An inequality for the entropy of differentiable maps

David Ruelle*

1. Introduction and statement of results.

The purpose of this note is to prove Theorem 2 below, which gives an upper bound to the measure-theoretic entropy $h(\rho)$ of any probability measure ρ invariant under a differentiable map f of a compact manifold M into itself. The upper bound is in terms of characteristic exponents introduced by the non-commutative ergodic theorem of Oseledec [2]. We first formulate a version of the latter theorem which will be suited to our purposes.

Theorem 1. Let (M, Σ, ρ) be a probability space and $\tau: M \rightarrow M$ a measurable map preserving ρ. Let also $T: M \rightarrow \boldsymbol{U}_{n}(\mathbb{R})$ be a measurable map into the $m \times m$ matrices, such that*

$$
\log ^{+}\|T(\cdot)\| \in L^{1}(M, \rho)
$$

and write

$$
T_{x}^{n}=T\left(\tau^{n-1} x\right) \ldots T(\tau x) T(x)
$$

There is $\Omega \subset M$ such that $\rho(\Omega)=1$ and for all $x \in \Omega$

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(T_{4}^{n *} T_{x}^{n}\right)^{1 / 2 n}=\wedge_{x} \tag{1}
\end{equation*}
$$

exists [* denotes matrix transposition].
Let $\exp \lambda_{x}^{(1)}<\ldots<\exp \lambda_{x}^{(s(x))}$ be the eigentalues of \wedge_{x} [with possibly $\left.\dot{\lambda}_{x}^{(1)}=-\infty\right]$, and $U_{x}^{(1)}, \ldots, U_{x}^{(s i x))}$ the corresponding eigenspaces. If $V_{x}^{(r)}=$ $=U_{x}^{(1)}+\ldots+U_{x}^{(r)}$ we have

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \left\|T_{x}^{n} u\right\|=\lambda_{x}^{(x)} \quad \text { when } \quad u \in V_{x}^{(r)} \backslash V_{x}^{(r-1)}
$$

for $r=1, \ldots, s(x)$.
The theorem published by Oseledec assumes τ and T invertible. Its proof has been simplified by Raghunathan [4]. The above result can be obtained by modifying Raghunathan's argument.

Recebido em setembro de 1977.

* We write $\log ^{+} x=\max \{0, \log x\}$.

Let $m_{x}^{(r)}=\operatorname{dim} U_{x}^{(r)}=\operatorname{dim} V_{x}^{(r)}-\operatorname{dim} V_{x}^{(r-1)}$. The numbers $i_{x}^{(1)}, \ldots$, $i^{(s(x))}$, with multiplicities $m_{x}^{(1)}, \ldots, m_{x}^{(s(x))}$ constitute the spectrum of (ρ, τ, T) at x. The $i_{x}^{(r)}$ are also called characteristic exponents. When n tends to ∞, $\frac{1}{n} \log \left\|\mathrm{~T}_{x}^{n}\right\|$ tends to the maximum characteristic exponent $\lambda_{x}^{(s(x))}$. The spectrum is τ-invariant; if ρ is τ-ergodic the spectrum is almost every where constant.

Let $T^{\Lambda p}: M \rightarrow \not_{\binom{m}{p}}(\mathbb{R})$ be the p th exterior power of T;
we have

$$
T^{\wedge p}\left(\tau^{n-1} x\right) \ldots T^{\wedge p}(\tau x) T^{\wedge p}(x)=\left(T_{\lambda}^{n}\right)^{\wedge p}
$$

and the spectrum of $\left(\rho, \tau, T^{\Lambda p}\right)$ is determined by

$$
\lim _{n \rightarrow \infty}\left[\left(T_{n}^{n}\right)^{\Lambda p *}\left(T_{x}^{n}\right)^{\wedge p}\right]^{\frac{1}{2 n}}=\wedge_{x}^{\wedge p}
$$

For $T^{\Lambda}=\oplus_{p} T^{\Lambda p}$ we obtain in particular

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \log \left(T_{x}^{n}\right)^{\Lambda}=\sum_{r: \lambda_{x}^{(r)}>0} \lambda_{m_{x}}^{(r)} \lambda_{x}^{(r)} \tag{2}
\end{equation*}
$$

