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AN INEQUALITY FOR GENERALIZED QUADRANGLES

STANLEY E. PAYNE

Abstract. Let S be a generalized quadrangle of order (s, t). Let X and Y

be disjoint sets of pairwise noncollinear points of S such that each point of

X is coUinear with each point of Y. If m = \X\ and n = | Y\, then (m — l)(n

- 1) < s2. When equality holds, severe restrictions are placed on m, n, s,

and t.

I. Prolegomena. A generalized quadrangle of order (s, t), s > 1, t > 1, is a

point-line incidence geometry S = (??, £, 7) with point set <$, line set t, and

symmetric point-line incidence relation 7 satisfying the following axioms:

Al. No two points are incident with two lines in common.

A2. If x is a point not incident with a line L, then there is a unique point v

incident with L and collinear with x.

A3. Each line (respectively, point) is incident with 1 + í points (respec-

tively, 1 + t lines).

Throughout this note § = (9, t, I) will denote a generalized quadrangle

(GQ) of order (s, t), s > 1, t > 1. Let X = [xx, . . . , xm) and Y =

[y\> ■ • • >yn) De disjoint sets of pairwise noncollinear points of §, m > 2 and

n > 2. Let k¡ be the number of x/s with which v, is collinear, 1 < i < n,

0 < k, < m. Our main results consist of the following two theorems.

Theorem LI.
n ,-j-

(1 + J) • 2   k¡< mn + yjm2n2 + (s2 - l)(m + n)mn + (s2 - 1) mn.
i = i

Theorem 1.2. Let k¡ = m for all i, i.e. each v, is collinear with each x,. Then

(m — l)(n — 1) < s2. If equality holds, then one of the following must occur.

(i) m = n = 1 + s, and each point of Z = IP \ (X U Y) is collinear with

precisely two points of X U Y.

(ii) m J= n. If m < n, then s\t, s < t, n = I + t, m = I + s2/t, and each

point of S is collinear with either 1 or 1 + t/s points of Y according as it is or

is not collinear with some point of X.Note: (m — l)\s.

There are two corollaries that deserve mention.

Corollary 1.3. If there is a GQ % with order (s, t), s > 1, then t < s2. If

t = s2, then each triad of points has exactly 1 + 5 centers.
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Proof. The inequality / < s2 is due to D. G. Higman ([3], [4]). Alternate

treatments appear in Bose [1] and Cameron [2]. In the present setting a proof

is obtained by putting X = {xx, x2) where x, and x2 are not collinear,

Y = triX) = the set of 1 + / points collinear with both x, and x2, and then

applying Theorem 1.2.   □

Corollary 1.4. Let x and y be noncollinear points of § with s > 1 and

|sp(x, y)| = 1 + p. Then pt < s2. If pt = s2 and p < t, then each point z

collinear with no point o/sp(x,y) must be collinear with exactly 1 + t/s points

o/tr(x,y).

Proof. For the original proof and an explanation of the notation see Thas

[7]. In the present setting put X = sp(x, y), Y = tr(x, y).   □

The proofs depend on a general matrix theoretic approach due to Sims. As

the treatment in [5] does not include the "case of equality," we first give an

exposition of this method.

II. A matrix-theoretic technique. If it = (x,, . . . , xn)T and y =

CKj> • • • > yn)T are column vectors of real numbers, then x • y = 2 x¡y¡ denotes

their _usual dot product. If A is a real, symmetric, n x n matrix, then for each

x =£0 define the Rayleigh quotient R (x) for A by

Rix) = ^r-. (1)
x -x

It is well known that A has real characteristic roots, say p, < • • • < i\,

and that

p, = min   R (x) < max  R (x) = u,,. (2)
x: Jc#Ö x: x^=0

Perhaps not so well known is the following.

ILL Let x be a nonzero vector in R" for which /v(x) = p¡for either i = 1 or

i = n. Then x is a characteristic vector of A belonging to the characteristic

value p,.

Proof. Let x,, .. ., x„ be an orthonormal basis of characteristic vectors of

A ordered so that Ax¡ = p¡x¡. Let x be an arbitrary nonzero vector of R"

normalized so that x • x = 1. Then R (x) = x • Ax and x = 2 c¡x¡ with 2 cf

= 1. Hence p, = p, • S c,2 < 2 c?ii¡ = x • Ax = Ä(x), with equality holding

if and only if p¡ = px whenever c, ¥" 0. It follows that R (x) = p, if and only if

x belongs to the eigenspace associated with p,. The argument for p„ is similar.

D
We continue to let A = iaf) denote an « X ai real symmetric matrix. Let

A = A, + • • • + A, and T = T, + • • • + Ts be partitions of {1,. . ., n).

