AN INEQUALITY OF OSTROWSKI'S TYPE FOR CUMULATIVE DISTRIBUTION FUNCTIONS

N.S. BARNETT AND S.S. DRAGOMIR

Abstract

The main aim of this paper is to establish an Ostrowski type inequality for the cumulative distribution function of a random variable taking values in a finite interval $[a, b]$. An application for a Beta random variable is given.

1 Introduction

In [1], S.S. Dragomir and S. Wang proved the following version of Ostrowski's inequality for differentiable mappings whose derivatives belong to $L_{1}(a, b)$:

Theorem 1.1. Let $f:[a, b] \rightarrow \mathbf{R}$ be a differentiable mapping on (a, b) whose derivative $f^{\prime}:(a, b) \rightarrow \mathbf{R}$ belongs to $L_{1}(a, b)$. Then we have the inequality:

$$
\begin{equation*}
\left|f(x)-\frac{1}{b-a} \int_{a}^{b} f(t) d t\right| \leq\left[\frac{1}{2}+\frac{\left|x-\frac{a+b}{2}\right|}{b-a}\right]\left\|f^{\prime}\right\|_{1} \tag{1.1}
\end{equation*}
$$

for all $x \in[a, b]$.
Note that the classical Ostrowski's integral inequality states that (see e.g. [3, p.468]):

$$
\begin{equation*}
\left|f(x)-\frac{1}{b-a} \int_{a}^{b} f(t) d t\right| \leq\left[\frac{1}{4}+\frac{\left(x-\frac{a+b}{2}\right)^{2}}{(b-a)^{2}}\right](b-a)\left\|f^{\prime}\right\|_{\infty} \tag{1.2}
\end{equation*}
$$

for all $x \in[a, b]$ provided $f^{\prime} \in L_{\infty}(a, b)$.
In the above paper [1], the authors have applied inequality (1.1) to Numerical Integration obtaining estimations for the error bounds of general Riemann's quadrature formulae in terms of $\left\|f^{\prime}\right\|_{1}$.

Applications of Ostrowski's inequality for the same problems in Numerical Integration have been pointed out by the same authors in [2].

The main aim of the present work is to establish an Ostrowski like inequality for the cumulative distribution function and expectation of a random variable.

[^0]
2 The Results

Let X be a random variable taking values in the finite interval $[a, b]$, with cumulative distribution function $F(x)=\operatorname{Pr}(X \leq x)$.

The following theorem holds
Theorem 2.1. Let X and F be as above. Then we have the inequality

$$
\begin{gather*}
\left|\operatorname{Pr}(X \leq x)-\frac{b-E(X)}{b-a}\right| \tag{2.1}\\
\leq \frac{1}{b-a}\left[[2 x-(a+b)] \operatorname{Pr}(X \leq x)+\int_{a}^{b} \operatorname{sgn}(t-x) F(t) d t\right] \\
\leq \frac{1}{b-a}[(b-x) \operatorname{Pr}(X \geq x)+(x-a) \operatorname{Pr}(X \leq x)] \\
\leq \frac{1}{2}+\frac{\left|x-\frac{a+b}{2}\right|}{(b-a)}
\end{gather*}
$$

for all $x \in[a, b]$. All the inequalities in (2.1) are sharp and the constant $\frac{1}{2}$ is the best possible.

Proof. Consider the kernel $p:[a, b]^{2} \rightarrow \mathbf{R}$ given by

$$
p(x, t):=\left\{\begin{array}{ll}
t-a & \text { if } t \in[a, x] \tag{2.2}\\
t-b & \text { if } t \in(x, b]
\end{array} .\right.
$$

Then the Riemann-Stieltjes integral $\int_{a}^{b} p(x, t) d F(t)$ exists for any $x \in[a, b]$ and the formula of integration by parts for Riemann-Stieltjes integral gives:

$$
\begin{gather*}
\int_{a}^{b} p(x, t) d F(t)=\int_{a}^{x}(t-a) d F(t)+\int_{x}^{b}(t-b) d F(t) \tag{2.3}\\
=\left.(t-a) F(t)\right|_{a} ^{x}-\int_{a}^{x} F(t) d t+\left.(t-b) F(t)\right|_{x} ^{b}-\int_{x}^{b} F(t) d t \\
=(b-a) F(x)-\int_{a}^{b} F(t) d t
\end{gather*}
$$

