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I. In  this note, I consider an inequality bearing a formal resemblance to 

that  of HSlder, and I derive from it new conditions for the existence of a 

Stieltjes integral, and for passage to the limit under the integral sign. The 

conditions for limits under the integral sign differ from any previously known, 

in that, f o r  the first time, absolute integrability is not required. They throw 

some light on problems of convergence of Fourier series. 

The first proof of the inequality is due to ~I ~ E. R. Love, who studied it 

at my suggestion. In  a joint paper, elsewhere, we propose to consider further 

questions connected with it. 

2. We begin with a simple lemma. 

If  a s , . . .  , an and b~ . . . .  , bn are two ordered sets of n complex numbers, 

and p, q > o, then there is an index k (o < k --< n), such that  

Proof. It  will suffice to prove that  the right hand side majorises the geometric 

mean of the n products [ak bkl, that  is, the expression 

I(~, ~D. . .  (~  b,~)l TM = [(I ~ I ' . . .  I ~ ,, I')'n] ' ~' [(I b~ I q . . .  I b,~ I~)' "]'~, 

and for this purpose, we need only observe that, by the theorem of the arithmetic 

and geometric means 1, the expressions 

1 e f  Hardy, Littlewood, and Polya [5], (hereafter simply H. L. P.) and Bohr [2]. 
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majorise, respectively, the expressions 

L. C. Young. 

/ I  n \ 

[(la, P . . .  la,,I,) TM] and [(Ib, I q . . .  I b,,Iq)l/"]. 

3. H61der's inequality. We remark in passing that the trivial lemma just 

proved may be used to give a simple proof of the well known inequality of 

H51der 

(3. I) ~lakbkl<--A', "~1') Ibkl q 

valid for ~ + I ~_ I, in which A = I. 
P q 

We suppose first I + ~ >  ]. 
P q 

Let the l akbkl be arranged in decreasing order. Then, by our lemma 

1 .  x'll  ,~ \1@ t ,, \ l /q  

Similarly 

Proceeding in this way, we finally obtain, by addition, 

and so (3. I), but only with A ~ - ~  + , - -  

I I - + - - ~ >  [. 
P q 

where ~(s) = 2~n--S, and only for 
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I I 
To make A = I, still supposing ~ + q > I ,  we argue as follows. 1 

(3. I) in the form proved, to the double sam 

I,,~<~,b~b,I---- I ca-b~l , 

1 1 

we find that  this is maiorised by 

that  is, by 

and, on taking the 

but with A replaced 

( ~ ~, \11, i ~ ~ tl~ 

.,i lt2.:ib.i")] , 

Applying 

square root, we find our previous inequality for ~[a~bk[, 
1 (' by lfA. The factor ~ p  + may therefore be replaced 

successively by its square root, its fourth root, its 2 Nth root, and making 52--* ~ ,  

the factor becomes I. 

Finally, with A = I, 

for each fixed set of a's 

4 i >  i. 
P q 

both sides of (3. I) are continuous in p, q 

and b's and the inequality is therefore valid for 

4. Denoting, for a moment, by a, b the finite sequences of numbers 

a l , . . . ,  a,, and b t , . . . ,  b~, H51der's inequality states that  a certain function of 

a, b is majorised by a product of the form Aoo(a)~p(b). 
In our main inequality, a similar state of affairs will occur. A certain 

function of a, b will be ma]orised by the largest of a finite number of such 

products, derived from one of them by a simple operation that  we now describe. 

The operation of replacing by 

4- 

certain of the 

1 A favourite type of argument, cf Bohr [2]. 
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separating consecutive terms of a finite sequence 

a = ( a , , . . . ,  an) 

may be termed a partition P. The result of the operation is a finite sequence 

P a  =- x = (xl, . . . ,  xm) 

in which each x~ is a corresponding sum of at, and, of course, m ~< n. And if 

dO(a, b) is a function of a pair of sequences a---~ (al, . . . ,  a~) and b ~ ( b l , . . . ,  b~) 

the expression 
dO(Pa, Pb) 

may be said to be derived from dO(a, b) by the partition P. 

I t  is with the expressions thus derived by partition from the product 

that  we shall be concerned. 

A .  

5. The inequality for finite sequences. Let 8p, q(a, b) be the largest of the 

values of the product 

for which x l , . . ,  xm and Y l , . . . ,  Y~ are the result of a same partition applied 

to the finite sequences 

a = a l , . . . , a ~  a n d  b = b l , . . . , b n .  

(5. i) 

p~ .oo Z 1 

to a 

We assert that, for  ~ + ~-- > I and p, q > o, 
P q 

10<r~,~ZZ;rbs I ~ < { I - b ~ ( p +  q ) } . S p ,  q(a, b). 

Consider the partition defined by changing the k th 

+ 

1 As a lready ment ioned,  the  first proof w~s  obta ined by  M r E. R. Love.  M r Love's  proof 

was  on ent ire ly  different l ines,  and was  not  so s imple  as th is  one. 



An Inequality of the ttSlder Type, connected with Stieltjes Integration. 

We have, for o < k < n - -  I; 

! a~' b ~ i f r < k  } 
x,,, y,,~= and xk, yk -= a~ + ak+~, b~ + bk+l, 

ta,+a,  b~+~ if k < r < - - n - - I  

so that 

~.j (xi + "" +xs)ys = ~_j (al + "" + as)bs + (al + ' "  + a~+l)(bk + bk+i) + 
0 < s ~ n ~ l  O < s < k  
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+ Y~ (ai+- -+~.+~)b..=~+.b~+ y, (~ +...+a,)b,. 
k < 8 < ~ , - - 1  O < 8 ~ n  

Now, by the trivial lemma (2. I), for some k, (o < k --< ~ -- I), we have 

(_n__~_ n-1 \ 1/p / i ~-1 \1/,1 

which is cergainly majorised by ( n - -  I) - ( ~ + ~ ) -  Sp, q(a, b). Hence, with this 

value for k, 

A similar inequality applies to the sum ~ ~ xTys, in terms of a sum of the 
0 < r _ < g ~ n ~ l  

same kind with n - - z  variables. Moreover, by definition, Sp, q(a, b ) >  Sp, q(x, y). 

Proceeding in this way we therefore obtain finally, 

[ Z Z  a~b~[_< ( . -  ,) , .  q, + (,~- ~)- ,~ ~, + + ,  + ,  sp, q(~, b), 
�9 l O < r ~ s ~ n <  [ 

m 

and this implies (5. I). 

We shall see later (below w 7) that, contrary to ~he expectations raised by 

our treatment of HSlder's inequality, the f~etor involving ~ ( ~ + q )  c~nnot in 

(5. I) be replaced by one remaining bounded for I + I 
P q 
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6. The inequality for  functions i~ an interval. Let now f(x) ,  

complex-valued funct ions defined in (x', x"). ~ W e  make a subdivision x, 

X t ~ X  0 ~ X 1 --~ X ~ - - ~ " ' - - ~  X x ~ X  '~, 

and form the sum 

g(x) be 

(6. 
N 

F (x) = ~ f ( x , )  { g(x~) --  g (x,-O} ---- ~ ~ Jr  f "  J ,  g + f(x')[g(x") -- g(x')], 
8 ~ 1  O ~ r ~ S ~ l ~  r 

where a.9~ denotes the  difference ( ~ ( x , ) -  ~(Xr--1)) of a funct ion q~(x)at the  ends 

of the r th interval (x~-l, Xr) of our subdivision. 