Suppose that T is a refinement of A, and write i E j whenever T¡ E Ay,

1 < i < s, 1 < j < r. Put tS,- = |A,|, y, = |r,|. Let

°ij ~    Zj     aiw>     "lij ~    2j     aiu>-
neA, ntsr,
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So ¿^ = Sj¡ and ytJ = yß by the symmetry of A. Define the following matrices:

V      '    '\<ij<r \   Ji    '\<ij<is

JA = diag( Vo\.VoV );       Jr - diag(Vy7.V^ ).

■^a m A[±A  ydfrj     —

-**Y — A y A    I A y I        —

8„

Y/Y,

KiJ<r

I < v < J

Hence A¿ and j4r are real symmetric matrices with real characteristic values

equal to those of AA and AT, respectively. The smallest and largest

characteristic roots of AT and A^ are the minimum and maximum, respec-

tively, of (3c ■ Ârx)/(x ■ 3c) and (y ■ ÂAy)/(y ■ y), Ö * x E Rs, Ö * y E Rr.

Let 0 ^y= (y„ . . . , yr)T E Rr. Then put jf = (..., xa, ... f, where

xa = v, Vya/5, whenever a E i, 1 < a < s. Then

2 *5- 2 ( 2 (*Vy7y~)2) = i f ( 2 y.) = 2 yh
a=l (=1   \oÇi /        i=l      "      VaÇi        /        í=l

implying x ■ x = y ■ y. And

Ya/5
x -Arx —   2j    xa

a,ß=\      vyayß

= 2
V-1

L«g   Vy^

= 2 7,

= 2 y,
v = i

2  -^ y¡

yj=yA*y-

This implies that any value of ( v • Âày)/(y -y) is also a value of (x • ATx)/(x

■ x). Hence the following is a corollary of (2) and ILL

II.2. If ¡xx < • • • < /ir are the characteristic roots of AA and A, < • • • <

Xs are the characteristic roots of AT, then A, < /i, < /t, < \. If y =

(yx, . . . ,yr)T satisfies A^y = A, y (so Xx = /t,), then ATx = Xxx, where x =

(. . . , xa, . . . )T is defined by xa = y¡ whenever a E i. A similar result holds in

case Xn = /v
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Proof. The first part of the result is evident. So let 0 ^ y = (y., . . . ,yr)T

satisfy A6? - Xxy = nxy. Then ÄJ = iyxV8~x ,... ,yrVt)T is a

characteristic vector of Âà belonging to Xx = p,. Hence I = (..., za, ... )T,

za = yi^~Ya f°r a £ *> *s a characteristic vector of AT belonging to X, (by the

proof of II. 1). It follows that x as given in the statement of II.2 is a

characteristic vector of AT associated with Xx. A similar proof holds in case

K = IV   D

III. Applications to generalized quadrangles. Let S = (<?, E, /) be a GQ of

order (i, t). Let * and y be as in the hypothesis of Theorem 1.1, and put

Z = f\(JÍU Y), so \Z\ = r = v - im + ri), where v = (1 + i)(l + sr) =

|^|. For some ordering of $ let A be the (0, l)-matrix A = (atf) defined by

a, = 1 if the /'th and/th points of <3> are «oí collinear in § ; a0 ■» 0 otherwise.

It follows that A is symmetric with minimum polynomial given by fix) = (x

+ i)(x - t)ix - ts2). Let A = A, + A2 + A3 be the partition of {1, . . ., v}

determined by X, Y, and Z; i.e. points of X, Y, Z, respectively, are indexed

by A,, A2, A3, respectively. As 5, = |A,|, we have 8X = m, 82 = n, 83 = v — im

+ ri), 8XX = nin - 1), 512 = 521 = 2?=1(m - k¡)mn = 2, where 2 = 2^,*,.

Since 2j=1(5y/5,) = ts2, we also have 513 = 8xts2 - 8X2 - 8XX = tshn - imn

- 2) - mim - 1). Similarly, 523 = ts2n - (wn - 2) - «(« - 1). Using

these results it is now routine to complete the calculation of A A.

A* =

m - I       n — 2/m    ts2 + 1 - m - n + 2/wi

m — 2//j        n — 1 /j2 + 1 — m — n 4- 2/n

.í4i y42 ¿43

where

m[ts2 +1-w-/j] + 2 _ n[to2 + 1 - m - n] + 2
"■\ ~ ~. >   A2—

m — n v — m

and

(m + n)[ts2 + 1 - m - n] + 22
A = /j2-.

v — m — n

Let (x - ts2)ix — r,)(x - r2) be the characteristic polynomial of AA with

the roots ordered so that rx < r2 < ts2. Let T = T, + • • • + Tv be the

identity partition of {1,.. ., v), so T is a refinement of A. Then AT = A has

numerical range [ — s, ts2] which must then contain all characteristic roots of

AA. Indeed, the proof of Theorem 1.1 amounts to calculating r, and using the

inequality — s < r,. We now proceed to do this.

