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AN INEQUALITY FOR THE COEFFICIENT ¢ OF THE FREE
BOUNDARY s(t) = 26,/t OF THE NEUMANN SOLUTION FOR
THE TWO-PHASE STEFAN PROBLEM*
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Abstract. We consider a semi-infinite body (e.g. ice), represented by (0, + c0), with an
initial temperature —c < 0 having a heat flux h(t) = —ho/\/t (ho > 0) in the fixed face
x=0.1If hg > ck,/\/ ma, there exists a solution, of Neumann type, for the resulting two-
phase Stefan problem. If we connect it with the Neumann problem (on x = 0 the body has a
temperature b > 0) we obtain the inequality erf(s/a,) < (k, ba,/k, ca,) for the coefficient o
of the free boundary s(t) = 20./t, where k; and a} are respectively the thermal conductivity
and thermal diffusivity coefficients of the corresponding i phase (i = 1: solid phase, i = 2:
liquid phase). If hy < ck,//na, there is no solution of the initial problem and if
hy = ck,/\/n a, the problem has no physical meaning and corresponds to the case where
the latent heat of fusion L tends to infinity.

Notation.

Q=(0, +0) semi-infinite body

X space coordinate variable in Q

t time

s(t) position of the solid-liquid interface (free boundary)
at time t > 0

0(x, t) temperature defined for x >0, ¢t >0

0,(x, t) water temperature defined for 0 < x < s(t), t > 0

0,(x, 1) ice temperature defined for x > s(t), t > 0

Cy specific heat of water

¢y specific heat of ice

l latent heat of fusion

p mass density

k, thermal conductivity of water

ky thermal conductivity of ice

—c<0 initial temperature

b>0 temperature in the fixed face x =0

h(t) heat flux in the fixed face x =0

* Received October 1, 1980.
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C, = pcy, Cy = pey, L =pl
a, = (kz/cz)l/2 a, = (kl/Cl)l/2

a’ thermal diffusivity of water
a? thermal diffusivity of ice.

I. The problem. We shall consider the two-phase Stefan problem for a semi-infinite
body, represented by Q = (0, + c0) with null change phase temperature (case: water-ice).
That is, we shall find the functions s = s(t) > O (free boundary), defined for ¢t > 0 with
s(0) = 0, and

O(x,t)=05(x,t)>0 if 0<x<s(t)
=0 if x=s(t) (1)
=0,(x,t)<0 if s(¢)<x,

defined for x > 0 and ¢t > 0, such that they satisfy the following conditions:

0, %0 .
Ci =) — ki 5 —=0, in s()<xt>0, )
0, 2’0, .
C: 73—k 53 =0, in 0<x<s(0)t>0, )
0,(s(t),t)=0, Vt>0, @)
8,(s(t), t) =0, V>0, (5)
kl a L (s(t), 1) — ky -a— (s(t), t) = Ls'(t),  Vt>0, (6)
0,(x,0)= —c <0, Vx > 0, @)
% 0, t)=h(t), Vt>O0. 8)

The function h(t) represents the heat flux that the material Q receives in its fixed face x = 0.
In the case

ht) = —(ho/\/O)  (ho > 0), ©®)

we prove that there is not always a solution of Neumann type [1, 2, 3, 4, 7] for the problem
(2) to (9). Moreover, the explicit solution exists if the constant h, satisfies a certain in-
equality (19). This idea was suggested in [5], where simple exact solutions are given for the
steady-state two-phase Stefan problem in which the heat flux satisfies an inequality on a
given portion of the body’s boundary and the temperature has a constant sign (for example,
positive) on the remaining body’s boundary.

II. Solution of problem (2}—(9). Following the idea of Neumann for the two-phase
Stefan problem [1, 2, 3, 4, 7], we propose:
0y(x, 1) = A, + B, f(x/2a, /1),
0,(x, t) = A, + B, f(x/2a, /1), (10)
s(t)=2w\/t, w >0,
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where
2 (v
f()’)=%'J‘ exp(—u?) du, ay =/k/Cy, a; =/ ka/C,.
o

The four conditions (4), (5), (7), (8) give rise to the two systems of equations
Ay + B, = —c, A, +f(w/a))By =0,

a
B,=—n k—: hy, A, +f(w/a;)B; =0.
Solving (12) and (13) as functions of w, we obtain:
w
(2) c

A4(@)=c——~, Bi@)=—71-,
o )

a; a;

h h
Ay() = /n azzof ((%), By(w)= —4/n ai—zo.

The condition (6) is satisfied if w is a solution of the equation
Fo(w) = o, w>0

where

b o? ck, o _exp(—x7)
Folw) =7 exp(— a§) "~ Lyna, Fy (‘11>’ fl=7 —fx)

Taking into account the following properties of the function F:
Fi(0%)=1,  Fy(+o)= +oo,

dF
d—x‘ (x)>0, Vx>0 (cf. Appendix),

we deduce for the function F,

1 ck
F.(0%) = — ——
o0 L(ho JM),
Fo(+ 0) = — o0, dFo (w) <0, Yo > 0,

do

and therefore we obtain

LEMMA 1. There exists a solution (10) of the problem (2}—9) iff Fo(0*) > 0 and iff

ho > cky/\/na,

Proof. Using the properties (18), Eq. (15) has a unique solution iff Fo(0*) > 0.
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Remark 1. If hy < ck,//ma,, there is no solution of the problem (2)—(9) of the type
(10). The limit case hy, = ckl/\/ n a, has no physical meaning and corresponds to the case
L— + oo (cf. Sec. IV).

