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AN INEQUALITY FOR THE HAUSDORFF-METRIC
OF o-FIELDS

By D. LANDERS AND L. RoGGE
University of Cologne and University-GH-Duisburg

It is shown that the Hausdorff-metric of o-fields—which plays an im-
portant role for uniform martingale theorems—has a surprising “additivity”
property. For example this property can be used to obtain a sharpened
version of a uniform inequality for conditional expectations.

1. Introduction. Let (£, o/, P) be a probability space. To avoid prolifera-
tion of symbols we use the same symbol p(-, -) for several distance functions. If
A € o/ and # C &/ denote by p(A, #) = infz . z3P(AaB) = infgz_ 41, — 15ll,
the || ||,-distance of A from Z. If «,, #, C & we write

p( Ay, By) = sup p(A, %B,)
Ae,

and
d(ﬂo, ,%’0) = P(-Mo, ,%’0) + p(.@o, Mo)-

Then d is a pseudometric on the set of all nonvoid subsystems of «7. If we endow
& with the pseudometric (A, B) » P(Aa B), then all complete sub-o-fields of .«
are closed subsets of &/ and d is equivalent to the usual Hausdorff-metric
between closed subsets.

The pseudometric d was studied by Boylan (1971), Neveu (1972), Rogge
(1974), Brunk (1975), and Mukerjee (1984). Boylan used this pseudometric to
show that if a sequence of o-fields ./, increases or decreases to a o-field &7, and
if d(,, ) — 0 then

8, = sup||[P“»f — P*=f||; - 0,
feo

where P# denotes the conditional expectation operator and ® is the system of all
“measurable functions with values in [0, 1].

Neveu (1972), Rogge (1974), and Brunk (1975) gave rates of convergence for §,.
Neveu proved that

8, = 0(d(,, #,,))

if &/, are o-fields increasing or decreasing to the o-field <7, . Rogge proved for
arbitrary o-fields (not necessarily ordered by inclusion)

8, = 0(d(,, #,)"?).
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Brunk proved for arbitrary o-lattices
8, = 0(d(,, #,)"").

The cited results of Brunk and Rogge follow from their || ||,-inequalities. In this
paper it is shown that

8” = O(d(ﬂﬂ’ ‘MU)))

for arbitrary o-fields (see Corollary 5). It is an open question whether this holds
for o-lattices, too.

Let us remark that O(d(%/,, #,)) is a sharp convergence rate for §, since
8, > 1d(,, &, ) always (see Rogge, 1974, page 489). Corollary 5 is a conse-
quence of our inequality ¥, . yp(A;, &) < 4p(&,, B,), if A, € o, are disjoint
(see Theorem 1). The distances p( A, %,) play an important role for convergence
orders in the conditional central limit theorem of Rényi (see Landers and Rogge,
1984a). The inequality above is one of the basic tools to obtain rates of conver-
gence in the central limit theorem for sums of a random number 7, of indepen-
dent terms where 7,/n converges to a nonconstant limit function 7 (see Landers
and Rogge, 1984b). Hitherto rates of convergence were known only for constant =
(see Landers and Rogge, 1976, 1977, and the literature cited there).

2. The results. The following inequality is the main tool of this paper and
may be of independent interest.

THEOREM 1. Let &, B, C & be o-fields and let A, € o/, i € I, be disjoint
sets. Then ‘

Z p(A;, B,) < 4p(,, B,).

el

PrOOF. Obviously it suffices to prove the assertion for the case that I =
{1,...,n}, n >3, and X' A, = Q. According to Kudo (1974, Lemma 2.1) there
holds for each A € &/

(1) p(A, B,) =1 — E(| — P®A|) = E(P®A A (1 - P%A)).
Let ¢, = P%A,, i € I, and put for each N c I

PN = Z Pis Ay = EAi'
ieN ieN

By (1) we have for each N c I

{(2) p(An, Bo) = E(oy A (1= op)).
Choose M c I such that

(3) p(Ay, B,) <p(Ay, B, forall Nc I
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Since p(A,;, Z,) < p(H,, %B,) it suffices to show according to (2) that
(4) E(i:lq’i/\ (1 _‘Pi)) <4E(py A (1= oy)).

Since |I| = n we have by (2) and (3)

E( 2 oonA (- qw)) < 2°E(gy A (1 = oy)).

