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Abstract. We consider a semi-infinite body (e.g. ice), represented by (0, -I- oo), with an

initial temperature — c < 0 having a heat flux h(t) = —h0/yjt (h0 > 0) in the fixed face

x = 0. If h0 > cki/yjna! there exists a solution, of Neumann type, for the resulting two-

phase Stefan problem. If we connect it with the Neumann problem (on x = 0 the body has a

temperature b > 0) we obtain the inequality erf(<r/a2) < (k2 bajki ca2) for the coefficient a

of the free boundary s(f) = 2ajt, where kt and af are respectively the thermal conductivity

and thermal diffusivity coefficients of the corresponding i phase (i = 1: solid phase, i = 2:

liquid phase). If h0 < ck1/y/na1 there is no solution of the initial problem and if

h0 = ckjjnai the problem has no physical meaning and corresponds to the case where

the latent heat of fusion L tends to infinity.

Notation.

Q = (0, + oo) semi-infinite body

x space coordinate variable in Q

t time

s{t) position of the solid-liquid interface (free boundary)

at time t > 0

0(x, t) temperature defined for x > 0, t > 0

02(x, t) water temperature defined for 0 < x < s(t), t > 0

0i(x, t) ice temperature defined for x > s(t), t > 0

c2 specific heat of water

C! specific heat of ice

I latent heat of fusion

p mass density

k2 thermal conductivity of water

kx thermal conductivity of ice

— c<0 initial temperature

b > 0 temperature in the fixed face x = 0

h(t) heat flux in the fixed face x = 0

* Received October 1, 1980.
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C2 = pc2, Cj = pcu L = pi

= (k2/C2)112 at = (kJC,)1'2

a\ thermal diffusivity of water

a\ thermal diffusivity of ice.

I. The problem. We shall consider the two-phase Stefan problem for a semi-infinite

body, represented by = (0, +00) with null change phase temperature (case: water-ice).

That is, we shall find the functions s = s(t) > 0 (free boundary), defined for t > 0 with

s(0) = 0, and

6(x, t) = 92(x, t) > 0 if 0 < x < s(t)

= 0 if x — s(t) (1)

= 0!(x, t)<0 if s(t) < x,

defined for x > 0 and t > 0, such that they satisfy the following conditions:

dOi _ d20!

dt 1 dx
C1 — k1 a 2 = 0, in s(t) < x, t > 0, (2)

d6 d^O
C2 —^ — k2 ——r = 0, in 0 < x < s(t), t > 0, (3)

dt dx

9Mt), t) = 0, Vt > 0, (4)

02(s(f), 0 = 0, Vt > 0, (5)

ki (s(r), t)- k2~ (s(t), t) = Ls'(t), Vt > 0, (6)
ox ox

0j(x, 0) = -c < 0, Vx > 0, (7)

df)
k2 ~r (0, t) = h(t), vt > 0. (8)

ox

The function h{t) represents the heat flux that the material Q receives in its fixed face x = 0.

In the case

h(t) = -(W) (ho>0), (9)

we prove that there is not always a solution of Neumann type [1, 2, 3, 4, 7] for the problem

(2) to (9). Moreover, the explicit solution exists if the constant h0 satisfies a certain in-

equality (19). This idea was suggested in [5], where simple exact solutions are given for the

steady-state two-phase Stefan problem in which the heat flux satisfies an inequality on a

given portion of the body's boundary and the temperature has a constant sign (for example,

positive) on the remaining body's boundary.

II. Solution of problem (2)—(9). Following the idea of Neumann for the two-phase

Stefan problem [1,2, 3,4, 7], we propose:

0j(x, t) = /!, + B, f(x/2als/t),

02(x, t) = A2 + B2 f(x/la2 71), (10)

s(t) = 2co Jt, co > 0,
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where

f(y) = ~7~ I exp{ —m2) du, al = Jkjc[, a2 = Jk2/C2. (11)

The four conditions (4), (5), (7), (8) give rise to the two systems of equations

Ax + Bi = -c, Ax + /((u/a^Bi = 0, (12)

B2 = -y/nj1 h0, A2+f(co/a2)B2 = 0. (13)
k2

Solving (12) and (13) as functions of co, we obtain:

f (f)
Ai (co) = c y--r, B^co) = 4—'"'6

/42(co) = (~)> B2(co) = -Jn k
a2 h0

dF,
(x) >0, Vx > 0 (cf. Appendix),

we deduce for the function F0

Fo(0+) = Uho ^
L \ yjnaj'

dFn
F0( + co) = — oo, —— (<w) <0, Va; > 0,

dco

(14)

The condition (6) is satisfied if to is a solution of the equation

F0(co) = co, co > 0 (15)

where

„ , , K f co2\ ckx (o)\ „ , ^ exp( —x2)

=r ex,Y" " cm 1 w- F,w" ■ <I6>

Taking into account the following properties of the function Ft:

F1(0+)=1, F1(+oo)=+oo,

(17)

(18)

and therefore we obtain

Lemma 1. There exists a solution (10) of the problem (2)—(9) ifTFo(0+) > 0 and iff

h0 > ck1/y/na1 (19)

Proof. Using the properties (18), Eq. (15) has a unique solution iffFo(0+) > 0.
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Remark 1. If h0 < cky/Jua^ there is no solution of the problem (2)—(9) of the type

(10). The limit case h0 = ckj-jna^ has no physical meaning and corresponds to the case

L— + oo (cf. Sec. IV).

