AN INEQUALITY FOR GENERALIZED QUADRANGLES

STANLEY E. PAYNE

ABSTRACT. Let S be a generalized quadrangle of order (s, t). Let X and Y be disjoint sets of pairwise noncollinear points of S such that each point of X is collinear with each point of Y. If m = |X| and n = |Y|, then $(m - 1)(n - 1) < s^2$. When equality holds, severe restrictions are placed on m, n, s, and t.

I. Prolegomena. A generalized quadrangle of order (s, t), $s \ge 1$, $t \ge 1$, is a point-line incidence geometry $S = (\mathcal{P}, \mathcal{L}, I)$ with point set \mathcal{P} , line set \mathcal{L} , and symmetric point-line incidence relation I satisfying the following axioms:

A1. No two points are incident with two lines in common.

A2. If x is a point not incident with a line L, then there is a unique point y incident with L and collinear with x.

A3. Each line (respectively, point) is incident with 1 + s points (respectively, 1 + t lines).

Throughout this note $S = (\mathcal{P}, \mathcal{L}, I)$ will denote a generalized quadrangle (GQ) of order (s, t), $s \ge 1$, $t \ge 1$. Let $X = \{x_1, \ldots, x_m\}$ and $Y = \{y_1, \ldots, y_n\}$ be disjoint sets of pairwise noncollinear points of $S, m \ge 2$ and $n \ge 2$. Let k_i be the number of x_j 's with which y_i is collinear, $1 \le i \le n$, $0 \le k_i \le m$. Our main results consist of the following two theorems.

THEOREM I.1.

$$(1 + s) \cdot \sum_{i=1}^{n} k_i \leq mn + \sqrt{m^2 n^2 + (s^2 - 1)(m + n)mn + (s^2 - 1)^2 mn}.$$

THEOREM I.2. Let $k_i = m$ for all *i*, *i.e.* each y_i is collinear with each x_j . Then $(m-1)(n-1) \leq s^2$. If equality holds, then one of the following must occur.

(i) m = n = 1 + s, and each point of $Z = \mathcal{P} \setminus (X \cup Y)$ is collinear with precisely two points of $X \cup Y$.

(ii) $m \neq n$. If m < n, then $s|t, s < t, n = 1 + t, m = 1 + s^2/t$, and each point of S is collinear with either 1 or 1 + t/s points of Y according as it is or is not collinear with some point of X. Note: (m - 1)|s.

There are two corollaries that deserve mention.

COROLLARY I.3. If there is a GQ S with order (s, t), s > 1, then $t \le s^2$. If $t = s^2$, then each triad of points has exactly 1 + s centers.

© American Mathematical Society 1978

Received by the editors February 14, 1977.

AMS (MOS) subject classifications (1970). Primary 05B25; Secondary 15A18.

Key words and phrases. Generalized quadrangles, Rayleigh quotient, incidence matrix.

PROOF. The inequality $t \le s^2$ is due to D. G. Higman ([3], [4]). Alternate treatments appear in Bose [1] and Cameron [2]. In the present setting a proof is obtained by putting $X = \{x_1, x_2\}$ where x_1 and x_2 are not collinear, Y = tr(X) = the set of 1 + t points collinear with both x_1 and x_2 , and then applying Theorem I.2.

COROLLARY I.4. Let x and y be noncollinear points of S with s > 1 and |sp(x, y)| = 1 + p. Then $pt \le s^2$. If $pt = s^2$ and p < t, then each point z collinear with no point of sp(x, y) must be collinear with exactly 1 + t/s points of tr(x, y).

PROOF. For the original proof and an explanation of the notation see Thas [7]. In the present setting put X = sp(x, y), Y = tr(x, y).

The proofs depend on a general matrix theoretic approach due to Sims. As the treatment in [5] does not include the "case of equality," we first give an exposition of this method.