On the other hand, the integration by parts formula for Riemann-Stieltjes integral also gives:

$$
\begin{align*}
& E(X):=\int_{a}^{b} t d F(t)=\left.t F(t)\right|_{a} ^{b}-\int_{a}^{b} F(t) d t \tag{2.4}\\
= & b F(b)-a F(a)-\int_{a}^{b} F(t) d t=b-\int_{a}^{b} F(t) d t
\end{align*}
$$

Now, using (2.3) and (2.4), we get the equality

$$
\begin{equation*}
(b-a) F(x)+E(X)-b=\int_{a}^{b} p(x, t) d F(t) \tag{2.5}
\end{equation*}
$$

for all $x \in[a, b]$.
Now, assume that $\Delta_{n}: a=x_{0}^{(n)}<x_{1}^{(n)}<\ldots<x_{n-1}^{(n)}<x_{n}^{(n)}=b$ is a sequence of divisions with $\nu\left(\Delta_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$, where

$$
\nu\left(\Delta_{n}\right):=\max \left\{x_{i+1}^{(n)}-x_{i}^{(n)}: i=0, \ldots, n-1\right\}
$$

If $p:[a, b] \rightarrow \mathbf{R}$ is continuous on $[a, b]$ and $\nu:[a, b] \rightarrow \mathbf{R}$ is monotonous nondecreasing, then the Riemann-Stieltjes integral $\int_{a}^{b} p(x) d \nu(x)$ exists and

$$
\begin{gather*}
\left|\int_{a}^{b} p(x) d \nu(x)\right|=\left|\lim _{\nu\left(\Delta_{n}\right) \rightarrow 0} \sum_{i=0}^{n-1} p\left(\xi_{i}^{(n)}\right)\left[\nu\left(x_{i+1}^{(n)}\right)-\nu\left(x_{i}^{(n)}\right)\right]\right| \tag{2.6}\\
\leq \lim _{\nu\left(\Delta_{n}\right) \rightarrow 0} \sum_{i=0}^{n-1}\left|p\left(\xi_{i}^{(n)}\right)\right|\left(\nu\left(x_{i+1}^{(n)}\right)-\nu\left(x_{i}^{(n)}\right)\right) \\
=\int_{a}^{b}|p(x)| d \nu(x)
\end{gather*}
$$

Using (2.6) we have:

$$
\begin{equation*}
\left|\int_{a}^{b} p(x, t) d F(t)\right|=\left|\int_{a}^{x}(t-a) d F(t)+\int_{x}^{b}(t-b) d F(t)\right| \tag{2.7}
\end{equation*}
$$

$$
\leq\left|\int_{a}^{x}(t-a) d F(t)\right|+\left|\int_{x}^{b}(t-b) d F(t)\right| \leq \int_{a}^{x}|t-a| d F(t)+\int_{x}^{b}|t-b| d F(t)
$$

$$
\begin{gathered}
=\int_{a}^{x}(t-a) d F(t)+\int_{x}^{b}(b-t) d F(t) \\
=\left.(t-a) F(t)\right|_{a} ^{x}-\int_{a}^{x} F(t) d t-\left.(b-t) F(t)\right|_{x} ^{b}+\int_{x}^{b} F(t) d t \\
=\left[[2 x-(a+b)] F(x)-\int_{a}^{x} F(t) d t+\int_{x}^{b} F(t) d t\right] \\
=[2 x-(a+b)] F(x)+\int_{a}^{b} \operatorname{sgn}(t-x) F(t) d t .
\end{gathered}
$$

Using the identity (2.5) and the inequality (2.7), we deduce the first part of (2.1).

