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ABSTRACT. Electric power system (EPS) management considering greenhouse gas (GHG) mitigation is a challenging task, since 
many system parameters such as electric demand, resource availability, system cost as well as their interrelationships may appear 
uncertain. To reflect these uncertainties, in this study, an interval-parameter credibility constrained programming (ICCP) method was 
developed for electric power system planning in light of GHG mitigation. The method was advantageous in tackling uncertainties 
expressed as not only fuzzy possibilistic distributions associated with the right-hand-side components of model constraints but also 
discrete intervals in the objective function. In addition, ICCP allowed satisfaction of system constraints at specified confidence level, 
leading to model solutions with low system cost under acceptable risk magnitudes. The obtained results indicated that stable intervals 
for the objective function and decision variables could be generated, which were useful for helping decision makers identify the 
desired electric power generation patterns, capacity expansion schemes and GHG-emission reduction under complex uncertainties, and 
gain in-depth insights into the trade-offs between system economy and reliability. 
 

Keywords: decision making, interval linear programming, credibility constrained programming, electric power system, uncertainty

 
 

 

1. Introduction 

Effective planning of electric power system (EPS) plays 

an increasingly important role for electric utilities as well as 

human activities (Dentchva and Rӧmisch, 1998; Huang and 

Chang, 2003; Cai et al., 2010; Li et al., 2010; Guo et al., 2012). 

For decades, rising electric demand, growing environmental/ 

health concerns, and shrinking resource availability have urged 

local authorities and regulatory agencies to seek comprehen- 

sive strategies for EPS planning. However, such planning eff- 

orts are often complicated with uncertainties associated with 

many economic, technical, environmental and political factors 

(Shimazaki et al., 2000; Cai et al., 2009; Bishop et al., 2010; 

Atkins et al., 2010; Siitonen et al., 2010; Cranston and Hammond, 

2010; Xie et al., 2010; Xu et al., 2012; An et al., 2016; Martín- 

Fernández et al., 2016). For example, electric demand is un- 

certain since it depends on economic situations and user acti- 

vities from residential, commercial, and industrial sectors; the 

operational cost of power generation facilities could fluctuate 

in a certain range (Cheng et al., 2002; Cao et al., 2010; Dong 
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et al., 2011). To reflect such uncertainties in EPS, inexact 

system-analysis techniques can be used (Gong et al., 2016; 

Lin et al., 2016; Tong et al., 2016). Examples are interval pa- 

rameter programming (IPP) (Huang et al., 1992, 2011; Grosfeld- 

Nir and Tishler, 1993; Cai et al., 2008; Lin and Huang, 2008; 

Li et al., 2010, 2013), stochastic mathematical programming 

(SMP) (Grosfeld-Nir et al., 1993; Darby-Dowman et al., 2000; 

Li et al., 2009; Xie et al., 2010; Pousinho et al., 2011; 

Svensson et al., 2011; Qin, 2012; Wang et al., 2012) and fuzzy 

linear programming (FLP) (Huang et al., 1993; Huang et al., 

1996; Yin et al., 1999; Chanas and Zielinski, 2000; Li et al., 

2007; Muela et al., 2007; Lu et al., 2008). 

Previously, many inexact optimization methods were pro- 

posed for energy system planning and management. For 

example, Lin and Huang (2008) developed an interval-parameter 

integer programming model for energy system planning, where 

the model used only the boundary information of parameters 

and had a low requirement on data quality (Xi et al., 2008). 

However, the major limitation of the interval-parameter model 

was that it did not allow any violation of the system con- 

straints and the model became infeasible when the right-hand 

side parameters in the constraints were highly uncertain (Huang 

et al., 1993). In order to solve this problem, Liu et al. (2000) 

introduced a hybrid inexact chance-constrained mixed-integer 

linear programming method for nonrenewable energy resources 

management. The method optimally allocated limited nonre- 
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newable energy resources over different time periods for ac- 

quiring the maximized benefit under uncertainty. Cai et al. 

