality holds if and only if A is actually doubly stochastic.
Proof: As $B=\left(b_{i j}\right)$ runs through all n by n doubly stochastic matrices and $F=\operatorname{diag}\left\{f_{1}, \cdots, f_{n}\right\}$ runs through all positive diagonal matrices, then $A=D^{-1} B F$ runs through all row stochastic matrices with property $\left(^{*}\right)$ where $D=\operatorname{diag}\left\{\sum_{j=1}^{n} b_{1} f_{j}, \cdots, \sum_{j=1}^{n} b_{n j} f_{j}\right\}$. Thus, since $B=D A E$, where $E=F^{-1}$, it suffices to show that $\operatorname{det} D \geq \operatorname{det} F$. If we denote $\left(\bar{f}_{1}, \cdots, f_{n}\right)^{T}$ by f, this is equivalent to saying that the product of the entries of $B f$ is greater than or equal to that of f for any positive vector f. This, of course, follows from theorem 1. To analyze the case of equality in (7), it suffices to assume B is completely irreducible. In this event, it follows from theorem 1 and the fact that $B f$ has no 0 components that equality in (7) implies that all entries of f are the same. Thus $D=F$ and equality holds in (7) precisely when A is already doubly stochastic.

Note: A related but rather different inequality when A is symmetric appears in [3, theorem 3]. Also a portion of the proof of that result could be used to prove part of the first statement in our theorem 1.

It follows from theorem 2 that
Corollary 2: If A is a row stochastic matrix with property (${ }^{*}$) and B is related to A by (1), then $|\operatorname{det} A| \leq|\operatorname{det} B|$.

We denote the eigenvalues of A by a_{1}, \cdots, a_{n}, ordered so that $\left|a_{1}\right| \leq \cdots \leq\left|a_{n}\right|$, and those of B by $\beta_{1}, \cdots, \beta_{n}$, ordered so that $\left|\beta_{1}\right| \leq \cdots \leq\left|\beta_{n}\right|$. Since $a_{n}=1=\beta_{n}$, it follows from corollary 2 that

Corollary 3: If A is a row stochastic matrix with property (${ }^{*}$) and B is related to A by (1), then $\prod_{i=1}^{n-1}\left|a_{i}\right| \leq \prod_{i=1}^{n-1}\left|\beta_{i}\right|$.

We conjecture that in case A is row stochastic with property (${ }^{*}$) and B is related to A by (1), then actually

$$
\left|a_{i}\right| \leq\left|\beta_{i}\right|, i=1, \cdots, n .
$$

The result of theorem 2 may be extended to all matrices with property (${ }^{*}$) in the following way.
Theorem 3: If A is any nonnegative n by n matrix with property (*) and D and E are positive diagonal matrices guaranteed by (1), then $\operatorname{det} \mathrm{DE} \geq \rho(\mathrm{A})^{\cdot \mathrm{n}}$. Furthermore, equality holds only if $\mathrm{DE}=\rho(\mathrm{A})^{-1} \mathrm{I}$.

Proof: It is enough to assume A is completely irreducible (for, if not, it is equivalen to a direct sum of same) and then A is irreducible. In this event there is a positive vector x such that $A x=\rho(A) x$ and, therefore, $\frac{1}{\rho(A)} X^{-1} A X$ is row stochastic, where $X=\operatorname{diag}\left\{x_{1}, \cdots, x_{n}\right\}$. Application of theorem 2 to $\frac{1}{\rho(A)} X^{-1} A X$ yields det $D^{\prime} E^{\prime} \geq 1$ where $D^{\prime}\left(\frac{1}{\rho(A)} X^{-1} A X\right) E^{\prime}=B$. Setting $D=\frac{1}{\rho(A)} D^{\prime} X^{-1}$ and $E=X E^{\prime}$, gives $B=D A E$ and det $D E \geq \rho(A)^{-n}$ as was to be shown. The case of equality also follows from theorem 2.

Remark 3: The reader may wish to note the relationship between the present work and the notion of the equilibrant,

$$
E(B) \equiv \inf _{\rho}(F B)
$$

(where the inf is taken over all positive diagonal matrices of determinant 1), of a nonnegative matrix mentioned in [5].

References

[1.] Brualdi, R., Parter, S., and Schneider, H., The diagonal equivalence of a nonnegative matrix to a stochastic matrix, J. Math. Anal. and Appl. 16, 31-50 (1966).
[2.] Hardy, G., Littlewood, J., Pólya, G., Inequalities, (Cambridge University Press, 1959).
[3.] Marcus, M., Newman, M., Generalized functions of symmetric matrices, Proc. AMS 16, 826-830, (1965).
[4.] Sinkhorn, R., A relationship between arbitrary positive matrices, and doubly stochastic matrices, Ann. Math. Stat. 35, 876-879, (1964).
[5.] Hoffman, A., Linear G-functions, Lin. and Multilin. Alg. 3, 45-52, (1975).
(Paper 80B4-454)

[^0]: AMS Subject Classification: 15A45, 15A48, 15A51, 65F35.

 - Work supported in part by NSF grant GP20555.
 ${ }^{* *}$ Present address: Institute for Physical Science and Technology, University of Maryland, College Park, Md. 20742.
 ${ }^{1}$ Figures in brackets indicate the literature references at the end of this paper.