Put (x - r,)(x - r2) = x2 - bx + c, so that 2r, = b - Vb2 - re . Hence

— s < r, simplifies to

0 < s2 + bs + c,   b = r, + r2 = tr(^A) - ts2,   c = det iAà)/ts2.    (4)

It is easy to calculate trL4A) from (3) and then to write b as follows.
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b =
(m + n)(s + st + 2) - 2v - 22

(5)v — m — n

To calculate detL4A), add the first and second columns of AA to the third

column and then subtract the first row from the second. At this point detL4A)

appears as follows.

det(A*) = ts

n - 1

-2//I

m[ts2 + 1 m

n — 2/m

2/m- 1

n] + 2      n[ts2 + 1 - m - n] + 2

m v — m — n

(6)

Expanding by the third column and simplifying, one may calculate c to be

as follows.

(1 + s + sr)(22 - m - n) + v - v£/mn
c = det(AL)/ts2 =-.     (7)

v    " v — m — n v '

Using the values for b and c given in (5) and (7), (4) may be rewritten as

follows.

0 < (s - l)(m + n + s2 - X)mn + 2mn2 - (1 + j)22. (8)

Equality in (8) gives two roots 2, and 22 for which (8) says 2, < 2 < 22, if

2, < 22. But 22 is easily evaluated.

72"
nn

(9)22 =
mn + -\Jm2n2 + (s2 - l)(m + ri)mn + (s2 - 1) mn

ÏT1 '
Clearly 2 < 22 is just the inequality in Theorem 1.1. If each k¡ = m, then

2 = mn, and the inequality of Theorem 1.1 reduces to (m — l)(m — 1) < s2,

the inequality of Theorem 1.2.

We now use II.2 to investigate the case of equality in Theorem 1.2. Suppose

that k¡ = m for all i, so 2 = mn, and suppose that (m — 1)(« - 1) = s2, so

— s is a characteristic root of A A. Hence a nonzero characteristic vector of A A

belonging to — s must span the null space of AA + si.

A" + si =

m — 1 + s

0

0

1 + s
*

ts¿ + 1 - m

ts2 + 1 n (10)

where we need not bother to calculate the third row, since the rank must

equal 2. Clearly y = (yx,y2, l)r spans the null space of AA + si, where

1 n - 1 ts'm — i — is n — i — is ,,,-.

*"   s + m-l   ;       y2=   s + n-l   ■ (H)

Let us assume that the points of ^P are ordered (for the construction of A)

so that the first m points are those of X, the next n points are those of Y, and

the last v — m — n points are those of Z. Then by II.2, 3c must be a

characteristic vector of Ar = A belonging to A, = - s, where 3c is as follows.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



152 S. E. PAYNE

x^íyi.yx, y2>---,y2>   h ...,i ). (12)
V       m times n times «-""-«urnes/

For the first m + n rows of A this yields no new information. But let z E Z

be the z'th point, / > m + n. Suppose z is not collinear with tx points of X, is

not collinear with t2 points of Y, and hence is not collinear with ts2 — tx — t2

points of Z. Then the product of the z'fh row of A with x, which must equal

—s, is actually txyx + t2y2 + ts2 — tx — t2 = s. After a little simplification

this becomes

s + m - 1      s + n - I vy

If z lies on a line joining a point of X and a point of Y, then z, = m — 1

and t2 = n — 1, i.e., since § has no triangles, z is collinear with a unique

point of X and with a unique point of Y. On the other hand, if z is not on

such a line either tx = m or t2 = n. Suppose i, = m, so z is collinear with no

point X. Using (13) we find that the number of points of Y collinear with z is

n- t2=l + in- l)/s. (14)

Similarly, any point of 9 collinear with no point of Y must be collinear

with 1 + (m — l)/s points of X. If m = n = s + 1, this says each point not

on a line joining a point of X with a point of 7 must be collinear with two

points of X and none of Y or with two of Y and none of X. If 1 < m < s +

1, so 1 + im — l)/s is not an integer, then each point of ^ is collinear with

some point of Y. This implies that each point z of Z is either on a line joining

points of X and y or is collinear with 1 + (« — l)/s > 3 points of y. Clearly

n < 1 + /. Suppose /i < 1 + / and let x, e A'. Then there is some line L

through x, not incident with any point of Y. But then any point z on L,

z 7e xx, cannot be collinear with any point of Y, a contradiction. Hence it

must be that n = I + t, from which it follows that m = 1 + s2/1. This

essentially completes the proof of Theorem 1.2.

A similar treatment is available for the restriction on the parameters of a

subquadrangle, a combinatorial proof of which is found in [6].
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