II. A matrix-theoretic technique. If $\bar{x} = (x_1, \ldots, x_n)^T$ and $\bar{y} = (y_1, \ldots, y_n)^T$ are column vectors of real numbers, then $\bar{x} \cdot \bar{y} = \sum x_i y_i$ denotes their usual dot product. If A is a real, symmetric, $n \times n$ matrix, then for each $\bar{x} \neq \bar{0}$ define the Rayleigh quotient $R(\bar{x})$ for A by

$$R(\bar{x}) = \frac{\bar{x} \cdot A\bar{x}}{\bar{x} \cdot \bar{x}} . \tag{1}$$

It is well known that A has real characteristic roots, say $\mu_1 \leq \cdots \leq \mu_n$, and that

$$\mu_1 = \min_{\bar{x}: \ \bar{x} \neq \bar{0}} R(\bar{x}) \leq \max_{\bar{x}: \ \bar{x} \neq \bar{0}} R(\bar{x}) = \mu_n.$$
(2)

Perhaps not so well known is the following.

II.1. Let \bar{x} be a nonzero vector in \mathbb{R}^n for which $\mathbb{R}(\bar{x}) = \mu_i$ for either i = 1 or i = n. Then \bar{x} is a characteristic vector of A belonging to the characteristic value μ_i .

PROOF. Let $\overline{x}_1, \ldots, \overline{x}_n$ be an orthonormal basis of characteristic vectors of A ordered so that $A\overline{x}_i = \mu_i \overline{x}_i$. Let \overline{x} be an arbitrary nonzero vector of R^n normalized so that $\overline{x} \cdot \overline{x} = 1$. Then $R(\overline{x}) = \overline{x} \cdot A\overline{x}$ and $\overline{x} = \sum c_i \overline{x}_i$ with $\sum c_i^2 = 1$. Hence $\mu_1 = \mu_1 \cdot \sum c_i^2 \leq \sum c_i^2 \mu_i = \overline{x} \cdot A\overline{x} = R(\overline{x})$, with equality holding if and only if $\mu_i = \mu_1$ whenever $c_i \neq 0$. It follows that $R(\overline{x}) = \mu_1$ if and only if \overline{x} belongs to the eigenspace associated with μ_1 . The argument for μ_n is similar.

We continue to let $A = (a_{ij})$ denote an $n \times n$ real symmetric matrix. Let $\Delta = \Delta_1 + \cdots + \Delta_r$ and $\Gamma = \Gamma_1 + \cdots + \Gamma_s$ be partitions of $\{1, \ldots, n\}$. Suppose that Γ is a refinement of Δ , and write $i \subseteq j$ whenever $\Gamma_i \subseteq \Delta_j$, $1 \le i \le s, 1 \le j \le r$. Put $\delta_i = |\Delta_i|, \gamma_i = |\Gamma_i|$. Let

$$\delta_{ij} = \sum_{\substack{\mu \in \Delta_i \\ \gamma \in \Delta_j}} a_{\mu\nu}; \quad \gamma_{ij} = \sum_{\substack{\mu \in \Gamma_i \\ \nu \in \Gamma_j}} a_{\mu\nu}.$$

So $\delta_{ij} = \delta_{ji}$ and $\gamma_{ij} = \gamma_{ji}$ by the symmetry of A. Define the following matrices:

$$A^{\Delta} = \left(\frac{\delta_{ij}}{\delta_i}\right)_{1 \le i,j \le r}; \qquad A^{\Gamma} = \left(\frac{\gamma_{ij}}{\gamma_i}\right)_{1 \le i,j \le s}.$$
$$\overline{A}_{\Delta} = \operatorname{diag}\left(\sqrt{\delta_1}, \dots, \sqrt{\delta_r}\right); \qquad \overline{A}_{\Gamma} = \operatorname{diag}\left(\sqrt{\gamma_1}, \dots, \sqrt{\gamma_s}\right).$$
$$\hat{A}_{\Delta} = \overline{A}_{\Delta} A^{\Delta} \left(\overline{A}_{\Delta}\right)^{-1} = \left(\frac{\delta_{ij}}{\sqrt{\delta_i \delta_j}}\right)_{1 \le i,j \le r}.$$
$$\hat{A}_{\Gamma} = \overline{A}_{\Gamma} A^{\Gamma} \left(\overline{A}_{\Gamma}\right)^{-1} = \left(\frac{\gamma_{ij}}{\sqrt{\gamma_i \gamma_j}}\right)_{1 \le i,j \le s}.$$