Let  us denote fur ther  by 

Sp, q [x', x"] ---- Sp, q Ix', x"; ,f  , g] 

the upper  bound of the expression 

p l i p  

for every subdivision z of (x', x"). Since a part i t ion of the sequences of numbers  

J r  f ,  .4,g, (r---- I, 2, . . . ,  N), is a sequence of exactly the same form, correspond- 

ing to a subdivision of (x', x") by a subset  of the division points  of x, we 

conclude from (5. I) and (6. I) tha t  if ~ is the  point x', and hence, more gener- 

ally, 1~ ~ is a division point of ~ in (x', x"), 

(6.2) , F ( •  g(x')], ~ { I +  ~ ( p +  q) }Sp ,  q[x', x"; f ,  g], 

I 1 
prot'ided p, q ~ o, - + - > I. 

P q 
For, this inequality, valid when ~ = x', holds similarly (or by changing the 

sign of the  variable) when ~ = x". And, applying these two cases to the  inter- 

vals (~, x") and (x', ~) respectively, we obtain the  same inequali ty for  any division 

point  of z. 

From (6. 2), we now derive an inequali ty concerning sums of a more general  

kind. Let  the points ~(k), x(k) be a subset  of the division points of x, such that  

for each ]c, x (k-l) ~ ~(k) ~ x(k). Applying (6. 2) to the  interval (x (k-~), x (~)) and 

adding, we find 

1 Always supposed closed. 
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(6.3) ]F(x) -- ~.~kf(gk)[g(x(k))--g(x(k--~))]l<--{~+ ~ ( p +  q)} ~ Sv, q[X (k-~), x(k); f ,  g]. 

If  now (x', x") be divided in two ways  into partial intervals of the form (x (k-~), 

xIk)) and we selee~ in each of these partial intervals a point ~(k), it is always 

possible to find a subdivision z including among its division points the x (k) and 

~(k) of both kinds. Hence, i f  x '  Xo < x~ < < x~. = x "  and x' = x0 ~< xl--< 
- -  . p X t t  t t < ' . .  ~ xN, ~- are two subdivisions and Xr-~ <~ ~r ~ X,., X~--a <-- ~ ~ Xs, then 

(6.4) 

�9 8 

�9 I I 

pro~ded p, q > o, - + - > i .  
P q 

i i 
7. A >~ Gegenbeispiel>> for  the case - + - =  I. 

19 q 

P = q - - 2 .  Let f ( x )  be the partial sum 

N 

We suppose, for simplicity, 

of the complex Weierstrassian function, where a is an integer > I, and x varies 

in (o, I). Let g(x) be the conjugate of f ( x ) .  We have t 

N _ ! n  n o r 1 

I f ( x +  h ) - - f ( x )  I<- ~ a  ~ 12 s i n ( z a ~ h ) l < - - ~  a - � 8 9  n +  2 ~ a  -~'~ 
n ~ 1 1 'no "4- 1 

Va- ,  Vlhla".+ Vlhiv -- ] 

provided that n o is chosen so that  2 z [ h [ a  "o~< t --< 2zc[h[a  "o-1. I t  follows that 

[o, f ,  g] -< (32) 

On the other hand, we can find a subdivision z for which F(z) differs by as 

little as we please, in modulus, from 

1 cf H a r d y  [3]. 

33--36122.  Acta mathematica. 67. Imprim~ le 27 novembre 1936. 
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1 1 1 

f f " "  
f (x)dg(x)  = f (x)g ' (x)dx  = ~ ~ -- 2 z i  a m e 2r 

n ~ l  m ~ l  
0 0 0 

ZT 

= 75', = Y , ( -  = - 

n ~ m  1 

Since g ( I )=g(o ) ,  it follows that  ( 6 . 2 ) c a n n o t  hold when { I + ~ ( p +  ~)} is 

replaced by a factor remaining bounded for _I + I _ _  I. The inequality (5. I) is 
P q 

therefore not valid either, when such a change is made. 

Other examples of the failure for I + I - - =  I (proving rather more)a re  
P q 

furnished by the Weierstrassian functions themselves 1, or by the simpler func- 

tions ~ x e  +2=;/* The examples may be adapted to any p, q > o  subject to 

I .~_ I 
. . . .  I and they may be further elaborated by introducing an oscillating 
P q 
factor @(n) or O(x) tending to zero sufficiently slowly, while its amplitude oscil- 

lates still more slowly. 

8. Higher mean variatio~s of a function. Following Wiener ~ (except for 

a slight change of notation), we associate with an f (x )  in (x', x") and with 

p > o, ~ > o, the quantity 

V(p4)(f) = V(J)(f; x', x " ) =  upper bound {Z!s(..)-S(x.-,)l'}" 
for all subdivisions of (x', x") into parts (Xr-1, Xr) of lengths each less than & 

The value of this quantity for a ~ exceeding ( x " - - x ' )  we write simply Vp(f); 

it is then the upper bound of V(pg)(f) as function of c~ (evidently increasing). 

The limit of V~8)(f) as ~ ~ o is the corresponding lower bound and we write it 

V~(f). We may call Vv(f), the mean variation of  order p. 

(8. i) Vp(f) is a decreasing ,/'unction of p. This is an immediate consequence 

of Jensen's inequality. 3 

oo 

1 i. e. t he  sums  Z "  

1 

Wiener  [I I 1, 

H. L. P. p. 28 (Theorem I9). 
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V~(f)} is convex in p, that  is to say Moreover ~, log { P 

259 

(V~(f)) <-- (V~:{f))vPP*( ]zp~( r~p~-p" (8. z) if Pl < P$ < P3 then w w-p~ 

by a f~miliar theorem. ~ 

We write further 

V(~ } {f) ~- Osc. {f, a) 

for the  upper  bound o f  the  difference If(x)-f(y)l when [x--yl<a, and 

V| ( f )  = Osc. ( f )  ---- Ose. (jl  x', x"). These may be regarded as l imiting eases for  

(8. x a) 

(8. ~ a) 

, and the relations (8. I), (8 .2)  become 

Vv(f) >-- Osc. ( f )  

V~(f)  ~ }~:(f)(Osc. f)w--v, provided P2 > Pl. 

These are easily verified directly. 

We shall say that  f (x)  belongs to the Wiener  class Wp 

f{x) < Wp 

if its p~h mean variation Vv(f) is finite. The class of functions W v evidently 

Lipschitz class Lip ( ~ ) ,  which consists of the functions f ( x ) s u c h  contains the 

that,  for all small h > o, 

(8.3) [f(x + h)-- f (x)[  < A h ~/p, 

where A depends only on f On the other hand W~ is contained in the Hardy- 

Lit t lew~176 c l a s s L i p ( ~  ) , p , which consists of the functions satisfying the in- 

tegrated condition 
b--h 

{8.4) f l f (x  + h)-- f (x) lVdx < Ah.  
,r 
a 

1 V~ denotes the i~ h power o f  Vp. 

H . L . P . p .  28 theorem 18. 

Hardy, Littlewood [4]. 
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This last condition is equivalent to 

h 

Z I f ( x ,  + t ) - - f ( x , - ,  + t ) l ' d t  < Ah 
.1 r 0 

where the x, are the division points of a subdivision of (a, b -  h) into equal 

parts of length h, supposing as we may, without lose of generality, b -  a to 

be an integral multiple of h. And this is certainly satisfied when f belongs 

to Wp. 