We know that

$$
\int_{a}^{b} \operatorname{sgn}(t-x) F(t) d t=-\int_{a}^{x} F(t) d t+\int_{x}^{b} F(t) d t
$$

As $F(\cdot)$ is monotonous nondecreasing on $[a, b]$, we can state that

$$
\int_{a}^{x} F(t) d t \geq(x-a) F(a)=0
$$

and

$$
\int_{x}^{b} F(t) d t \leq(b-x) F(b)=b-x
$$

and then

$$
\int_{a}^{b} \operatorname{sgn}(t-x) F(t) d t \leq b-x \quad \text { for all } x \in[a, b]
$$

Consequently, we have the inequality

$$
[2 x-(a+b)] F(x)+\int_{a}^{b} \operatorname{sgn}(t-x) F(t) d t
$$

$$
\begin{gathered}
\leq[2 x-(a+b)] F(x)+(b-x)=(b-x)(1-F(x))+(x-a) F(x) \\
=(b-x) \operatorname{Pr}(X \geq x)+(x-a) \operatorname{Pr}(X \leq x)
\end{gathered}
$$

and the second part of (2.1) is proved.
Finally,

$$
\begin{gathered}
(b-x) \operatorname{Pr}(X \geq x)+(x-a) \operatorname{Pr}(X \leq x) \\
\leq \max \{b-x, x-a\}[\operatorname{Pr}(X \geq x)+\operatorname{Pr}(X \leq x)] \\
=\frac{1}{2}(b-a)+\left|x-\frac{a+b}{2}\right|
\end{gathered}
$$

and the last part of (2.1) is also proved.
Now, assume that the inequality (2.1) holds with a constant $c>0$ instead of $\frac{1}{2}$, i.e.,

$$
\begin{gather*}
\left|\operatorname{Pr}(X \leq x)-\frac{b-E(X)}{b-a}\right| \tag{2.8}\\
\leq \frac{1}{b-a}\left[[2 x-(a+b)] \operatorname{Pr}(X \leq x)+\int_{a}^{b} \operatorname{sgn}(t-x) F(t) d t\right] \\
\leq \frac{1}{b-a}[(b-x) \operatorname{Pr}(X \geq x)+(x-a) \operatorname{Pr}(X \leq x)] \\
\leq c+\frac{\left|x-\frac{a+b}{2}\right|}{b-a}
\end{gather*}
$$

for all $x \in[a, b]$.
Choose the random variable X such that $F:[0,1] \rightarrow \mathbf{R}$,

$$
F(x):=\left\{\begin{array}{ll}
0 & \text { if } x=0 \\
1 & \text { if } x \in(0,1]
\end{array} .\right.
$$

Then we have:

$$
E(X)=0, \quad \int_{0}^{1} \operatorname{sgn}(t) F(t) d t=1
$$

and by (2.8), for $x=0$, we get

$$
1 \leq c+\frac{1}{2}
$$

which shows that $c=\frac{1}{2}$ is the best possible value.

Remark 2.1. Taking into account the fact that

$$
\operatorname{Pr}(X \geq x)=1-\operatorname{Pr}(X \leq x)
$$

then from (2.1) we get the equivalent inequality

$$
\begin{gather*}
\left|\operatorname{Pr}(X \geq x)-\frac{E(X)-a}{b-a}\right| \tag{2.9}\\
\leq \frac{1}{b-a}\left[[2 x-(a+b)] \operatorname{Pr}(X \leq x)+\int_{a}^{b} \operatorname{sgn}(t-x) F(t) d t\right] \\
\leq \frac{1}{b-a}[(b-x) \operatorname{Pr}(X \geq x)+(x-a) \operatorname{Pr}(X \leq x)] \\
\leq \frac{1}{2}+\frac{\left|x-\frac{a+b}{2}\right|}{b-a}
\end{gather*}
$$

for all $x \in[a, b]$.
Remark 2.2. The following particular cases are also interesting:

$$
\begin{equation*}
\left|\operatorname{Pr}\left(X \leq \frac{a+b}{2}\right)-\frac{b-E(X)}{b-a}\right| \leq \int_{a}^{b} \operatorname{sgn}\left(t-\frac{a+b}{2}\right) F(t) d t \leq \frac{1}{2} \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\operatorname{Pr}\left(X \geq \frac{a+b}{2}\right)-\frac{E(X)-a}{b-a}\right| \leq \int_{a}^{b} \operatorname{sgn}\left(t-\frac{a+b}{2}\right) F(t) d t \leq \frac{1}{2} \tag{2.11}
\end{equation*}
$$