Hence \hat{A}_{Δ} and \hat{A}_{Γ} are real symmetric matrices with real characteristic values equal to those of A^{Δ} and A^{Γ} , respectively. The smallest and largest characteristic roots of \hat{A}_{Γ} and \hat{A}_{Δ} are the minimum and maximum, respectively, of $(\bar{x} \cdot \hat{A}_{\Gamma} \bar{x})/(\bar{x} \cdot \bar{x})$ and $(\bar{y} \cdot \hat{A}_{\Delta} \bar{y})/(\bar{y} \cdot \bar{y})$, $\bar{0} \neq \bar{x} \in R^s$, $\bar{0} \neq \bar{y} \in R'$.

Let $0 \neq \overline{y} = (y_1, \ldots, y_r)^T \in R^r$. Then put $\overline{x} = (\ldots, x_{\alpha}, \ldots)^T$, where $x_{\alpha} = y_i \sqrt{\gamma_{\alpha}/\delta_i}$ whenever $\alpha \subseteq i, 1 \leq \alpha \leq s$. Then

$$\sum_{\alpha=1}^{s} x_{\alpha}^{2} = \sum_{i=1}^{r} \left(\sum_{\alpha \subseteq i} \left(y_{i} \sqrt{\gamma_{\alpha}/\gamma_{i}} \right)^{2} \right) = \sum_{i=1}^{r} \frac{y_{i}^{2}}{\delta_{i}} \left(\sum_{\alpha \subseteq i} \gamma_{\alpha} \right) = \sum_{i=1}^{r} y_{i}^{2},$$

implying $\overline{x} \cdot \overline{x} = \overline{y} \cdot \overline{y}$. And

$$\begin{split} \bar{x} \cdot \hat{A}_{\Gamma} \bar{x} &= \sum_{\alpha,\beta=1}^{s} x_{\alpha} \frac{\gamma_{\alpha\beta}}{\sqrt{\gamma_{\alpha}\gamma_{\beta}}} x_{\beta} \\ &= \sum_{i,j=1}^{r} \left[\sum_{\substack{\alpha \subseteq i \\ \beta \subseteq j}} \frac{\gamma_{\alpha\beta}}{\sqrt{\gamma_{\alpha}\gamma_{\beta}}} \cdot \frac{y_{i}\sqrt{\gamma_{\alpha}}}{\sqrt{\delta_{i}}} \cdot \frac{y_{j}\sqrt{\gamma_{\beta}}}{\sqrt{\delta_{j}}} \right] \\ &= \sum_{i,j=1}^{r} y_{i} \left[\sum_{\substack{\alpha \subseteq i \\ \beta \subseteq j}} \frac{\gamma_{\alpha\beta}}{\sqrt{\delta_{i}\delta_{j}}} \right] y_{j} \\ &= \sum_{i,j=1}^{r} y_{i} \left[\frac{\delta_{ij}}{\sqrt{\delta_{i}\delta_{j}}} \right] y_{j} = \bar{y} \cdot \hat{A}_{\Delta} \bar{y}. \end{split}$$

This implies that any value of $(\bar{y} \cdot \hat{A}_{\Delta} \bar{y})/(\bar{y} \cdot \bar{y})$ is also a value of $(\bar{x} \cdot \hat{A}_{\Gamma} \bar{x})/(\bar{x} \cdot \bar{x})$. Hence the following is a corollary of (2) and II.1.