(2009) proposed an inexact community-scale energy model, 

which incorporated interval linear programming (ILP) and 

chance-constrained programming (CCP) within a general op- 

timization framework. The model results offered cost-effective 

energy resource/service allocation and capacity-expansion plans 

with proper balances among system cost, system reliability 

and energy security. Liu et al. (2009) formulated an inexact 

management model to systematically handle complexities in 

integrated coal and power management systems, where the 

model led to a series of solutions with optimal system cost/ 

benefit at allowable levels of violation risks.  

However, in many real-world management problems, it is 
widely recognized that the right-hand side model constraints 
would encounter fuzzy uncertainties (Huang, 2006). The chance- 
constrained programming with fuzzy parameters (FCCP) is pro- 
posed to deal with such a problem, where a number of pre- 
defined confidence levels of fuzzy-constraints-satisfaction 
will be incorporated into the optimization model. Previously, 
FCCP has been successfully used in many applications. Huang 
(2006) discussed a problem involving capital budgeting in a 
fuzzy environment, and two types of fuzzy possibility chance- 
constrained programming models were provided. Rong and 
Lahdelma (2008) presented the fuzzy credibility chance cons- 
trained model for scrap charge optimization. However, appli- 
cations of FCCP in EPS planning field were limited, due to 
the fact that FCCP may encounter difficulties in obtaining 
fuzzy distribution information due to lack of data or diffi- 
culties in obtaining the data which are common issues for 
large-scale EPS planning systems. Representation of uncertain 
information using multiple theories would be more desirable 
(Zhang and Huang, 2011). 

Therefore, the objective of this study is to develop an 
interval-parameter credibility constrained programming (ICCP) 
method for regional EPS management under considering GHG- 
emission reduction. It is an attempt to develop a risk control 
method for renewable energy utilization and GHG mitigation. 
The developed model is a hybrid of interval-parameter linear 
programming and credibility constrained programming. Un- 
certainties are expressed as not only possibility distributions 
associated with right-hand-side components of constraints but 
also discrete intervals in the objective function. Moreover, 
ICCP allows violation of system constraints at specified confi- 
dence levels, leading to solutions with low system costs under 
acceptable magnitudes of violation risks. 

2. Methodology 

2.1. Interval Linear Programming 

Interval linear programming (ILP) where coefficients of 

the decision variables in the objective function and constraints 

are presented as interval values can be formulated as follows: 

Maximize f C X         (1a) 

 

Subject to: 

A X B
           (1b) 

0X
           (1c) 

 

where { } ,  { } ,  { } ,  { } ,n l m n m l l nX A B C                  
  denotes a set of interval numbers. The ILP model can be 

transformed into two deterministic sub-models, i.e., f + and f -, 

which correspond to the lower and upper bounds of the object- 

tive function values. By solving the submodels, the relevant 

solutions can be obtained as follows: 
   [ , ]

j opt j opt j opt
x x x

  , 
opt

f

[ , ]opt optf f
  . 

 

2.2. Credibility Constrained Programming 

Credibility constrained programming (CCP), which based 

on credibility conception, can be expressed as follows (Huang, 

2006; Rong and Lahdelma, 2008): 

1

Maximize 
n

j j

j

c x

         (2a) 

Subject to: 

1

,  1, 2 ,..., m
n

iij j i

j

Cr a x b i 


     
  
       (2b) 

0,  1,  ...,  
j

x i n          (2c) 

 

where x =(x1, x2, ..., xn) is a vector of non-fuzzy decision 

variables; cj are cost coefficients; aij are technical coefficients; 

ib  are right-hand side coefficients; Cr{·} denotes the cre- 

dibility of the event {·};   is the confidence level.  

Let   be a fuzzy variable with membership function  , 

and let u and r be real numbers. Dubois and Prade (1988) 

proposed the following indices defined by possibility and ne- 

cessity measures: 

 

 Pos sup ( )
u r

r u 


         (3a) 

   Nec 1 Pos 1 sup ( )
u r

r r u  


          (3b) 

 

The credibility measure Cr is the average of the possi- 

bility measure and the necessity measure (Liu and Liu, 2002): 

 

     1
Cr (Pos Nec )

2
r r r           (4) 

 

Let the fuzzy variable   be fully determined by the triplet 

( ,  ,  )t t t  of crisp numbers with t t t  , whose membership 

function is given by: 

 