We shall require some simple properties of Vp(f) connected with the in- 

equalities of Minkowski and HSlder. 

(8.5) I f  p > i, vp(f + g)< v~(f) + Vp(g). 

To prove this, we remark that, by the well-known inequality of Minkowski, 

( ~ l . ~ f  -t- ,~,IP)I/P ~ (ZIz~flP)l /P "t- (Z i~g lp) I /P  

for any subdivision into intervals z/ (we denote by J~0 the difference of a func- 

tion r at the ends of J) ,  and (8.5) follows by taking the upper bound on the left. 

Since, for constant ~, Vp(Zf)= I~1 Vp(f), we may also express (8.5) by 

saying that  Vp(f) is a convex'function off.  

for every subdivision of (x', x") into (Xr--1, Xr), (r  = I ,  . . . ,  ~T), each of length less 

than 6. This is evident. 

(8.7) I f  p, q > o and I + I > I then 
P q 

)~( f ;  Xr--1, Xr) Vq(g; Xr-1, Xr) ~-- V~)(f)V~)(g) 
r 

for every subdivision of (x', x") into Xr-1, xr, (r-~ I, . . . ,  N) each of length < 6. 
This follows at once from (8.6) since the left hand side, by HSlder's inequality, 

is at most 

( ~r V~(f; xr-l' Xr) ll/" ( ~. vq(g; Xr'l' Xr) } l/q" 



An Inequality of the HSlder Type, connected with Stieltjes Integration. ~61 

9. The starred variation and the singular variation. By analogy with the 

case 20----I (bounded variation in the usual Jordan sense), we easily obtain 

various simple properties of functions of Wp, and the proofs require only trivial 

adaptation. Thus, an f of Wp has at most simple discontinuities, and these are 

enumerable.' This being so, we may introduce the symbols x + o in the usuM 

way as arguments, and we see at once that  when (x', x") is divided at an in- 

* ( r = o ,  I , . .  2V), with x~----x', x } - - x "  and the creasing finite sequence of x~, ., 

remaining divisions at places x or x +__ o, then, if each (x*-~, x~*) has length less 

than ~, 

(9" I) I f (x*)- - f (X~-- l ) l  p ~ V(p~)(f). 

We shall cM1 singular mean variation of order p, the quantity ~ p ( f )  whose 

pth power i s  the series, arising from the discontinuities of f ,  (that we suppose 

arranged as a sequence) and having for its generM term, the greater of *he two 

expressions 

]f(x + o ) - - f ( x -  o)]P, If(x + o)--f(x)lp + J r ( x ) - f ( x -  o)]p. 

I t  follows from (9. I) that the series ~P(f) ,  that is to say 

(9. ~) ~, Max { I f ( x  + o) - -  f ( x  - o)Ip, I f ( x  + o) - f ( x )  Ip + I f (x)  - f ( x  - -  o)I p } 

is majorised by [V(~)(f)] p for every r > o. Consequently 

(9.3) ~ ( f )  <_ v$(f). 

Let us observe that the singular variation cannot in general be regarded as a 

variation of a >>Singular function>> of the type 

~, ( f ( y  + o ) - - f ( y -  o)) + ( f ( x ) - - f ( x - - o ) ) .  
y<x 

This series need not be convergent in any sense, and the singular par~ of f 

cannot therefore in general be detached from the  remainder. 

We shall say that  f (x)  belongs to the Wiener class W~, ~f V~(f) is finite 

and equals ~p(f) .  Evidently, if V~(f) is finite so is V(p~)(f) for all small ~, and 

' Wiener [II] w I. 
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therefore for all (i. ~ Hence W$ is the subclass of Wp for which equality holds 

in (9.3). I t  is easy to see that  W~ includes the class Lip obtained by 

strengthening the A in (8.3) to an ~ that tends to zero with h. W~ is not, 

"(: ) however, included in the class Lip , .p obtained by making the corresponding 

change in (8.4), unless we restrict ourselves to continous functions. 

We  shall now show tha~ i f  p < Pl the class Wp is included in WT~, that is 

(9.4) Wv < W;,, if p < p,. 

This is implicitly contained in Wiener's discussion ~, but seems worthy of special 

mention. 

Given ,, we choose discontinuities ~ ,  . . . ,  ~n0 so that  the remainder of the 

series 8 for ~ : ( f )  is less than ,P,. I t  follows that, apart  from the ~f, there are 

no points at which any of the quantities 

]f(x + o) - - f ( x  -- o)] and [f(x + o) --f{x)] 

exceed e. I t  is therefore possible to choose a 6 0 less than the distance of every 

pair of the ~i, ( i =  I , . . . ,  no), so that  

I f ( P ) - - f ( a ) l  < 2~ 

whenever (a, p) is an interval of length less than cT0, not containing a g/. And 

since the limits f(~i +__ o) exist, we can choose 8, _< 6 o so that, whenever a and 

p are separated by a ~ distant less than ~1 from both, the differences 

I f (P)  - -  f ( a )  I p' a n d  I f (P)  - -  f ( ~ , )  I p' + If (~ , )  - -  f ( a ) I P ,  

exceed by at most e/no the corresponding expressions with a and p replaced by 

~ - - o  and ~ + o .  

This being so, it is clear that a sum of the form 

~ If(x~)--f(x~-~) IP' 

with o--< x r -  xr-1 < ~1, will be majorised by 

1 In  part icular  the  l imits  f ( x  • o) exist  for all x and we can form the  expression ~p(f). 
Wiener [II] w 2. 
Convergent by (8. I) and (9.3). 
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(2 ,)p,-p ~ If(x~) --f(xr-~)I ~ + .o .  ,/% + | (f) ,  

so t h a t  (9.4)  m u s t  hold,  as asse r ted .  

263 

I0. _Existence of the Stieltjes integral. W e  say t h a t  the  S t i e l t j e s  i n t e g r a l  

9ff t 

( I0 ,  I)  f f(x) d g(x) 
~ r  

exis ts  in  t he  R i e m a n n  sense  w i t h  t he  va lue  I ,  i f  t h e  s u m  

2V 

(IO. 2) Ef(~r) [g(Xr) - -  .q(Xr--1)] , 
r= l  

(in which,  as usual ,  xl  ---- x0 - -  < ~1 - -  < xl  - -  < - - �9 - -  < xiv-1 - -  < giv < - -  xN -~ x")  differs  f r o m  

I by a t  m o s t  e~ in modu lus ,  as soon  as all t he  (xr -1 ,  Xr) h a v e  l e n g t h s  less t h a n  ~, 

whe re  ~ - - ~  o as ~ --* o. 

T h e  i n t e g r a l  (IO. I) ex is t s  in  t h e  M o o r e - P o l l a r d  1 sense  wilbh t h e  va lue  / ,  

i f  t h e r e  is, f o r  each  ~ > o, a f ini te  se t  of  po in t s  F, such  t h a t  t he  s u m  (IO. 2) 

differs f r o m  I by  a t  m o s t  e in  m o d u l u s  as soon as t he  xr  inc lude  all po in t s  of  -E. 