II.2. If $\mu_1 \leq \cdots \leq \mu_r$ are the characteristic roots of A^{Δ} and $\lambda_1 \leq \cdots \leq \lambda_s$ are the characteristic roots of A^{Γ} , then $\lambda_1 \leq \mu_1 \leq \mu_r < \lambda_s$. If $\bar{y} = (y_1, \ldots, y_r)^T$ satisfies $A^{\Delta}\bar{y} = \lambda_1 y$ (so $\lambda_1 = \mu_1$), then $A^{\Gamma}\bar{x} = \lambda_1 \bar{x}$, where $\bar{x} = (\ldots, x_{\alpha}, \ldots)^T$ is defined by $x_{\alpha} = y_i$ whenever $\alpha \subseteq i$. A similar result holds in case $\lambda_n = \mu_n$.

PROOF. The first part of the result is evident. So let $\overline{0} \neq \overline{y} = (y_1, \ldots, y_r)^T$ satisfy $A^{\Delta}\overline{y} = \lambda_1 \overline{y} = \mu_1 \overline{y}$. Then $\overline{A}_{\Delta} \overline{y} = (y_1 \sqrt{\delta_1}, \ldots, y_r \sqrt{\delta_r})^T$ is a characteristic vector of \hat{A}_{Δ} belonging to $\lambda_1 = \mu_1$. Hence $\overline{z} = (\ldots, z_{\alpha}, \ldots)^T$, $z_{\alpha} = y_i \sqrt{\gamma_{\alpha}}$ for $\alpha \subseteq i$, is a characteristic vector of \hat{A}_{Γ} belonging to λ_1 (by the proof of II.1). It follows that \overline{x} as given in the statement of II.2 is a characteristic vector of A^{Γ} associated with λ_1 . A similar proof holds in case $\lambda_n = \mu_n$. \Box

III. Applications to generalized quadrangles. Let $S = (\mathcal{P}, \mathcal{L}, I)$ be a GQ of order (s, t). Let X and Y be as in the hypothesis of Theorem I.1, and put $Z = \mathcal{P} \setminus (X \cup Y)$, so |Z| = r = v - (m + n), where v = (1 + s)(1 + st) = $|\mathcal{P}|$. For some ordering of \mathcal{P} let A be the (0, 1)-matrix $A = (a_{ij})$ defined by $a_{ij} = 1$ if the *i*th and *j*th points of \mathcal{P} are *not* collinear in S; $a_{ij} = 0$ otherwise. It follows that A is symmetric with minimum polynomial given by $f(x) = (x + s)(x - t)(x - ts^2)$. Let $\Delta = \Delta_1 + \Delta_2 + \Delta_3$ be the partition of $\{1, \ldots, v\}$ determined by X, Y, and Z; i.e. points of X, Y, Z, respectively, are indexed by $\Delta_1, \Delta_2, \Delta_3$, respectively. As $\delta_i = |\Delta_i|$, we have $\delta_1 = m, \delta_2 = n, \delta_3 = v - (m + n), \delta_{11} = n(n - 1), \delta_{12} = \delta_{21} = \sum_{i=1}^{n} (m - k_i)mn = \Sigma$, where $\Sigma = \sum_{i=1}^{n} k_i$. Since $\sum_{j=1}^{3} (\delta_{ij}/\delta_i) = ts^2$, we also have $\delta_{13} = \delta_1 ts^2 - \delta_{12} - \delta_{11} = ts^2m - (mn - \Sigma) - m(m - 1)$. Similarly, $\delta_{23} = ts^2n - (mn - \Sigma) - n(n - 1)$. Using these results it is now routine to complete the calculation of A^{Δ} .

$$A^{\Delta} = \begin{pmatrix} m-1 & n-\Sigma/m & ts^2+1-m-n+\Sigma/m \\ m-\Sigma/n & n-1 & ts^2+1-m-n+\Sigma/n \\ A_1 & A_2 & A_3 \end{pmatrix}$$

where

$$A_1 = \frac{m[ts^2 + 1 - m - n] + \Sigma}{v - m - n}, \quad A_2 = \frac{n[ts^2 + 1 - m - n] + \Sigma}{v - m - n}$$