( ) / ( )  if ,

( ) ( ) / ( )  if ,

0                      otherwise. 

r t t t t r t

r t r t t t r t
   

    



     (5) 
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From the above definitions, the possibility, necessity, and 

credibility of r   are provided as follows: 

 

0         if 

Pos   if 

1         if 

r t

r t
r t r t

t t

r t



 
    


 

      (6a) 

 

0         if 

Nec    if 

1          if        

r t

r t
r t r t

t t

r t




    


 

     (6b) 

 

0                    

           
2( )

( )
2

        
2( )

1                   

 

if r t

r t
if t r t

t t
Cr r

t t r
if t r t

t t

if r t






     
   

 




    (6c) 

Let       be replaced by si. Thus, the constraint (2b) can 

be represented as:  

 

  2,  1,  ...,  ,  4ii iCr s b i m b ac        (7) 

 

Normally, a significant credibility level should be greater 
than 0.5. Therefore, based on the definition of credibility, we 

have the following equation for each 1 0.5 :
i it

     

2

2( )

i ii
i

i i

b b s

b b
 




        (8) 

 

where ib  are right-hand side coefficients fully determined by 

the triplet ( ,  ,  )
i ii

b b b  of crisp numbers with 
i ii

b b b  , 

whose membership function is  .  

 

2.3. Interval-parameter Credibility Constrained 

Programming  

To tackle multi-type uncertainties, the ILP and CCP me- 

thods can be incorporated within a general optimization frame- 

work. Then an interval-parameter credibility constrained pro- 

gramming (ICCP) model can be formulated as follows: 

 

1

Maximize
n

j j

j

c x
 


         (9a) 

Subject to: 

 

1

,  1,  ...,  ,  
n

iij j i

j

Cr a x b i m   



     
  
       (9b) 

0,  1,  ...,  jx j n
           (9c) 

Let          be the credibility constraints. The interval 

credibility levels, parameters and variables for such cons- 

traints can be formulated as: 

 

 ,  1,  ...,  .ii iCr s b i m           (10) 

 

Therefore, based on the definition of credibility, we have 

the following expression for each 1 0.5 :
i it

     

 

2

2( )

i ii
i

i i

b b s

b b



 




       (11) 

 

Thus, the ICCP can be transformed to an equivalent mo- 

del as follows: 

 

1

Maximize
n

j j

j

c x
 


         (12a) 

Subject to: 

 

1

(1 2 )( )
n

ij j i i i i

j

a x b b b  



          (12b) 

0,  jx j
            (12c) 

 

2.4. Solution Method 

The developed model can be transformed into two deter- 

ministic sub-models, corresponding to the lower and upper 

bounds of the preferred objective function value. When the 

objective function is to maximize f  , the sub-model corres- 

ponding to f   should be solved first. The ICCP sub-model co- 

rresponding to the upper bound of the objective-function value is: 

 

1

11 1

Maximize 
k n

j j j j

j j k

f c x c x
    

  

        (13a) 

Subject to: 

 

1

11 1

( ) ( ) (1 2 )( )
k n

ij ij j ij ij j i i i i

j j k

a sign a x a sign a x b b b
       

  

     
 (13b) 

 

where 
jx
  are upper bounds of interval variables with posi-

tive coefficients in the objective function, and 
jx
  are lower 

bounds of interval variables with negative coefficients. By 

solving the sub-model f  , the upper limits of the solutions can 

be obtained. 

Similarly, the sub-model corresponding to f   can be formu- 

lated as follows: 

1

n

ij j

j

a x



1

n

ij j i

j

a x s  
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1

11 1

Maximize 
k n

j j j j

j j k

f c x c x
    

  

        (14a) 

Subject to: 

 

1

11 1

( ) ( ) (1 2 )( )
k n

ij ij j ij ij j i i i i

j j k

a sign a x a sign a x b b b
       

  

     
 (14b) 

 

By solving the sub-model f  , the lower limits of the 

solutions can be obtained. Thus the optimal solution of ICCP 

model can be obtained as: [ ,  ]opt opt optf f f
   , [ ,  ]opt opt optx x x

   .  