F ina l ly ,  i f  t he  l imi t s  f ( x  + o) a n d  g(x +__ o) ex is t  f o r  all  x, we  shal l  say t h a t  

(IO. I) exis ts  in the  gene ra l i s ed  M o o r e - P o l l a r d  sense,  i f  t he  i n t e g r a l  

93 Ft 

(~o. 3) ] f ( x  + o)dg(x - o) 
* ]  

93 t 

exis ts  in t he  Moore -Po l l a rd  sense  and  the  ser ies  

( I0 .  4)  (f(x) - - f ( x  + o)) {g(x + o) -- g(x--o)} 

s u m m e d  over  t h e  (necessar i ly  e n u m e r a b l e )  se t  of  c o m m o n  d i s con t inu i t i e s  o f f  and  g 

is abso lu te ly  c o n v e r g e n t .  A n d  we t h e n  ass ign,  as value,  to  (IO. I), t h e  s u m  of  

(m. 3) and (Io. 4)- 
W e  obse rve  tha t ,  f o r  i n t e g r a b i l i t y  in t he  R i e m a n n  sense,  i t  is suf f ic ien t  

t h a t  the  d i f fe rence  of  any  two  s u m s  (Io.  2), f o r  each  of w h i c h  the  (xr -1 ,  Xr) have  

1 Pollard [9]. The idea is derived from various earlier papers by E. H. Moore. 
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lengths less than  ~, be less than ea in modulus. T h i s  will be the case, by (6.4), 

if, for some p, q > o satisfying [ + I > I, we have 
P q 

N 

(IO. 5) Z Sp, q [Xr--1, Xr] < S~. 

~Tow it is clear from the definitions that ,  in any interval, 

(Io. 6) Sp, q <-- Vp(f)  Vq(g). 

Thus, a sufficient condition for integrabili ty in the Riemann sense is tha t  there 

I I 
exist /ol, q, ~ o satisfying --  + --  > I such tha t  

Pl qz 

N 
(IO. 7) ~ Vp, ( f ;  Xr-1, Xr) Vq, (g; Xr-1, 3Cr) < 8 

t=l 

for all subdivisions into partial intervals (xr-1, x,) whose lengths are less than  a 

certain 6 depending  on e. 

Similarly, in the ]~r sense, i t  is sufficient tha t  (1o. 7) hold for 

all subdivisions whose division points Xr include those of a certain finite set E 

depending on e. 

We shall have occasion, several t imes to use the following lemma: 

(io. 8) Let f and g belong respectively to the classes Wp and Wv, and suppose 

that, in each of the non overlapping intervals (a, fl), 

Osc. f < V. 

I I 
Then, for Pl > P > o, ql >~ q > ~ Pl-- + ql-- > 1, we must have 

~ Vp,(f; a, ~) Vq,(a; a,~)_< ~r V~/~,(f) Vq,(g). 
(~, ~) 

The proof is immediate.  By (8.2 a) the lef t  hand side is at  most  

Z [~Pl--P ~/~P (f;., ~)]l/p, ~l~q. (g;., ~)~ ~(p,--p)Ip,[ Z Vp (f; {~' ~)IIIp"I Z ~rq, (.. ", ~)l'/q, 
(a, fl) L(-, (3) / / ,~,tJ J 

by HSlder 's inequality. And this, as in (8, 6), is evidently at most equal to the 

quant i ty  on the r ight  of the inequality to be proved. 

Theorem on Stiel t jes in tegrabi l i ty .  I f  an f (x)  of W~ and a g(x) of  Wq where 
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I I 
p, q > o, - + - > I, have no common disco~tinuities, theD" Stieltjes integral exists in 

P q 

the Riemann sense. I f  they have no common discontinuities on the right and no 

common discontinuities on the left, the iutegral exists in the Moore-Pollard sense. 

A u d  in any event, i t  exists in the geueralised sense. 

We determine,  as in (9.4), no discontinuit ies  of f and n o discontinuit ies  

of g, and a positive 60, so tha t  in 

any of these first n o discontinuit ies 

has oscillation at  most 2 t0, where 

every interval  of length  < 60 not  conta ining 

of one of the functions,  the funct ion concerned 

eo > o is arbi t rar i ly  chosen. 

I f  f and g have no common discontinuities,  we can determine 61 < 60, so 

that  no interval  of length  less than 61 can contain toge ther  one of the first n o 

discontinuit ies  of f and one of the  first n o discontinuit ies of g. In  tha t  case, for  

any subdivision of (x', x")  into partial intervals (Xr-1, Xr) of lengths less than  6,, 

in each (x,._l, x,.) one of the two funct ions  has oscillation less t h an  2 e 0. Choosing 

Pl > P, q~ > q so tha t  ~ J- _I_ > I ,  i t  follows f rom our  lemma tha t  the lef t  hand  
Pl ql 

side of (IO. 7) can be made arbi trar i ly small by choice of so, and therefore  of 61, 

by res t r ic t ing the xr xr-~ to be less than  61. This proves the first part .  

Similarly if f and g have no common one-sided discont inui ty ,  let  ]~l be 

the combined set of the first n 0 discontinuit ies of each. On each side of a point  

of E l ,  one of our  funct ions  is continuous,  and there fore  we can find points 

~-  and ~+ on the two sides of  ~ so tha t  in each of the intervals  (~_,~), (~,~+) 

one of our funct ions has oscillation less than  2 *0. Denot ing  by E a finite set 

of points, each dis tant  less than  6o f rom its neighbours ,  tha t  includes the ~ of ]~t 

together  with the ~_ and ~+, it  is clear tha t  in the interval  de te rmined  by any 

two neighbour ing  points of E the oscillation of one of our  funct ions  will be less 

than  2co. From this, the second part ,  re fer r ing  to the Moore-Pollard sense, 

follows at  once by the a rgument  of the  first part .  

Finally,  if f and g are unres t r ic ted  in the classes Wp, Wq, the  funct ions  

f ( x  + o) and g ( x -  o) belong to the same classes and have no common onesided 

discontinuity.  Moreover the series (IO. 4) summed over the discontinuit ies  common 

to f and g is absolutely convergent  by t tSlder ' s  inequali ty,  since 

( z l f ( x ) - f ( x  + o)1'0'/, and (zlg(x + o ) - - g ( x -  o)lD'/  

are majorised by ~ p ( f )  and ~q(g) respectively. The integral  (IO. I) thus  exists 

in the generalised Moore-Pollard sense in this case, and this completes the proof. 

34:--36122. Acta mathemcttica. 67. Impr im6 le 28 novembre  1936. 
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Bemarlcs on the theorem. I n  the  e lementary  Stielt]es integral ,  two condit ions 

are used:,  cont inui ty  of one funct ion,  bounded variat ion of the  other.  The  treat- 

ment  i n t r o d u c e d  here consists essentially in dividing up the condit ions of 

cont inui ty  and bounded var ia t ion between the  two funct ions  concerned.  Instead 

of 0~e func t ion  being 1471, each has to satisfy a weaker condit ion lVp or Wq where 

I I 
- + - > I. Ins tead of one func t ion  being cont inuous  at  all x, each is cont inuous 
P q 

wherever  the other  is not, (with, in the Moore-Pollard sense, the  fu r the r  refine- 

ment  each is cont inuous on one side, wherever  the other  is no t  cont inuous on 

tha t  side). In  the generalised Moore-Pollard sense, cont inui ty  has been abandonned,  

bu t  the definit ion no longer  corresponds to a unique limit in the Cauchy or in 

the  Moore sense of a funct ion  of a subdivision, and is to be regarded as a 

modification, not  of the e lementary Stielt.~es integral ,  bu t  r a the r  of the so-called 

Lebesgue-Stiel t jes  integral. 