and

$$A_3 = ts^2 - \frac{(m+n)[ts^2 + 1 - m - n] + 2\Sigma}{v - m - n}$$

Let $(x - ts^2)(x - r_1)(x - r_2)$ be the characteristic polynomial of A^{Δ} with the roots ordered so that $r_1 \leq r_2 \leq ts^2$. Let $\Gamma = \Gamma_1 + \cdots + \Gamma_v$ be the identity partition of $\{1, \ldots, v\}$, so Γ is a refinement of Δ . Then $A^{\Gamma} = A$ has numerical range $[-s, ts^2]$ which must then contain all characteristic roots of A^{Δ} . Indeed, the proof of Theorem I.1 amounts to calculating r_1 and using the inequality $-s \leq r_1$. We now proceed to do this.

Put $(x - r_1)(x - r_2) = x^2 - bx + c$, so that $2r_1 = b - \sqrt{b^2 - rc}$. Hence $-s \le r_1$ simplifies to

$$0 \le s^2 + bs + c$$
, $b = r_1 + r_2 = tr(A^{\Delta}) - ts^2$, $c = det(A^{\Delta})/ts^2$. (4)

It is easy to calculate $tr(A^{\Delta})$ from (3) and then to write b as follows.

AN INEQUALITY FOR GENERALIZED QUADRANGLES

$$b = \frac{(m+n)(s+st+2) - 2v - 2\Sigma}{v-m-n} .$$
 (5)

To calculate det (A^{Δ}) , add the first and second columns of A^{Δ} to the third column and then subtract the first row from the second. At this point det (A^{Δ}) appears as follows.

$$\det(A^{\Delta}) = ts^{2} \begin{vmatrix} m-1 & n-\Sigma/m & 1\\ 1-\Sigma/n & \Sigma/m-1 & 0\\ \frac{m[ts^{2}+1-m-n]+\Sigma}{v-m-n} & \frac{n[ts^{2}+1-m-n]+\Sigma}{v-m-n} & 1 \end{vmatrix}.$$
(6)

Expanding by the third column and simplifying, one may calculate c to be as follows.

$$c = \det(A^{\Delta})/ts^{2} = \frac{(1+s+st)(2\Sigma-m-n)+v-v\Sigma^{2}/mn}{v-m-n}.$$
 (7)

Using the values for b and c given in (5) and (7), (4) may be rewritten as follows.

$$0 \leq (s-1)(m+n+s^2-1)mn+2mn\Sigma-(1+s)\Sigma^2.$$
 (8)

Equality in (8) gives two roots Σ_1 and Σ_2 for which (8) says $\Sigma_1 \leq \Sigma \leq \Sigma_2$, if $\Sigma_1 \leq \Sigma_2$. But Σ_2 is easily evaluated.

$$\Sigma_2 = \frac{mn + \sqrt{m^2n^2 + (s^2 - 1)(m + n)mn + (s^2 - 1)^2mn}}{1 + s} .$$
(9)

Clearly $\Sigma \leq \Sigma_2$ is just the inequality in Theorem I.1. If each $k_i = m$, then $\Sigma = mn$, and the inequality of Theorem I.1 reduces to $(m - 1)(m - 1) \leq s^2$, the inequality of Theorem I.2.

We now use II.2 to investigate the case of equality in Theorem I.2. Suppose that $k_i = m$ for all *i*, so $\Sigma = mn$, and suppose that $(m - 1)(n - 1) = s^2$, so -s is a characteristic root of A^{Δ} . Hence a nonzero characteristic vector of A^{Δ} belonging to -s must span the null space of $A^{\Delta} + sI$.

$$A^{\Delta} + sI = \begin{pmatrix} m - 1 + s & 0 & ts^{2} + 1 - m \\ 0 & n - 1 + s & ts^{2} + 1 - n \\ * & * & * \end{pmatrix},$$
(10)

where we need not bother to calculate the third row, since the rank must equal 2. Clearly $\bar{y} = (y_1, y_2, 1)^T$ spans the null space of $A^{\Delta} + sI$, where

$$y_1 = \frac{m-1-ts^2}{s+m-1}$$
; $y_2 = \frac{n-1-ts^2}{s+n-1}$. (11)

Let us assume that the points of \mathcal{P} are ordered (for the construction of A) so that the first *m* points are those of *X*, the next *n* points are those of *Y*, and the last v - m - n points are those of *Z*. Then by II.2, \bar{x} must be a characteristic vector of $A^{\Gamma} = A$ belonging to $\lambda_1 = -s$, where \bar{x} is as follows.