3. Case Study 

3.1. Overview of the Study System 

A hypothetical regional EPS planning problem is studied 

to illustrate the applicability of the proposed ICCP approach. 

The problem under consideration is how to effectively allo- 

cate the five types (including imported electricity) of elec-

tricity supplies and generate expansion plans to meet the 

increasing end-use demand and environmental limitations 

over the planning horizon with a minimum cost. Three pe- 

riods (5-year for each period) are considered in the planning 

horizon. There are four types of energy resources for elec- 

tricity generation in a regional power system, including coal, 

natural gas, hydropower, and wind power, respectively. Cor- 

respondingly, four kinds of conversion technologies are avai- 

lable, the initial installed capacities of coal-fired power, na 

tural gas-fired power, hydropower and wind power con- 

version technologies are 1.5, 0.35, 0.25, and 0.05 GW, res- 

pectively. Figure 1 shows interactive relationships of differrent 

components within the regional-scale electric power system. 

The power system contains three parts: the energy supply for 

power generation, the conversion of power generation, and 

the allocation of power. The available amounts of renewable 

energy resources are affected by local natural conditions, such 

as precipitation and wind variations; meanwhile, the electric 

demand is dependent on economic situations and user ac- 

tivities. Generally, these parameters are estimated empi- 

rically. In order to reflect ambiguity and vagueness in re- 

source availabilities and electric demand, they are presented 

as fuzzy numbers (as shown in Table 1). Other parameters, 

such as supply cost and expansion amounts, fluctuate in a 

small range and they are described by interval numbers. For 

example, over three periods, the supply costs of coal are [2.5, 

4.0], [3.5, 5.0], and [4.5, 6.0] $million/PJ, respectively; those 

of natural gas are [5.0, 7.0], [6.0, 8.0] and [7.0, 9.0] 

$million/PJ respectively; those of imported electricity are 

[15.0, 20.0], [17.0, 22.0] and [19.0, 24.0] $million/PJ, res- 

pectively. It is assumed that there is no supply cost for the 

renewable energy resources (hydropower and wind power). 

During each period, there are three expansion options for each 

power conversion technology and they have different expan- 

sion amounts. The expansion cost of conversion technology is 

divided into two types, including the investment cost (i.e., 

 

Figure 1. Interactive relationships within regional-scale electric power system. 
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fixed cost) and the operating cost (i.e., variable cost), res- 

pectively. The related parameters are shown in Tables 2 and 3. 

To tackle the above-mentioned problem, the proposed 

ICCP will be applied. The best way to reflect decision maker’s 

preferences is to express them through linguistic terms and es- 

tablishing a semantic correspondence at different levels of 

feasibility (Zadeh, 1978; Mariano et al., 2007). Linguistic terms 

are encountered in data acquisition, when subjective judgment 

is involved. In this study, 11 semantic scales are used to 

represent the credibility levels of decision makers. The co- 

rresponding linguistic terms and credibility levels of the 

constraints are tabulated in Table 4. By setting the acceptable 

semantic terms of decision makers, acceptable interval credi- 

bility levels can then be generated. 

 

3.2. ICCP Model for Regional Power Electric System 

Planning 

The objective of the proposed model is to obtain a pre-

ferred plan for various energy activities by minimizing the 

total cost, which is related to energy resource supply, energy 

conversion, capacity expansion and environmental protection. 

The model constraints involve mass balance, emission, and 

technical restrictions. The regional power electric system 

planning problem can then be formulated as follows: 

 

Table 1. Electric Demand and Renewable Energy Availability in Three Periods 

 t = 1 t = 2 t = 3 

Electricity demand (PJ) [1950, 2200, 2450]* [2100, 2350, 2600] [2250, 2500, 2750] 

Availabilities of renewable energy (GW) 

Hydropower (k = 3) [0.65, 0.70, 0.75] [1.15, 1.20, 1.25] [1.60, 1.65, 1.70] 

Wind power (k = 4) [0.35, 0.40, 0.45] [0.75, 0.80, 0.85] [1.15, 1.20, 1.25] 

*[a, b, c] denotes the triangular fuzzy set, where a and c are the minimum and maximum possible values and b is the most likely value. 