Le t  us remark  fur ther  that ,  in whichever  of the three  senses our integral  

is t aken  1, the inequali ty (6. 2) gives at once, under  the hypotheses  of our theorem 

of existence of the integral  

( ,o.  9) (f(x) -- f(g)) dg(x) I + C p + [~l S,,,, [x', x"; f ,  g] 
,111 

where,  on the r ight ,  Sp, v [x ' ,x"; f ,  g] may be replaced by the product  

V p ( f  ; x ' ,x")  r, ,(g; x ' ,x") .  

I I .  Integration of seque~ces. By a Wj)-sequence {f~(x)}, we shall mean  a 

sequence of funct ions  j ; (x) ,  n = I, 2, . . . ,  for  which fi~(x') and Vp(f~) are bounded 

funct ions  of n. Such a sequence will be said to be densely convergent in (x', x") 

to a l imit  funct ion  f ( x ) ,  if  ~f,(x) tends to f ( x )  for  each x of an everywhere 

dense set in (x', x"). When  this is the case, it  is always possible to define f (x )  

outside this set in such a manner  tha t  f ( x )  is of W~. ~ 

Besides the notion of dense convergence,  we require tha t  of uni form con- 

vergence. The lat ter  is the closest analogue for a sequence of funct ions to the 

proper ty  of cont inui ty  for  a single funct ion.  W e  shall say tha t  a sequenee 

{f,,(x)} converges u~iformly to f ( x )  at xo, if given ~,, there  is an n 0 and a d, such 

that ,  for  all n > n o and all x dis tant  less than  d f rom xo, 

I t  i s  suf f ic ien t  to  observe  t h a t  the  i n t e g r a l  is  the  l i m i t  of a s u i t a b l e  f ini te  sum F(z ) .  

J u s t  as in  t he  case p = I d i scussed  by  H e l l y  i6]. 



An Inequality of the HSlder Type, connected with Stieltjes Integration. 267 

If~(x) - - f ( x )  l < ~. 

We shall also speak of uniform conve~yence on the right at x o when the above 

holds for x >---x 0, the other conditions being the same, and, similarly, of uniform 

convergence on the left at x o. 

The notions of a W~-sequence and of uniform convergence at a point, will 

play in term by term integration of a pair of sequences of functions, a part 

similar to that of the corresponding notions in the existence of the integral of 

a pair of functions. The classical theorems on term by term integration, all 

depend essentially on some condition of absolute integrability. In the Lebesgue 

theorems, the great  generality achieved in other directions necessitates a particularly 

strong form of this condition. A theorem much closer to those that we shall 

be concerned with here, is due to tIelly, i I t  is the analogue for sequences of 

the existence o f  the elementary Stieltjes integral, and it states, substantially, that 

a sufficient condition for 
X#r ~t, 

Z r Z p 

when { f~(x)} 

that the f~(x) 

and {g~(x)} converge to finite functions f (x ) ,  g(x) respectively, is 

be uniformly (in n) continuous (in x) and the g~(x) uniformly 

(in n) of bounded variation in x. Our conditions for term by term integration 

may be regarded as derived from those of Helly by assigning the properties of 

uniform continuity, or uniform convergence, and of uniform bounded variation, 

partly to the sequence {fn} and partly to the sequence {gn}. 

We begin with a lemma. 

Let f be a function belonging to the Wiener class Wp, and let {g~} be a Wq- 

sequence converging to zero densely in (x', x"). Sulgpose fi~rther that 191 > p, ql > q 

satisfy I + ! > I, and that (x', x") can be divided into a finite number of  partial 
Pl qi 

intervals (x,.-i, xr) in each of which either 

Osc. f < V 
0~ 4 

I 
upper  boundlgn(x )  l < -  2.7, for each large n. 

Then, for all large n, 

1 H e l l y  [6].  
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93rt I where en "-* o as n -*  ~ .  The same inequality applies also to fj f dgn , provided 

that g~ tends to zero at x' and x". 

The proof of this lemma is very simple. In each (x~-i, a%) we ehoose a 

point ~ at which g~-~o.  We have 

a~ tr a: r 

gt r r gr--1 

The first sum 

majorised by 

on the right evidently tends to zero as n--+ Qr 

( I + I ~ I Vp t Xr) ~/rq, (gn; Xr--1, Xr) 
I + ~ Pl q l l /  ~ '  ( f ;  Xr--1, 

The second is 

on account of (IO. 9)" Making use of (IO. 8) we obtain (I I. I). The corresponding 

inequality for J'fdg,~ may be obtained similarly, or by integration by parts.' 

The following result, of some importance in applications, is an immediate 

consequence of the lemma just proved. 

( I I .2)  Let f be a function of Wp and {g,,} a Wq-sequence, where p,q > o, 

[ + I > I. Suppose that {g~} converges densely, and at the ends x', x", to a func- 
p q 

tion g of Wq, and that {gn} converges uniformly to g at each discontinuity o f f  Then 

,Cft ~tt 

To see this, we determine, as on several previous occasions, ~ finite set of 

discontinuities of f ,  such that in any interval whose length does not exceed a 

1 Cf Pollard [9] 
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certain 60 and which contains no point of the finite set, the oscillation of f is 

less than  ~2. Since g,~--g converges uniformly to zero at  each point  of the 

finite set, we can determine a positive 61 not  exceeding 60, and an integer nl, 

so tha t  for all n > n 1, the upper bound of (g,~- g) in any interval containing 

I 
a point of the finite set and having length less than  6~, is less than  ~V. By 

choice o f ~ ,  it follows from (il .  I) that the upper limit, as n-+~ , of l f f d (g~- -g )  I 

is arbitrarily small and (II.  2) follows at  once. 

Theorem on t e rm by t e rm in tegra t ion .  Let {f~} be a W~-sequence converging 

densely to an f of Wp and conve~ying uniformly to .f at each point of a set A. 

Let {gn} be a Wq-sequence converging densely, and at the ends x', x", to a g of Wq, 

and converging uniformly to g at each point of a set B. Suppose further that 

I I 
p , q > o , -  + - >  I, and that A includes the discontinuities of g, B those o f f ,  

P q 

A + B all points of (x', x"). Then 

:Crt X rr 

~,t ~gt 

Proof. Given e > o, since A + B includes all x of the (closed) interval (x', x"), 

each x is contained in a neighbourhood in which, for all large n, the upper 

I 
bound of o n e  of the expressions I f~ ' -=f] ,  Ig ,~--gl  is less than  - e .  By Borel's 

2 

covering theorem we can divide (x', x") into a finite number  of intervals, separated 

by points at  which g~--+ g, such that ,  in some of these intervals, the intervals 

(a,{7) say, the upper bound of ] f n - - f l  is less than  I - e  for all n greater  than  a 
2 

certain nl,  and the oscillation of ( f ~ - - f )  therefore less than  e, while in the 

remainder,  the intervals (7, 6) say, the oscillation of ( g n -  g) is less than  e. 