S. E. PAYNE

$$\bar{x} = \left(\begin{array}{ccc} y_1, \dots, y_1, & y_2, \dots, y_2, & 1, \dots, 1\\ m \text{ times} & n \text{ times} \end{array}\right)^T.$$
(12)

For the first m + n rows of A this yields no new information. But let $z \in Z$ be the *i*th point, i > m + n. Suppose z is not collinear with t_1 points of X, is not collinear with t_2 points of Y, and hence is not collinear with $ts^2 - t_1 - t_2$ points of Z. Then the product of the *i*th row of A with \bar{x} , which must equal -s, is actually $t_1y_1 + t_2y_2 + ts^2 - t_1 - t_2 = s$. After a little simplification this becomes

$$\frac{t_1}{s+m-1} + \frac{t_2}{s+n-1} = 1.$$
 (13)

If z lies on a line joining a point of X and a point of Y, then $t_1 = m - 1$ and $t_2 = n - 1$, i.e., since S has no triangles, z is collinear with a unique point of X and with a unique point of Y. On the other hand, if z is not on such a line either $t_1 = m$ or $t_2 = n$. Suppose $t_1 = m$, so z is collinear with no point X. Using (13) we find that the number of points of Y collinear with z is

$$n - t_2 = 1 + (n - 1)/s.$$
 (14)

Similarly, any point of \mathcal{P} collinear with no point of Y must be collinear with 1 + (m - 1)/s points of X. If m = n = s + 1, this says each point not on a line joining a point of X with a point of Y must be collinear with two points of X and none of Y or with two of Y and none of X. If 1 < m < s +1, so 1 + (m - 1)/s is not an integer, then each point of \mathcal{P} is collinear with some point of Y. This implies that each point z of Z is either on a line joining points of X and Y or is collinear with $1 + (n - 1)/s \ge 3$ points of Y. Clearly $n \le 1 + t$. Suppose n < 1 + t and let $x_1 \in X$. Then there is some line L through x_1 not incident with any point of Y. But then any point z on L, $z \ne x_1$, cannot be collinear with any point of Y, a contradiction. Hence it must be that n = 1 + t, from which it follows that $m = 1 + s^2/t$. This essentially completes the proof of Theorem I.2.

A similar treatment is available for the restriction on the parameters of a subquadrangle, a combinatorial proof of which is found in [6].

References

1. R. C. Bose, Geometric and pseudo-geometric graphs $(q^2 + 1, q + 1, 1)$, J. Geometry 2 (1972), 75–93.

2. P. J. Cameron, Partial quadrangles, Quart. J. Math. Oxford Ser. 25 (1974), 1-13.

3. D. G. Higman, *Partial geometries, generalized quadrangles, and strongly regular graphs*, Atti Convegno di Geometria e sue Applicazioni, Perugia, 1971.

4. _____, Invariant relations, coherent configurations, and generalized polygons, Combinatorics, Part 3, Math. Centre Tracts #57, Amsterdam, 1974, 27–43.

5. S. E. Payne, *Finite generalized quadrangles: a survey*, Proc. Internat. Conf. Proj. Planes, Washington State Univ. Press, 1973, 219–261.

6. J. A. Thas, A remark concerning the restriction on the parameters of a 4-gonal subconfiguration, Simon Stevin 48 (1974-75), 65-68.

7. _____, On generalized quadrangles with parameters $s = q^2$ and $t = q^3$, Geometria Dedicata 5 (1976), 485–496.

DEPARTMENT OF MATHEMATICS, MIAMI UNIVERSITY, OXFORD, OHIO 45056

152