III. Relationship with the Neumann solution. The temperature in the fixed face x = 0 is

given by

b0 = 92(0, t) = A2(co) = Jn (20)

Since b0 > 0, we can consider the two-phase Stefan problem consisting in finding the

functions s(t), 0x(x, t), 02(x, t) solutions of (2)—(7) and (8 bis), where:

62(0, t) = b with b > 0. (8 bis)

The solution of problem (2)—(7) and (8 bis), which is known as Neumann solution [1, 2, 3,

4, 7], is given by:

0,(x, t) = OCj + 0! /
2aly/tJ'

e2(x, t) = <x2 + p2 f ( 2aX^tJ. (21)

S(t) = 2 Oyji,

with

«i(ff)=°y

PM = — cl

<x2(o) = b,

1 -/
a

fli/J

i -/:
\a i

(22)

Here c is the unique solution of the equation

F(a) — a, a > 0 (23)

with

kx o , ^ ( ff2N\ k2
F(o) =   7- £»exp - — I - t j- i?2(^)exp - — (24)

LalsJn \ a\) La2yJn \ a2J

which satisfies:

F(0+) = + oo, F(+oo) = — oo, ^(<x)<0, Vct > 0. (25)
da

Remark 2. Notice that

Ax{x) = a^x), Vx > 0, Bi(x) = /Mx), Vx > 0. (26)
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Lemma 2. If the condition (19) is valid and we take b = b0 > 0, then

a = co. (27)

Proof. Since fi2(a)) = — Jn(a2 K/k2), we have:

, — c/cx exp( — co2/aj) h0 , ,, -
F(co) = 7 ¥ 1 a + f exp(-®2/aI

Lai V71 1 —/(co/ax) L

f= ~ exp{-a>2/a22) - ^ F,(w) = F0(a>) = co,
L Lyjnai

(28)

and from the uniqueness of <r in Eq. (23), we deduce (27).

Remark 3. With the hypothesis of Lemma 2, we have:

42(x) = a2(x), Vx > 0, B2(x) = p2(x), Vx > 0. (29)

Remark 4. With the hypothesis of Lemma 2, we deduce the following equivalence:

Problem (2)—(9)<=> Problem (2)—(7) and (8 bis); this implies the inequality:

k2 b/yf n a2 f{a/a2) > ckj^nal

f(a/a2) < k2 aj b/k^ a2c=-Jk2 C2/kr Cj. (30)

Notice that this inequality takes into account the temperatures b, c and the coefficients klt

and k2, a2 corresponding to the solid and liquid phase, but not the latent heat of fusion

L.

IV. Limit cases. Using a method analogous to that in [6], we have

Lemma 3.

F0(0+) = 0<=>/to = ——7—<=>co = OoL = +00. (31)
yj 71

Let 0L(x, t) be the function defined by (10), (14) and (15) for each L > 0. Then:

Remark 5. lih0 > ckt/a! Jn, the limit of dL(x, t) as L—> + 00 is given by:

0l = oo(x, 0 = lim QL(x, t) = 0 if x = 0,
L-* + 00

= _C/(2^)<0 " x*a-

Moreover, 0L=x is a continuous function, but its heat flux in x = 0 is given by:

(32)

ki L. (0, t) = j- ± —A = h(t). (33)
ox a^y/nt Jt

This implies that the limit L—> + 00 has no physical meaning, as was remarked in [6].
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Remark 6. If h0 > ckl/al -Jn the limit of dL(x, t) as L—> 0 is given by:

(W*. t) = lim edx, ,) = ^2 (l -/ (34)

The function 0L=o is continuous and its heat flux in x = 0 is:

k2(d0L = o/dx)(O, t) = -hjyjt = h(t). (35)

Appendix. Let

, exp( —x ) x 2
Fi(x =  77—, J(x) = -r

1 -f{x) V71.
exp(-u2) du = erf(x),

= -r^TTT = "7- i(*X G(x) = H(x) - 2x.
1 -/(*) V71

(1)

We prove the following properties:

Lemma.

(i) H(0) = 2/Jn, H( + oo) = + oo, //(x) > 0, Vx > 0,

(ii) G(0) = 2/yJn, G( + oo) = 0,

(iii) H'(x) = G(x) • H(x), G'(x) = H'(x) - 2, (2)

(iv) G(x) >0, Vx > 0,

(v) F\(x) >0, Vx > 0,

Proof, (i), (ii) and (iii) are evident by definition or by application of L'Hopital's rule, (iv)

we suppose that there exists x0 > 0/G(xo) = 0. It follows that

H(x0) = 2x0, H'(x 0) = 0, (3)

G(x0) = 0, G'(x0) = — 2 < 0 (4)

The conditions (4) implies that there exists xx > x0,

G'(xj) = 0, G(Xi) < 0. (5)

Therefore

H\Xl) = G(x1)H(x1) < 0.

Then

0 = G'(Xi) = H'ixJ - 2 < -2,

which is a contradiction, (v) is evident using (iii) and (iv).
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