 

Table 2. Fixed-charge Expansion Cost and Expansion Options for Power-Generation Facilities 

Conversion technology Expansion capacity (MW) 
Fixed-charge expansion cost (million dollar) 

t = 1 t = 2 t = 3 

Coal-fired (k = 1)     

Option 1 (m = 1) 100 [230, 241] [235, 246] [240, 250] 

Option 2 (m = 2) 200 [260, 271] [265, 276] [270, 280] 

Option 3 (m = 3) 300 [290, 302] [295, 306] [300, 310] 

Natural gas-fired (k = 2)     

Option 1 (m = 1) 400 [320, 334] [325, 340] [330, 345] 

Option 2 (m = 2) 500 [355, 370] [360, 375] [365, 380] 

Option 3 (m = 3) 600 [390, 406] [395, 410] [400, 415] 

Hydropower (k = 3)     

Option 1 (m = 1) 300 [515, 527] [520, 530] [525, 535] 

Option 2 (m = 2) 400 [570, 582] [575, 585] [580, 590] 

Option 3 (m = 3) 500 [625, 637] [630, 640] [635, 645] 

Wind power (k = 4)     

Option 1 (m = 1) 200 [520, 532] [525, 535] [530, 538] 

Option 2 (m = 2) 300 [580, 593] [585, 595] [590, 598] 

Option 3 (m = 3) 400 [640, 653] [645, 655] [650, 658] 

Table 4. 11 Scales of Linguistic Terms 

λ Term 

0 Unsatisfied constraint 

0.1 Practically unsatisfied constraint 

0.2 Almost unsatisfied constraint 

0.3 Very unsatisfied constraint 

0.4 Quite unsatisfied constraint 

0.5 Neither satisfied nor unsatisfied constraint 

0.6 Quite satisfied constraint 

0.7 Very satisfied constraint 

0.8 Almost satisfied constraint 

0.9 Practically satisfied constraint 

1 Completely satisfied constraint 

Table 3. Variable Expansion Cost for Power-generation 
Facilities 

Conversion technology 
Variable expansion cost ($million/GW) 

t = 1 t = 2 t = 3 

Coal-fired (k = 1) [255, 265] [260, 275] [270, 285] 

Natural gas-fired (k = 2) [320, 335] [330, 345] [340, 355] 

Hydropower (k = 3) [500, 515] [510, 525] [520, 535] 

Wind power (k = 4) [550, 565] [560, 575] [570, 585] 
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3 3 4 3

1 1 1 1

4 3 3

1 1 1

4 3 2

1 1 1

Minimize ( ) ( )

( )

( )

jt jt kt kt

j t k t

kmt kmt kt kmt

k m t

kt kt kt

k t r

f PTC Z PV X

Y FC VC ECP

X COT CT

 





    

   

  

  

  

  

     

    

   

 





 

 (15a) 

Subject to: 

 

Constraint for coal balance: 

3

1 1 1 1 1 1

1 ' 1

[ ] ,  
t

t mt mt t t

m t

CF RC Y ECP FE Z t
  

 

       (15b) 

Constraint for natural gas balance: 

3

2 2 2 2 2 2

1 ' 1

[ ] ,  
t

t mt mt t t

m t

CF RC Y ECP FE Z t  

 

         (15c) 

Constraint for hydropower: 

3

3 3 3 3 3 3

1 ' 1

[ ] ,  
t

t mt mt t t

m t

CF RC Y ECP FE X t
  

 

         (15d) 

Constraint for wind power: 

3

4 4 4 4 4 4

1 ' 1

[ ] ,  
t

t mt mt t t

m t

CF RC Y ECP FE X t  

 

         (15e) 

Constraint for electricity demand: 

4

3

1

,  kt t t

k

Cr X Z D t  



 
    

 
        (15f) 

Constraint for renewable energy resource availabilities: 

3

1 ' 1

,  ,  3,  4
t

k kmt kmt kt

m t

Cr RC Y ECP V t k 

 

 
      

 
    (15g) 

Constraint for environmental protection: 

4

1

COT (1 ) ,   kt kt kt t

k

X ES t   



          (15h) 

4

1

,kt kt t

k

X COP EP t  



          (15i) 

Constraint for capacity expansion: 