In  an (a, fl) we write 

f f f 
Since, at any discontinuity of f in (a, fl), gn --  g tends uniformly to zero, it  follows, 

by the construction so often repeated, tha t  (a, ~ ) c a n  be divided into a finite 
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number  of intervals, in each 

I 
l y , , - g l  < -~.. 2 

In  a (7, d), we write 

7 7 

of which either O s c . f <  e, 

7 7 

o r ,  uppe r  b o u n d  

and remark similarly, that  (7, 6) can be divided into a finite number  of parts in 

each of which either Osc. g < e, or, uppe r  b o u n d  If,~--Jl < I 
2 

N o w  choose  p~ > p ,  ql > q so that  ! + I > I. W e  have 
Pl ql 

( I I .  3) I + 

li I + 5', f,, d(g,, - .q) 
(~,, ,~) 

g) + 

(,/, o*) 
(fn -- f )  dg I �9 

On account  of (Io. 9) and lemma (IO. 8), the first two sums axe majorised for 

all large n, by 

( I (p,__p>/p, (fn - - f )  ) q,(gn) "[- ' + :-)/[e v~/p, " ,(q,-,>/~, Vp,(,f,,)Vq/q,(g.-g)], �9 i + ~  ~ q,I~ 

while, on account  of our lemma ( i I .  I), the last two are majorised,  for all 

large n, by 

-t- ~ l }  [e(p,--v)/p, V~/~,(f) V,~,(gn- g) + e(q,-~)lq, Vp,(f) Vqlq,(gn- g)+ 
q11) 

+ e(,,,-,,)/l,, V~/P,(f, - - f )Vq, (g )  + e(q,-q)/q, V,,(f,~ - - f )  V~lq'(g)], 

where A T i s  the number  of (a, fl) and (7, 6). Since, for all large n, AT~n < e, the 

left  hand side of (I I. 3) is arbitrarily small for all large n, and this proves the 

theorem. 

The theorem jus t  proved, which corresponds to t h e  existence theorem in 

the  Riemann sense, can be Slightly extended in accordance with the ideas of the 
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~/[oore-Pollard definition, and the proof requires only minor alterations, We 

shall content ourselves with stating the theorem in the extended form without proof. 

Let {fn} be a W1rsequence converging densely to an f of Wp, and converging 

to f uniformly on the right at each point of a set A+, and uniformly on the left 

at each point of a set A_ .  Let {g~,} be a Wq-sequenee converging densely and at 

the ends x', x" to a g of Wq and converging to g uniformly on the right at each 

point of a set B+ and uniformly on the left at each point of a set B_I  Suppose 

I I 
further that p, q > o, - + - > I, that A+ includes the right hand discontinuities 

P q 

of g, A -  the left hand discontinuities of g, B+ the right hand discontinuities o f f ,  

B _  the left hand discontinuities of f ,  and finally that A+ + A -  + B+ + B _  

includes all points of (x', x"). Then 

~ ,F  ~dtr 

9~ ~ X ~ 

I2. Fourier series. I t  is well known that  the depth of the convergence 

problem for Fourier series is largely due to the fact that, in the expression for the 

Fourier partial sums of a function f(x) ,  

/i2 i) i 2 -- 99(x) dgn(t), 

0 

(where ~(x) is arbitrary), the functions 

j dt 
sin _l t 

o 2 

do not satisfy uniformly the condition of bounded variation W1 so essential to 

all classical theorems on term by term integration. 

I t  is therefore of some interest ,  that, while the gn(t) of ( I2 .2)do not fulfill 

the classical condition W1, they have, neverless, for every q > I, uniformly 

bounded mean variation of order q. Similar remarks apply to the functions 

g(~)(t) arising from the corresponding expression for the Cesaro means of negative 

order 7 > -- I. These functions form a Wq-sequence for every q.'> I/(i + 7). I t  is 
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trivial that ,  for  Cesaro means of positive order, the corresponding g~)(t) have 

uni formly  bounded variation, and it  is not  unna tura l  tha t  something should remain 

of this proper~y when 7 ~ o, the case of the part ial  sums s,(x),  and even when 

o > 7 > ~ I. This *something>> is Wq for  q > i/(I + 7). I t  is curious tha t  such 

a simple p r o p e r t y  should have escaped notice un t i l  now. The full  result,  together  

with similar informat ion relat ing to the allied series, is as follows: 

T h e o r e m  on  m e a n  v a r i a t i o n s  o f  t h e  F o u r i e r  k e r n e l s .  F o r  7 > - -  I, the 

Cesaro means of  order 7 of  the Fourier series o f f ( x )  may be written 

/,:. :++)+ ; f  (+,x+,, ++<:-,> ) 2 - + ( ~ )  dg ,~) ( t ) ,  

0 

where the functions g(~)(t) which vanish for  t --  o and tend umformly  to I at each 

t 4 = o, have, for  every q :> I satisfying q(I + 7) > I, uniformly bounded mean varia- 

tion of  order q. Moreover, i f  S~* (x) is the partial  sum (to 2 n + I terms) of  the allied 

series, then 

(~2.4) 

where 

,f S* - -  2 ~  ( f ( x  + t) - -  f ( x  --  t)) cot 

re~2 n 

' t d t =  ~ f(f(x+t)--f(x--t))dg*(t), ; ? 
0 

the g,* (t), which are bounded at t = o, and tend uniformty to zero at each 

t + o, have, for  every q > I, uniformly bounded mean variation of  order q. 

Proof  We make use of the known fact  tha t  ( I2 .3)  is valid with 

t 

0 

where1, for  - -  I < 7 -< o, (and indeed for  - -  I < 7 < I), 

t]=t21+ ~ ,  I~I <- K., I~,~] <- K/nt ", 

(( ;) , ) 1"(7+ I) r ( n  + I) sin n + ~  7 +  t - - 2 Y z c  
' + '  

~21 F ( n + 7 +  I) 2~ s in t 

and the Ks are independent  of n, t. 

' K o g b e t i i a n t z  [6], H a r d y  a n d  L i t t l e w o o d  [4], 
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And ( 1 2 . 4 ) i s  valid with where ~ * ( o ) = o ,  Ya*(t)= 

t 
-~ sin nt + cot I t(I --  cos nt) for o < t <- ~/2n, and ~*(t) ~ s i n n t - -  cot I tcosnt  

2 2 

for t > z/2 n, since ( i2.4)  then reduces to the known formula ~ 

,,.(.) i f ( f (  
2:zg 

0 

+ t)  - -  f ( x  - -  t ) )  {sin nt + cot 2 I t ( I  - - cos  nt)}dt. 

;) L e t n o w a m =  m +  2 ~ + 2-7+ for m= I, 2, ..., n, and ao=O,  a n + l = ~ .  

From the expression for ~1, it follows, by the second mean value theorem, that 

sin + ~ + t-- dt 

f~l(t) dt~-/~(~ + I)F(n + I) " /a ( t I ~+1 2rF(n + 7 + I) sin 2 a 
C~ 

for some ~ in (a, ~). 

majorise crudely [ the 

/sin((  
r + 

+ 

+17"+ t---27z dt 

I f  we perform the integrations on the right and then 

gamma factors are O(n-~), I +-- cos x[ <- I and sin I ~ >  
' 2 

> sin I )] - -  - a >-- a/z > O((m + I)/n we get a majorant K/(m + i)r+l, with K depending 
2 J 

And combining this with the obvious inequality tl~22(t)]dt< only o n  7. 