The following corollary could be useful in practice
Corollary 2.2. Under the above assumptions, we have

$$
\begin{gather*}
\frac{1}{b-a}\left[\frac{a+b}{2}-E(X)\right] \tag{2.12}\\
\leq \operatorname{Pr}\left(X \leq \frac{a+b}{2}\right) \leq \frac{1}{b-a}\left[\frac{a+b}{2}-E(X)\right]+1 .
\end{gather*}
$$

Proof. From the inequality (2.10), we get

$$
-\frac{1}{2}+\frac{b-E(X)}{b-a} \leq \operatorname{Pr}\left(X \leq \frac{a+b}{2}\right) \leq \frac{1}{2}+\frac{b-E(X)}{b-a}
$$

But

$$
-\frac{1}{2}+\frac{b-E(X)}{b-a}=\frac{-b+a+2 b-2 E(X)}{2(b-a)}=\frac{1}{b-a}\left[\frac{a+b}{2}-E(X)\right]
$$

and

$$
\begin{aligned}
\frac{1}{2}+\frac{b-E(X)}{b-a} & =1+\frac{b-E(X)}{b-a}-\frac{1}{2}=1+\frac{2 b-2 E(X)-b+a}{2(b-a)} \\
& =1+\frac{1}{b-a}\left[\frac{a+b}{2}-E(X)\right]
\end{aligned}
$$

and the inequality is proved.
Remark 2.3. Let $1 \geq \varepsilon \geq 0$, and assume that

$$
\begin{equation*}
E(X) \geq \frac{a+b}{2}+(1-\varepsilon)(b-a) \tag{2.13}
\end{equation*}
$$

then

$$
\begin{equation*}
\operatorname{Pr}\left(X \leq \frac{a+b}{2}\right) \leq \varepsilon \tag{2.14}
\end{equation*}
$$

Indeed, if (2.13) holds, then by the right-hand side of (2.12) we get

$$
\operatorname{Pr}\left(X \leq \frac{a+b}{2}\right) \leq \frac{1}{b-a}\left[\frac{a+b}{2}-E(X)\right]+1 \leq \frac{(\varepsilon-1)(b-a)}{b-a}+1=\varepsilon
$$

Remark 2.4. Also, if

$$
\begin{equation*}
E(X) \leq \frac{a+b}{2}-\varepsilon(b-a) \tag{2.15}
\end{equation*}
$$

then, by the right-hand side of (2.12),

$$
\operatorname{Pr}\left(X \leq \frac{a+b}{2}\right) \geq\left[\frac{a+b}{2}-E(X)\right] \cdot \frac{1}{b-a} \geq \frac{\varepsilon(b-a)}{(b-a)}=\varepsilon
$$

i.e.,

$$
\begin{equation*}
\operatorname{Pr}\left(X \leq \frac{a+b}{2}\right) \geq \varepsilon \quad(\varepsilon \in[0,1]) \tag{2.16}
\end{equation*}
$$

The following corollary is also interesting:
Corollary 2.3. Under the above assumptions of Theorem 2.1, we have the inequality:

$$
\begin{align*}
& \frac{1}{b-x} \int_{a}^{b}\left[\frac{1+\operatorname{sgn}(t-x)}{2}\right] F(t) d t \geq \operatorname{Pr}(X \geq x) \tag{2.17}\\
& \quad \geq \frac{1}{x-a} \int_{a}^{b}\left[\frac{1-\operatorname{sgn}(t-x)}{2}\right] F(t) d t
\end{align*}
$$

for all $x \in(a, b)$.

Proof. From the inequality (2.1) we have:

$$
\begin{gathered}
\operatorname{Pr}(X \leq x)-\frac{b-E(X)}{b-a} \\
\leq \frac{1}{b-a}\left[[2 x-(a+b)] \operatorname{Pr}(X \leq x)+\int_{a}^{b} \operatorname{sgn}(t-x) F(t) d t\right]
\end{gathered}
$$

which is equivalent to:

$$
\begin{aligned}
& (b-a) \operatorname{Pr}(X \leq x)-[2 x-(a+b)] \operatorname{Pr}(X \leq x) \\
& \quad \leq b-E(X)+\int_{a}^{b} \operatorname{sgn}(t-x) F(t) d t
\end{aligned}
$$

i.e.,

$$
2(b-x) \operatorname{Pr}(X \leq x) \leq b-E(X)+\int_{a}^{b} \operatorname{sgn}(t-x) F(t) d t
$$