ITI1. Relationship with the Neumann solution. The temperature in the fixed face x = 0 is
given by

bo = 0,0, ) = Ay(w) = /n "k—"f (9) (20)

a

Since b, > 0, we can consider the two-phase Stefan problem consisting in finding the
functions s(t), 0,(x, t), 8,(x, t) solutions of (2—(7) and (8 bis), where:

0,0,6)=b with b> 0. (8 bis)

The solution of problem (2)—(7) and (8 bis), which is known as Neumann solution [1, 2, 3,
4,7],is given by:

0(x, ) =0, + B, f <2a:c\/t>’

ba(x, ) = o3 + B2 f (ﬁ) @1)
s(t) = 20 \/t,

-]
)

az(0) = b,

Bc) = —b /f (;"—)

Here o is the unique solution of the equation

with

Flo)=0, ¢>0 (23)
with
k, o? k, 62)
FO) = Ma)exp(— a§> “LoiTx ﬂz(U)CXP<— = 24
which satisfies:
N dF
F(0") = + oo, F(+ o0) = — o0, E—;(o) <0, VYo > 0. (25)

Remark 2. Notice that
Al(x) = al(x)9 Vx > Oa Bl(x) = ﬂl(x)9 VX > 0' (26)
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Lemma 2. If the condition (19) is valid and we take b = by > 0, then
g =w. 27
Proof. Since B,(w) = —+/m(az ho/k,), we have:

—ck, exp(—w?/a?)

F(o + 2 exp(—w?/a
©) = Lo T2 1~ @lan p(—w?/a})
A L (28)
¢
= oxp(—o/al) — T ¢7:a1 Fy(0) = Fo(0) = o
and from the uniqueness of g in Eq. (23), we deduce (27).
Remark 3. With the hypothesis of Lemma 2, we have:
Ayx) = ay(x), Vx>0, By(x)=By(x), Vx>0 (29)

Remark 4. With the hypothesis of Lemma 2, we deduce the following equivalence:
Problem (2)—(9) <> Problem (2)—(7) and (8 bis); this implies the inequality:

ka b/\/n a, f(o/ay) > Ckl/\/" a

or

b
flo/ay) < kpa b/kia,c = \/ ky Cy/ky C,. (30)

Notice that this inequality takes into account the temperatures b, ¢ and the coefficients k,,
a, and k,, a, corresponding to the solid and liquid phase, but not the latent heat of fusion
L.

IV. Limit cases. Using a method analogous to that in [6], we have

LEMMA 3.

Fo(0*)=0<hy = chy <w=0<L=+ow. (31)
1\/7r

Let 0,(x, t) be the function defined by (10), (14) and (15) for each L > 0. Then:
Remark 5. If hy > ck,/a, \/m, the limit of 0,(x, t) as L— + oo is given by:

O0L-(x,t)= lim O, (x,)=0 if x=0,

L-+ o (32)
=_f< 1\/t> if x#0.

Moreover, 0, _ , is a continuous function, but its heat flux in x = 0is given by:

00L_°0 Ckl

0.0= b+ Jt 2 = hio). (33)

This implies that the limit L— + oo has no physical meaning, as was remarked in [6].
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Remark 6. If hy > ck,/a, \/n the limit of 6,(x, t) as L— O s given by:

. h
mﬂmn=kgmmn=i%%ﬁo—fQ£yJ) (34)
The function 8, _, is continuous and its heat flux in x = O is:
ka(001 - o/0x)0, 1) = —ho/\/t = h(1). (35)
Appendix. Let
2 x
Fy(x) = el)(p_(—f(xx)), fx) = % L exp(—u?) du = erf(x),
_ S0 2 _ "
H(x) = T \/n F(x), G(x) = H(x) — 2x.
We prove the following properties:
LEMMA.
(i) H(0) = 2/{/=, H(+ o0) = + o0, H(x) > 0, Vx > 0,
(ii) G(0) = 2/\/n, G(+0) =0,
(iii) H'(x) = G(x) - H(x),  G'(x)=H'(x) -2, 2
(iv) G(x) > 0, Vx >0,
v) F'(x) > 0, Vx > 0,

Proof. (i), (ii) and (iii) are evident by definition or by application of L’Hopital’s rule. (iv)
we suppose that there exists x, > 0/G(x,) = 0. It follows that

H(xo) = 2xo, H'(xo) = 0, (3)
G(xo) =0, G(xg)=—-2<0 )
The conditions (4) implies that there exists x; > x,,
G'(x;) =0, G(x,) < 0. 5)
Therefore
H'(x,) = G(xy)H(x,) < 0.
Then

0=G(x)=H(x,)—2< -2,

which is a contradiction. (v) is evident using (iii) and (iv).
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