=1     if capacity expansion is undertaken
,  ,  ,  

=0     otherwise 
kmtY k m t
 




 

 (15j) 
3

1

1,  ,  kmt

m

Y k t



          (15k) 

Constraint for technical and non-negative: 

0,  ,  jtZ j t
            (15l) 

0,  ,  
kt

X k t            (15m) 

 

where f   is the expected system cost over the planning pe- 

riods (million dollar); j is the index of energy resource, with j 

= 1 for coal, j = 2 for natural gas, and j = 3 for imported 

electricity; t is the planning period, t = 1, 2, 3; k is the type of 

power conversion technology, representing coal power gener-

ation technology (k = 1), natural gas power generation tech- 

nology (k = 2), hydropower (k = 3), and wind power (k = 4), 

respectively; m is the expansion option, m = 1, 2, 3;   is a 

single period discount factor, 1 / (1 ) [ / ,  ,  ]t
i P F i t    ; 

and i is the interest rate per period (i.e. period t); 
it

PTC
  is 

the supply cost of energy resources i in period t ($million/PJ); 

kt
PV

  is the conversion cost for electricity generated by 

technology k in period t ($million/PJ); 
kmt

FC
  is the fixed- 

charge expansion cost for conversion technology k with 

option m during period t ($million/GW); 
kt

VC
  is the variable 

expansion cost for conversion technology k with option m 

during period t ($million/GW); 
kmtECP  is the capacity ex-

pansion amount for conversion technology k with option m 

during period t (GW). 
kt

COT
  is the emission intensity of 

sulfur dioxide from power generation technology k in period t 

(kiloton/PJ); 
kt

COP  is the emission intensity of carbon di- 

oxide from power generation technology k in period t (kilo- 

ton/PJ). 
kt

CT   is the removal cost of sulfur dioxide from po- 

wer generation technology k in period t ($million/kiloton); 

ktCF  is conversion coefficient for power generation to en- 

ergy resource from conversion technology k in period t (PJ/ 

GW); 
t

D  is electricity demand during period t (PJ); 
kRC  is 

residual capacity of power generation technology k (GW); 

kt
FE  is conversion coefficient for power generation capacity 

to electricity generation from conversion technology k in pe- 

riod t (PJ/PJ); 
kt

V  is availability of power generation tech- 

nology k in period t (GW); 
kt

   is the removal efficiency of 

sulfur dioxide from power generation technology k in period t; 

t
ES   is the total allowable emissions of sulfur dioxide during 

period t (kiloton). 
t

EP  is the total allowable emissions of 

carbon dioxide during period t (kiloton); 
it

Z   is the supply of 

energy resource i in period t (PJ); 
kt

X   is the electricity gene- 

ration by technology k in period t (PJ); 
kmt

Y   is the binary va- 

riable for identifying whether or not a capacity expansion 

action of conversion technology k needs to be undertaken du- 

ring period t. 

Based on the interval-parameter credibility constrained 

programming, the fuzzy resource coefficients in the right-hand 

side of the regional EPS model can be transformed to their 

equivalents as follows: 

3 3 4 3

1 1 1 1

4 3 3

1 1 1

4 3 2

1 1 1

Minimize ( ) ( )

( )

( )

it it kt kt
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 (16a) 

Subject to:  

3

1 1 1 1 1 1

1 ' 1

[ ] ,  
t

t mt mt t t

m t

CF RC Y ECP FE Z t  

 

         (16b) 
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3

2 2 2 2 2 2

1 ' 1

[ ] ,  
t

t mt mt t t

m t

CF RC Y ECP FE Z t  

 

         (16c) 
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3 3 3 3 3 3

1 ' 1

[ ] ,  
t

t mt mt t t

m t

CF RC Y ECP FE X t  

 

       (16d) 

3

4 4 4 4 4 4

1 ' 1
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t
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         (16e) 

4

3

1
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          (16f) 
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1 ' 1

(1 2 )( ),  ,  3,4
t
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RC Y ECP V V V t k 

 

       
                     (16g) 

4

1

COT (1 ) ,   kt kt kt t

k

X ES t   



          (16h) 

4

1

,  kt kt t

k

X COP EP t  



          (16i) 

=1     if capacity expansion is undertaken
,  ,  ,  

=0     otherwise 
kmtY k m t
 




 

 (16j) 
3

1

1,  ,  kmt

m

Y k t




   (16k) 

0,  ,  jtZ j t
            (16l) 

0,  ,  
kt

X k t              (16m) 

4. Result Analysis and Discussion 

Based on Table 4, the interval credibility is assumed as 

[0.6, 0.9]. Two scenarios are analyzed under different policies 

and practical considerations, where scenarios 1 and 2 represent 

electric power system without (or with) GHG-emission reduc- 

tion constraints, respectively. 