NclI

Hence (4) is shown if we prove

(6) @/ Lar(l-9)< X ovA(l-oy) on{Z<v,~=1}-
i=1 NcI i=1

Consider the following two cases,

(A) ¢;(w) > ; for some i, € {1,...,n} and
(B) pi(w) < jforallie {1,...,n}, w e (X9, = 1},

and write @, instead of ¢,(w).
CASE (A). Since X7_ ¢, = 1 we have

n
(6) Z‘Pi/\(l_Q%):l_‘Pi(,'*’ Z‘Pi=2(1_%o)~
i=1 i#1i,
Furthermore we have

Y oonA(1- o) Yo oonA(l—ey)+ X onA(1—oy)

Ncl ihZWweNcl iWeNcl
= Y (Q-oen)+ X ‘PIN
weNcI weNcl
= Y (1-(en+@))+ X on
LwWeNcl iWgNcl
= Z (1 - ‘Pi(.) = %2"(1 - ‘Pi(,)-
iy ENCI

Together with (6) this implies (5).

Cask (B). In this case L ;¢; A (1 — ¢;) = X7 ,¢; = 1 and hence we have to
show that
(7) Y onA(1-gy)=2"/4.

Ncl

We prove this inductively for n > 3. Let n =3, ie, I={1,2,3}. Since ¢, +
@, + ;=1 and ¢; < 1, i € I, we have ¢; + p; > } for i # j and (7) holds with
equality. Now assume that (7) holds for n > 3 (i.e., (7) holds for all real numbers
@; € [0, 3] with X7, = 1).

Let ..., 9,., €[0,1] with £?*p, = 1. Since n > 3, w.l.g. we may assume
@, + P < 3. Put y,=¢, fori=1,...,n—-1and ¢, =9, + ¢,,,. By induc-
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tive assumption we have

Y WA (1) =274

Hence it suffices to prove

(8) Y oonA(l—ey)=2 X YA (1)

Obviously (8) is shown if we prove
> (‘PN+(n> A1 - <PN+(n)) t Oni ey A (1- q)N+{n+1}))

2 > (‘I/N/\ (1 —dn) +dniim A (1"PN+("}))~

A direct computation shows that for all a, b,c € [0,1] with a + b+ ¢ < 1,

b + ¢ < ; there holds

(10) (a+b)A(1l-(a+d)+(a+te)A(1—(a+¢))
>aA(l—-a)+(a+b+e)A(1—-(a+b+0)).

Now let N c {1,...,n — 1} be fixed and put a =, b=¢,, and c=g,,,.

Then ¢y, =@+ b, oy ey =a+ 6 Yy my=a+b+te and an applica-

tion of (10) yields (9).

The following example shows that the constant 4, appearing in the inequality
of Theorem 1, cannot be replaced by a constant less than 3.5. By a rather
technical and tedious modification of this example, it can be seen that also the
constant 3.5 does not work. We believe that the constant 4 is optimal.

ExAMPLE 2. We construct a probability space (2, 7, P), a o-field %4, C &/
and disjoint A, € &, i€ 1= {1,2,...,7},L;c /A, = , such that with the o-field
Ly ={Ay=L,eNA;: NCI}

(11) ZP(AI’ ‘%0) = ]-’
iel
(12) o(,, B) = supp(Ay, B,) = 2.
Ncl

Let X = (1,2,3}, Y= {1,2,...,7},and put & = X X Y. Let &/ be the power set

of @, B,= (X X B: BC Y}, and P|« be the p-measure, defined by P{w} = 5,

for all w € Q. To define the set A; put at first B, = {1,2,3}, B, = {1,4,5},

B, = {1,6,7), B, = (2,4,6), By = {2,5,7), By = {3,4,7}, and B, = {3,5,6).
Then B,c Y,ieI={1,...,7}, and we have

(13) Y 1g(y) =3 forallyey,
iel
(14) sup #{y eY: Yy e {1,2}} - 6.
Nel ieN

By (13) for each y € Y there exist unique 1 < y(1) < ¥(2) < ¥(3) < 7 such that
y€B Jj=123.

y(J)?
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Now define
A;={(x,y)€Q yeB;, y(x)=i}, i€l
These A; € &, i € I, are disjoint and X, . ;A; = Q.
We directly obtain
(15) ¢, = PPA,; = (1/3)1X><B,’ i€l
Now (15) implies (use (2))
Z p(4A;, B,) = )y E(p;n (11— ‘Pi)) = Z E(e) =1,

iel iel iel
i.e., (11) is fulfilled. For each N C I we have by (15) that
oy A (1—oy) € {0,5}
and

ox A (L= on)(x ) =4 i T 15() € (1,2).

Hence (14) implies (use (2))
p(y, By) = supE(oy A (1 — ¢p))
Ncl

= sup(#)(:";)(#X)#{y €Y: Y 15(y) € {1,2}} =z
Ncl teN

i.e., (12) is fulfilled.
For an integrable function f let

o(f, B,) = inf{|| f — gll,: & is B, measurable} .
Then Theorem 1 yields also a result for measurable functions instead of indicator
functions.