Theorem 2. Let M be a C^{∞} compact manifold and $f: M \rightarrow M$ a C^{1} map Let 1 be the set of f-invariant probability measures on M :
a) There is a Borel subset Ω of M, such that $\rho(\Omega)=1$ for every $\rho \in I$, and for each $x \in \Omega$ the following holds. There is a strictly increasing sequence of subspaces:

$$
0=V_{x}^{(0)} \subset V_{x}^{(1)} \subset \ldots \subset V_{x}^{(s(x))}=T_{x} M
$$

such that, for $r=1, \ldots, s(x)$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \left\|T_{x} f^{n} u\right\|=\lambda_{x}^{(r)} \quad \text { if } \quad u \in V_{x}^{(r)} \backslash V_{x}^{(r-1)}
$$

and $\lambda_{x}^{(1)}<\lambda_{x}^{(2)}<\ldots<\lambda_{x}^{(s(x))}$; we may have $\lambda_{x}^{(1)}=-\infty$. [The $V_{x}^{(r)}$ and $\lambda_{x}^{(r)}$ are uniquely defined with these properties. and independent of the choice of C° Riemann metric used to define \|•\|]. The maps $x \rightarrow s(x)$, $\left(V_{x}^{(1)}, \ldots, V_{x}^{(\cdot(x))}\right),\left(\lambda_{x}^{(1)}, \ldots, \lambda_{x}^{(s i x)}\right)$ are Borel.
b) Let $m_{x}^{(r)}=\operatorname{dim} V_{x}^{(r)}-\operatorname{dim} V_{x}^{(r-1)}$ for $r=1, \ldots, s(x)$ and define

$$
\lambda_{+}(x)=\sum_{r: \lambda_{x}^{(r)}>0} m_{x}^{(r)} \lambda_{x}^{(r)}
$$

Then, for every $\rho \in l$ the entropy $h(\rho)$ satisfies

$$
h(\rho) \leq \rho\left(\lambda_{+}\right)
$$

[where $\left.\rho\left(\lambda_{+}\right)=\int \rho(d x) \lambda_{+}(x)\right]$.
It is good to remember that the set I is convex and compact fer the vague topology, and that $h: I \rightarrow \mathbb{R}$ is affine, but we shall not make use of these facts*.

We may assume that M has dimension m. Using a suitable Borel partition of M, we can trivialize the tangent bundle and write $T M \simeq M \times \mathbb{R}^{m}$. Therefore we can apply Theorem 1 with $\tau=f$, any $\rho \in I$, and $T(x)$ replaced by $T_{x} f$. We let Ω be the set of all x such that the limit (1) exists, and we take the $\dot{\lambda}_{x}^{(r)}$ and $V_{x}^{(r)}$ as in Theorem 1. With these choices it is clear that part (a) of Theorem 2 holds. Part (b) is proved in Section 2.
2. Proof of the inequality $h(\rho) \leq \rho\left(\lambda_{+}\right)$.

In what follows we fix $\rho \in I$. We shall make use of the fact that, in view of (2),

$$
\begin{equation*}
\left.\lim _{n \rightarrow \infty} \frac{1}{n} \log \| T_{x} f^{n}\right)^{\wedge} \|=\lambda_{+}(x) \tag{3}
\end{equation*}
$$

Consider a smooth triangulation of M and for each m-dimensional simplex of the triangulation let there be a local chart such that the simplex is defined by

$$
\begin{equation*}
t_{1} \geq 0, \ldots, t_{m} \geq 0, \quad t_{1}+\ldots+t_{m} \leq 1 \tag{4}
\end{equation*}
$$

It is convenient to assume that the boundary of each simplex has ρ-measure 0 . This can be obtained by moving the triangulation by a small diffeomorphism of M (one pushes the triangulation succèssively by vector fields with small compact supports covering M so that the mass of the boundaries becomes zero). Given an integer $N>0$, we decompose the simplex (4) into subsets by the planes

$$
t_{1}=\frac{k_{1}}{N} \quad \text { for } \quad i=1, \ldots, N-1
$$

We can assume that these planes have ρ-measure 0 for all N (use a small diffeomorphism of the simplex reducing to the identity on the boundary).

[^0]We have thus obtained a partition δ_{N} of M (up to sets of measure zero) into cubes and (near the boundary of the simplexes) pieces of cubes.
a) Given a Riemann metric on M, there is $C>0$, and for each n there is $N(n)$, such that if $N>N(n)$ the number of sets of δ_{N} intersected $f^{n} S$ where $S \in \delta_{N}$ is less than

$$
\begin{equation*}
\left.C \| T_{x} f^{n}\right)^{\Lambda} \| \tag{5}
\end{equation*}
$$

for any $x \in S$.
Since N is large, diam S is small, and f^{n} restricted to S is close to its linear part estimated at any $x \in S$ when computed in terms of the variables t_{i} corresponding to the simplex in which S lies and to the simplex(es) in which $f^{n} S$ lies. Using the equivalence of the Riemann metric on M and of the Euclidean metric in the variables t_{i}, we find that there is $K>0$ (independent of n, N) such that $f^{n} S$ lies in a rectangular parallelepiped with sides $K \frac{a_{1}}{N}, \ldots, K \frac{a_{p}}{N}, \frac{K}{N}, \ldots, \frac{K}{N}$, where $a_{1}, \ldots, a_{p}>1$ and

$$
\left.a_{1}, \ldots, a_{p}=\max \left\{\left\|\left(T_{x} f^{n}\right)^{\wedge} u\right\|: u \in\left(T_{x} M\right)^{\Lambda},\|u\|=1\right\}=T_{x} f^{n}\right)^{\wedge} \|
$$