<-K/m<--K/(m+ I)r+l, (for - - I  < 7  <-o), we find that, for (~,/~) in (am,~), 

m=Vo, and -- I < 7 < - - 0 ,  

] /  ~21(t)dtl + /'t~'a(t)'dt <- K/(m + I) '+1, 

1 Z y g m u n d  [12] p, 2 I .  

35 - -36122 .  AcSa mathematica.  67. I m p r i m 6  le 28 n o v e m b r e  1936. 
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a relat ion in which it will be remarked that ,  when fl--< a~+l, the modulus of 

the first integral  is the integral  of I ~ l l ,  since the in tegrand is of constant  sign. 

Moreover 
al  

f ]Y](t)ldt < K 
0 

since a~ < K/n. 

for - -  i < 7 <-- o, 

Hence, for any (a, fl) in (am,.~), r e = o ,  I . . . .  , n +  I, we have, 

and for any (a,/3) in (am, am+l), (rn-~ o, I , . . . ,  n + I) 

(i2.6) / It~(t)ldt <-- K/(m + I )  ?+1  . 

(x 

l rk 
Similar inequalities hold for .Q*, with 7-----0 and with am-~tm--~z/n for 

m-~  I , . . . ,  n and a0-~ o, a,~+l = z. They are obtained in the same way. 

Consider now any subdivision of (o, •) by a finite increasing sequence of 

points of division x~. The sum 

Y](t)dt 

can be split up into n +  I groups of terms for which (Xr-l, Xr) lie in the n +  I 

portions (am, a~,+l), together with single terms arising f rom the values of r for 

which there is an inequali ty of the type x,.-1 < am < x~, at  most  one such r corre- 

sponding to each m. By (8. I) the groups of terms are majorised by the corre- 

sponding qth powers of the r ight  hand  side of (I2.6). The addit ional  single terms 

are evidently majorised by the qth powers of the r ight  hand side of (I2.5). 

Our sum is thus at  most 

K ~jm -q(r+l)-~ K~(q(7 + I)) 
] 
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provided q(7 + 1) > I. This is the same as our assertion of uniformly bounded 

mean variat ion of g(~)(t) for - - I  < 7  ~ o .  The case 7 > o  is disposed of by 

trivial inequalities, while the corresponding assertion rela t ing to the allied series 

is established in the same way as f o r  g~)(t). 

Finally, as regards convergence, we have gl~)(o)--o and, since ( i 2 . 3 ) i s  

valid with ~0(x) arbitrary, (r)~ By (12.5), In(r) g(:)(t)l g~ ( ) =  I. .~ ( z ) -  tends uniformly 

to zero, when t exceeds a fixed positive ~, arbitrari ly small, p r o v i d e d -  I < 7 -< o. 

The corresponding assertions for 7 > o and for the allied series are obtained 

similarly, and this completes the proof. 

From the theorem just  proved, we see tha t  the not ion of mean variat ion 

has a na tura l  connection with Four ier  series. We now consider some properties 

of the latter, for functions of Wp. 

Theorem on the Fourier series of a funct ion of  Wp. ( i ) I f  f belongs to Wv 

( ' ) )  
and has period ~ its Fourier coefficients are 0 n{-p  +~ .i) (ii) The Fourier series, 

1 
together with its Cesaro means of order greater than 1)' converges at each x to 

the value [ ( f (x  + o) + f ( x  -- o)). (iii) At  a point x of eonffnuity of f ,  the con- 
2 

vergenee is uniform and moreover the difference between the partial sum s*(x) of 

the allied series and the integral 

(12"7) 2-~I f ( f (x  + t) . f ( x - -  t)) COt 2 I t d t  
. ]  

converges uniformly to zero. 

(i) 1 We have, (for n positive or negative), by (IO. 9) 

12 ne,,I = ( / ( t ) - f ( o ) ) d ( d  "t) <- K Vq(e t'u) 

provided tha t  [ + I > I. 
P q 

tha t  is to say, Yqq(e lnt) = 

I t  will therefore suffice to show tha t  Vq(d 'u) is O(nl/q), 

0(,). 

1 The stronger result 0 (n--liP) is also true when-f belongs to Wp and even when f belongs 

merelyto Lip (~ ) , p , vide Hardy and Littlewood (4). The two results are eqvivalent in the case 

(that usually arises) when f belongs to Wp for an open Segment of values of p. 
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Now in forming the upper bound of 

for non-overlapping (a, fl), we may suppose, by periodicity, ~ - - a  < 2z/u. And 

the upper bound for non-overlapping (a, fl) that  lie in a same interval of length 

zz /n  is, by (8. I) at most the total variation raised to the qt~ power,  and so is 

majorised by 

I t  follows immediately that, for ( - - z ,  z), the upper bound is at most n (2z)q 

and this proves (i). 

I 
(ii) We have only to choose qo(x) ----- ~ ( f (x  + o) + f ( x  --  o)) and observe that 

on the right of (i2.3) the integrand is continuous and zero as function of t for 

t = o. The result then follows from (I I. 2). 

(iii) Uniformity of convergence is easily derived from (Io. 9). We shall 

content ourselves with proving the part referring to Sn* (x). Given ~, we deter- 

mine a neighbourhood of x and a small interval of t, in which (uniformly in x) 

the function of t, f ( x  + t ) - - f ( x -  t), has oscillation less than ~, and therefore, 

by (8.2 a), a mean variation of order p~ not exceeding K~Ip,-v)/p,, when Pl > P .  

We choose such a Pl with a ql > I for which I + _I > I. Since Fq,(g~*) is bounded, 
Pl ql 

it follows at once from (I0. 9) that  the right hand side of ( I2 .4) tends  uniformly 

to zero at the point x as required. This completes the proof of our theorem. 

The convergence of the Fourier series of an f of Wp was proved by Wiener 1, 

when p ---- 2. But when p ~= 2, he obtained only th~ incomplete result that  the 

Fourier series converges almost everywhere. For general p, the convergence of 

the Fourier series and its Cesaro means of order greater than - - I / p ,  is implied 

in a theorem of Hardy and Littlewood ~, relating to the class of functions 

L i p ( p  ) ( ---I + ~ ) w h e n e v e r t h e r e i s s u m m a b i l R y  , p , which asserts summability C, P 

(C, I). The proofs of Wiener and of Hardy and Littlewood do not suggest, 

1 Wiener  [II]. 

Hardy and Littlewood [4] (Theorem I). 
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what is evident from our discussion, that  results of this kind ~ e  largely inde- 

pendent of the special nature of Fourier analysis. 

In the part  of our theorem that  relates to the allied series, we assert 

nothing as to the convergence of this series by itself, for the integral (I2.7) 

may diverge as n--* ~ ,  at a point x of continuity for which f ( x  + t) - - f ( x )  is, 

for instance, 0(I/log t), and this may occur even when f is monotone. I t  is 

known, however, that, for almost all x, the integral converges unde r  far more 

general conditions than we have supposed 1, and it follows that  the allied series 

converges almost everywhere, a result that can also be inferred directly from a 

beautiful theorem of B. Kuttner  ~, since the Fourier series converges. I t  will 

be remarked, however, that  the only simple formula to which we may expect to 

sum the allied series, is the limit of an integral such as (I2.7). A theorem of 

comparison between the series and the integral is therefore the natural analogue 

of the theorems of convergence, or summability, of a Fourier series, to a sum 

f (x )  or to a sum I ( f ( x  " t -o )+ f ( x - -0 ) ) .  