COROLLARY 3. Let ¢,, B, C  be o-fields and let f; > 0 be s/,-measurable
functions with 7_, f; < 1. Then

Z P( fi’ ‘@0) < 4P(~Mo, @0)

=1

ProOF. W.lg. we may assume that f,,..., f, are %/ measurable step func-
tions. Hence there exists a common representation

k
fi= Zai,,lAy, i=1,...,n,

v=1

where A,,..., A, € &, are disjoint. As a;, > 0 and £} ,a;, < 1, we obtain

w

n n k B
Yo(fi, %) < X X a,0(A,, B)
i=1

i=1v=1

k
< Y o(A,, %B,) < 4p(Hp, B,),

v=1

where the last inequality follows from Theorem 1.
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COROLLARY 4. Let %/, B,C o be o-fields and denote by s/, V %, the
smallest o-field containing <4, and %,. Then

p(y V By, By) < 4p( 5, Bo).
PRrOOF. It is easy to see that the system

N )
€= { U(A,nB): A,,..., A, €, disjoint, By,..., B, € #,,n € N}

i=1
is a field, generating </, V %,. Hence it suffices to show that
p(C, B,) < 4p(,, B,) forallC € ¥.

Let C=U"~(A,NB)E ¥. As A,,..., A, € &, aredisjoint and B,,..., B, €
%, we obtain

n n
p(C, go) < Zp(AinBi’ﬁo) < Zp(Ai,‘QO) _<_4P(J{0,Q0),
i=1 i=1

where the last inequality follows from Theorem 1.

COROLLARY 5. Let &4, B, C & be o-fields. Then

sup [|Pf — P%f||, < 8d(,, %,)-
fed

ProoF. Using Theorem 2 of Rogge (1974) and Corollary 4 we obtain for all
fed
|P=of — PPof ||, < ||P¥of — PV of || + || PV %of — PHof|,
< 20(B, V Ay, L) + 20( Ly V By, By)
< 80(B,, #,) + 8p(H,, B,) = 8d(y, B,)-
If o/, C @,, the inequality of Corollary 5 is due to Neveu (1972). Up to now,
without the restriction &7, C %,, there were known inequalities in terms of
d(s,, %B,) for sup; c 4| P f — P%f]|, only (see Brunk, 1975, and Rogge, 1974).
The methods, however, use Hilbert space properties of L, and cannot be applied

to obtain sharp bounds for sup; ¢ o||[P*°f — P%f ;. If we use ||f||; <|/f]l, then
Rogge’s result yields

?up”P%f — Poof||, < o d( o, By)")
ed

for arbitrary o-fields %7, %, and Brunk’s result yields

sup |P=of — PEof ||, < o d( 4y, By)"*)
(3

for arbitrary o-lattices ,, %, and some constant ¢ > 0.

The following corollary is a direct consequence of Corollary 5. It sharpens
Theorem 2.7 of Mukerjee (1984).
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COROLLARY 6. Let &Z,, n € N U {00} be o-fields with ¥, - nd(,,, &) < 0.
Then sup; c o E[sup, . ,|P*f — P¥=f|] - 0.

Proor. For all f € ® we have by Corollary 5
E|sup |P%f — P*f|| < ¥ E[|P*f— P*f|] <8 ¥ d(,, %) >mn-u 0.

n=m n=m nzm

REFERENCES

BoyLaN, E. S. (1971). Equi-convergence of martingales. Ann. Math. Statist. 42 552-559.

BRUNK, H. D. (1975). Uniform inequalities for conditional p-means given g-lattices. Ann. Probab. 3
1025-1030.

Kupo, H. (1974). A note on the strong convergence of c-algebras. Ann. Probab. 2 76-83.

LANDERS, D. and RoGGE, L. (1976). The exact approximation order in the central-limit-theorem for
random summation. Z. Wahrsch. verw. Gebiete 36 269-283.

LANDERS, D. and ROGGE, L. (1977). A counterexample in the approximation theory of random
summation. Ann. Probab. 5 1018-1023.

LANDERS, D. and ROGGE, L. (1984a). Exact approximation orders in the conditional central-limit-
theorem. Z. Wahrsch. verw. Gebiete 66 227-224.

LANDERS, D. and ROGGE, L. (1984b). Sharp rates of convergence in the random central limit theorem
with non constant limit function. Submitted for publication.

MUKERJEE, H. G. (1984). Almost sure equiconvergence of conditional expectations. Ann. Probab. 12
733-741.

NEVEU, J. (1972). Note on the tightness of the metric on the set of complete sub-o-algebras of a
probability space. Ann. Math. Statist. 43 1369-1371.

ROGGE, L. (1974). Uniform inequalities for conditional expectations. Ann. Probab. 2 486-489.

MATHEMATICAL INSTITUTE FACHBEREICH 11
UNIVERSITY OF COLOGNE UNIVERSITY-GH-DUISBURG
WEYERTAL 86-90 LOTHARSTRASSE 65

D-5000 COLOGNE D-4100 DUISBURG

WEST GERMANY WEST GERMANY