Now, a cube of sides $\frac{1}{N}$ can intersect only a bounded number of sets in the decomposition of a simplex by planes $t_{i}=\frac{k_{i}}{N}$. Therefore the number of sets of δ_{N} intersected by $f^{n} S$ is bounded by an expression of the form (5).
b) The entropy of ρ with respect to f^{n} and the partition δ_{N} satisfies

$$
\begin{equation*}
h_{f^{n}}\left(\rho, \delta_{N}\right) \leq \log C+\int \rho(d x) \log \left\|\left(T_{x} f^{n}\right)^{\boldsymbol{\wedge}}\right\| \tag{6}
\end{equation*}
$$

Each $x \in M$ is in some $S=S_{0} \cap S_{1} \cap \ldots \cap S_{k-1}$ where $S_{j} \in f^{-n j} \delta_{N}$, and we can define

$$
h_{N, n, k}(x)=-\sum_{S_{k} \in, l^{n k} \delta_{j_{N}}} \frac{\rho\left(S \cap S_{k}\right)}{\rho(S)} \log \frac{\rho\left(S \cap S_{k}\right)}{\rho(S)}
$$

Then

$$
h_{f^{n}}\left(\rho, \delta_{N}\right)=\lim _{\ell \rightarrow \infty} \frac{1}{\ell} \sum_{k=0}^{\ell-1} \int \rho(d x) h_{N, n, k}(x)
$$

and, for $k>0$, (a) yields

$$
h_{N, n, k}(x) \leq \log \left[C\left\|\left(T_{x} f^{n}\right)^{\Lambda}\right\|\right]
$$

Therefore (6) holds.
c) End of proof.

Letting N tend to $+\infty$ in (6) and dividing by n we obtain

$$
h_{f}(\rho)=\frac{1}{n} h_{f^{n}}(\rho) \leq \frac{1}{n} \log C+\int \rho(d x) \frac{1}{n} \log \left\|\left(T_{x} f^{n}\right)^{\wedge}\right\| .
$$

Since $\frac{1}{n} \log \left\|\left(T_{x} f^{n}\right)^{\wedge}\right\|$ is positive and bounded above, (3) permits to conclude that

$$
h_{f}(\rho) \leq \int \rho(d x) \lambda_{+}(x)
$$

3. Remark

The inequality $h(\rho) \leq \rho\left(\lambda_{+}\right)$was known for axiom A diffeomorphisms and for the time one map of axiom A flows [5], [6]. It is also obvious for quasi-periodic maps of the m-torus. A related result was proved for certain diffeomorphisms preserving a smooth measure by Margulis and Pesin [3]. In all those cases one has

$$
\sup _{\rho}\left[h(\rho)-\rho\left(\lambda_{+}\right)\right]=0
$$

Question. Is this "variational principle" true in general?

References

[1] R. Bowen and D. Ruelle, The ergodic theory of axiom A flow's. Inventiones math. 29, 181-202 (1975).
[2] V. I. Oseledec, A multiplicative ergodic theorem. Ljapunov characteristic numbers for dynamical systems. Trudy Moskov. Mat. Obsc. 19, 179-210 (1968). English. Translation. Trans. Moscow Math. Soc. 19, 197-231 (1968).
[3] Ja. B. Pesin, Ljapunov characteristic exponents and ergodic properties of smooth dynamical systems with an invariant measure. Dokl. Akad. Naul. SSSR 226 N. ${ }^{\circ}$ 4, 774-777 (1976). English translation. Soviet. Math. Dokl. 17 N. ${ }^{\circ}$ 1, 196-199 (1976).
[4] M. S. Raghunathan, A proof of Oseledec' multiplicative ergodic theorem. Unpublished.
[5] D. Ruelle, A measure associated with axiom A atractors. Amer. J. Math. 98, 619-654 (1976).

[^0]: *They could be used to reduce the proof of the inequality $h(\rho) \leq \rho\left(\lambda_{+}\right)$to the case where ρ is ergodic.