As (see the Proof of Theorem 2.1):

$$
b-E(X)=\int_{a}^{b} F(t) d t
$$

then from the above inequality we deduce the first part of (2.17).
The second part of (2.17) follows by a similar argument from

$$
\begin{gathered}
\operatorname{Pr}(X \leq x)-\frac{b-E(X)}{b-a} \\
\geq-\frac{1}{b-a}\left[[2 x-(a+b)] \operatorname{Pr}(X \leq x)+\int_{a}^{b} \operatorname{sgn}(t-x) F(t) d t\right]
\end{gathered}
$$

and we shall omit the details.
Remark 2.5. If we put $x=\frac{a+b}{2}$ in (2.17), then we get

$$
\begin{align*}
& \frac{1}{b-a} \int_{a}^{b}\left[1+\operatorname{sgn}\left(t-\frac{a+b}{2}\right)\right] F(t) d t \geq \operatorname{Pr}\left(X \geq \frac{a+b}{2}\right) \tag{2.18}\\
& \quad \geq \frac{1}{b-a} \int_{a}^{b}\left[1-\operatorname{sgn}\left(t-\frac{a+b}{2}\right)\right] F(t) d t .
\end{align*}
$$

3 Applications for a Beta Random Variable

A Beta random variable X with parameters (p, q) has the probability density function

$$
f(x ; p, q):=\frac{x^{p-1}(1-x)^{q-1}}{B(p, q)} ; \quad 0<x<1
$$

where $\Omega=\{(p, q): p, q>0\}$ and $B(p, q):=\int_{0}^{1} t^{p-1}(1-t)^{q-1} d t$.
Let us compute the expectation of X.
We have

$$
E(X)=\frac{1}{B(p, q)} \int_{0}^{1} x \cdot x^{p-1}(1-x)^{q-1} d x=\frac{B(p+1, q)}{B(p, q)}
$$

i.e.,

$$
E(X)=\frac{p}{p+q} .
$$

The following proposition holds:
Proposition 3.1. Let X be a Beta random variable with parameters (p, q). Then we have the inequalities:

$$
\left|\operatorname{Pr}(X \leq x)-\frac{q}{p+q}\right| \leq \frac{1}{2}+\left|x-\frac{1}{2}\right|
$$

and

$$
\left|\operatorname{Pr}(X \geq x)-\frac{p}{p+q}\right| \leq \frac{1}{2}+\left|x-\frac{1}{2}\right|
$$

for all $x \in[0,1]$ and particularly:

$$
\left|\operatorname{Pr}\left(X \leq \frac{1}{2}\right)-\frac{q}{p+q}\right| \leq \frac{1}{2}
$$

and

$$
\left|\operatorname{Pr}\left(X \geq \frac{1}{2}\right)-\frac{p}{p+q}\right| \leq \frac{1}{2}
$$

respectively.
The proof follows by Theorem 2.1 applied for a Beta random variable, X.

References

[1] S.S. DRAGOMIR and S. WANG, A new inequality of Ostrowski's type in L_{1} norm and applications to some special means and to some numerical quadrature rules, Tamkang J. of Math., 28 (1997), 239-244.
[2] S.S. DRAGOMIR and S.WANG, Applications of Ostrowski's inequality to the estimation of error bounds for some special means and some numerical quadrature rules, Appl. Math. Lett., 11(1998), 105-109.
[3] D.S. MITRINOVIĆ, J.E. PEC̆ARIĆ and A.M. FINK, Inequalities for Functions and Their Integrals and Derivatives, Kluwer Academic, Dordrecht, 1994.

School of Communications and Informatics, Victoria University of Technology, PO Box 14428 , MC Melbourne, 8001 Victoria, Australia.
E-mail address: \{neil, sever\}@matilda.vut.edu.au

[^0]: Date. October, 1998
 1991 Mathematics Subject Classification. Primary 26D15, 26Dxx; Secondary 65Xxx.
 Key words and phrases. Ostrowski Inequality, Cumulative Distribution Functions