We conclude with a new form a Parseval's theorem, not included in the 

classieal forms of this theorem, and not including them. The theorem is some- 

what deeper than our preceeding ones on Fourier series, and in the proof we 

have combined our methods with those of Hardy and Littlewood. 8 

The >,Parsevab equation. Let the real periodic functions 

f(x) ~ ~(a~ cos nx  + bn sin nx), g(x) ~ ~(a'n cos nx  + b'n sin nx) 

I I 
of period 2 z~ belong respectively to Wp and Wa, where ~, q > o, - + - > I. 

P q 
the series 

(,2. s) 5', 
1 

converges and has the value 
rg 

f f (x )  dg(x), 

Then 

1 S. Pollard and R. C. Young [IO]. The case of functions of integrable square (which amply 
suffices here), was treated much earlier by Besicovitch [I]. 

Kuttner [8]. 

8 Hardy and Littlewood [4]. 
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i f  f and g :have no common discontinuities, and, in the general case, the value 

2g 

- - r  

+ o) + f ( ~  - o))rig(x). 

We obtain this theorem by considering the function 

(i2.9) 
F(x) -- f /(x 

+ t)dg(t) ~ ~(A~ cos nx + Bn sin nx). 

Lemma (i). When  q = I a , d  g(t) i8 co, tinuous ~rp(F) ~-- Wp(f)  Vl((fl). To 

prove this, write j ~ ( x ) - f ( x  + t~) and observe that  (8.5) implies 

Vp(~a~ft(x)). <-- Z.l Vp(a~f~(x))= Zla~]t Vp(9~(x))~ Vp(f) Z l a ,  

for any finite sum over i. Let  now xr be the points of division of any sub- 

division of ( - - z ,  zr) and t~ those of another. Then it follows that 

Keeping the xr fixed, we make the ti everywhere dense and derive 

(f(xr + t) - f ( x ~ - i  + t))dg(t) -< rp(f) L(Y) 

and replacing the left hand side by its upper bound, we have our assertion. 

Lemma (ii). I f  f belongs to Wp, the sequence an(f) of arithmetric means of 

its Fourier series form a Wp-sequence. This follows at once from lemma (i) by 

expressing an(f) in the form of an F(x) with for g(t) the indefinite integral of 

sinS~ n t /2zrn  sin s I t, in  which case the total variation of g(t)is independant of n. 
2 

Lemma (iii). With the hypotheses of the theorem, the function F(x) of (12.9) 
t t ~ t b ! has the Fourier coefficients An = ~n(anb~ -- anb~), Bn z~n(anan + b,~ n). By lemma 
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(ii) and by (Io, 9) and (II. 2), at every x for which f ( x  + t ) a n d  g(t)have.no 

common discontinuities (that is, for almost all x), F(x) is the bounded limit of 

the corresponding integral of f(x) with respect to a~(g). 

Multiplying by cos nx, sin nx and integrating term by term by the classical 

theorem of Lebesgue, we find for the Fourier constants the values stated. 

Lemma (iv). The limits F(x +_ o) exist and have the values 

f f ( x  + t +_ o) dg(t). 

In particular, F(x) is continuous for the values of x such that f ( x  + t) a,d 9(t) 

have no common discontinuities as functio,s of t. 

This lemma follows at once from the obvious modification of (II. 2) that 

corresponds to the Moore-Pollard order of ideas. Thus, when ha ~ + o, 

fs(x + , +  o) 

it being clear that f ( x  + t -~ hn) tends uniformly to f ( x  + t + o) on the right at 

any point t, while g ( t -  o) is continuous on the left: Observing that  the inte. 

grals are unaffected in value if g(t--o)  is replaced by g(t), the conclusion follows 

for + o, and similarly for - -o ,  

Lemma (v). F(x) belongs, for some finite Z > o, to the integrated Lipschitz 

I t  will suffiee to show that, except for a set of x of measure lesa than 

KIhV (in which F(x) is certainly bounded by (Io. 9)), 

I F ( x +  h) -- F(x)[ < K[hV.  

We may suppose ] h i <  ~, and we  determine h 1 and the integer N by 

hi = 2 ~ / N  >-- I h I > 2 z / ( N  + ~) >- ~ hi. 

We divide ( - -z ,  ~r) into N equal parts (#-1, tr) of length hi and select in each 

Cf. (8.4). 
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part a pair of  points ~ ,  , ~ -  h of distance ]hl < hi. Choosing as usual p~ >10, 

qt > q so that I + I > I, we have, by (IO. 9), for the difference 
2ol ql 

F(~)- y, f(x + ~)(g(t,)- g(t~_~)) , 

the majorant  

I + ~ I + I ~_j Vp, ( f  ; x + t.--~, x + tr) Vq, (g; t , - , ,  t.), 
r = l  

and, since ( ~ r -  h) lies in ( t~l ,  Q, the same majorant holds for the difference 

F ( ~  + h ) -  y ,  f ( ~  + ~ ) O ( t , ) -  g(t,-~)) , 

and therefore also for the expression 

I- I F (x  + h) --  ~(x) I. 
2 

To prove our 1emma, it will therefore suffice to show that 

y,  r~ , ( f ;  x + t~_,, x + tr) rq,(g; t.-1, t~) < Kh~, 
r=l  

except for a set of x of measure less than Kh?. Let E~ be the subset of the 

tr for which 
1 

Ose. ( f ;  t. - -  2h~, t, + 2h~) > h~p. 

I f  n~ is the number of such values of t . ,  it is clear from the definition of 

Vp(f) that  

n:hl/~ < r ~ ( f ;  o, 8~). 

Similarly, if E,  is the subset of the t, for which 

Osc.  (g; t r  - -  2 h~, t,. + 2 h~) > h~/aq 

the number n, of points of E,  is at most Kh'7 ~/~. 
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Le t  now Eo be the set of the differences between points of E~ and points 

of /~ .  The number  of points  of E 0 is t hen  

no <- na n2 < KhT2/3; 

and  if /~ is the  set of points d is tant  at  most  hi f rom points of Eo, the measure 

of E is at most  Kh~ In, and for  any x outside E and any r we must  have e i ther  

OSC. ( f ;  X "~- tr--1, X ~- tr) < h Uap 

or 

Osc. (g; t,-1, t~) < h I/3q 

and by lemma (Io. 8) 

Vp, ( f ;  x + tr-1, x + t,.) Vq,(g; tr--~, t,.) < Kh~ 

with, for  fl, the  smaller of the  two values (p~--P)/3PPl,  ( q ~ -  q)/3qql. 

This completes the proof  of lemma (v). 

I ( F ( +  o) + F ( - -  o)) is the  l imit  of To prove our  theorem we observe tha t  2 

the  Cesaro mean of the Four ie r  series of F(x) for  x ~ o by a classical theorem.  

By lemma (v) and the theorem of H a r d y  and Li t t lewood already re fe r red  

to ~, this implies tha t  the Four ie r  series of F(x) converges fo r  x - ~  o and is in- 

dead summable ( C , ~ - + ~ ) .  

By lemma (iii) this is equivalent  to the  s t a t emen t  of our  theorem,  and this  

completes the  proof. 
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