 

4.1. Solution without Considering GHG-emission 

Reduction 

This case is proposed for generating the pattern of resource 

production and system development without considering GHG- 

emission reduction. Table 5 shows the obtained results of the 

energy supply schemes. The coal would always be the largest 

source among all supplies over three time periods. Its supply 

would increase significantly from [1917.46, 2261.39] PJ in 

period 1 to [2368.54, 2716.00] PJ in period 2, and finally 

reach up to [2971.14, 3075.91] PJ in period 3. The natural gas 

supply would soar from [1417.13, 1710.29] PJ in period 1 to 

[1977.53, 2432.24] PJ in period 2, and finally achieve [2580.86, 

2673.67] PJ in period 3. The coal supply would increase 21.67% 

and natural gas supply would increase 21.85% in period 2, 

while in period 3 the coal supply would increase 18.93% and 

natural gas supply would increase 45.46%. The reason is that 

coal-fired power and gas-fired power would be the major power 

generation technologies without considering GHG-emission re- 

duction due to their advantages of low cost in supply, con- 

version and capacity expansion compared with others. With 

the shrinking environmental capacity, the increase rate of na- 

tural gas supply would surpass coal supply in period 3 due to 

the fact that the pollutant generated by coal-fired power is 

larger than that of gas-fired power. This suggests that gas- 

fired power would always have an advantage over coal-fired 

power in terms of pollutant emission.  

However, development of the coal-fired and natural-gas- 

fired conversion technologies is subjected to the SO2-emission 

constraint; meanwhile, the electricity generated from these te- 

chnologies could hardly meet the end-user’s demand, making it 

necessary to develop hydropower and wind power conver- 

sion technologies. Figure 2 displays the amount of power ge- 

neration and facility expansion schemes. The hydropower would 

grow from [38.5, 42.88] PJ in period 1 to [152.00, 171.00] PJ 

in period 3, and the wind power would ascend gradually from 

[6.50, 7.31] PJ in period 1 to [31.88, 36.56] PJ in period 3. 

The hydropower and wind power would have zero contri- 

bution to the local pollutant emission inventory, when environ- 

mental constraints take effect, it is advantageous to their de- 

velopment, however, their high capital cost would counteract 

this superiority. Coal-fired power generation would fluctuate 

over the planning horizon, for example, amount of power 

generation would amount to [589.99, 646.11] PJ in period 1 

and [929.97, 1007.17] PJ in period 3. Gas-fired power generation 

shows an upward trend, amount of power generation would 

increase from [578.42, 633.44] PJ in period 1 to [1162.47, 

1258.96] in period 3. From period 2, the share of coal-fired 

power in electricity production is gradually replaced by gas-fired 

power, it illustrates the constraint of environmental quality 

has played a important role from then on, it also indicates that 

the generating efficiency of coal-fired is lower than that of 

gas-fired power (since the coal supply is larger than that of 

natural gas supply in periods 2 and 3). 

Coal-fired power conversion technology would be ex- 
panded with 0.1 GW in period 1, 0.2 GW in periods 2 and 3, 
gas-fired power facilities would be expanded from 0.75 GW 
in period 2 to 1.35 GW in period 3, hydropower would be 
expanded with 0.3 GW in period 2 and 0.4 GW in period 3, 
there are no expansion for wind power in periods 2 and 3. Under 
high environmental demanding, more capacities for electricity 
generation would select gas-fired power and hydropower for 

Table 5. Results of Energy Resources Supply without GHG-emission Reduction 

Energy resources 
Energy supply (PJ)   

t = 1 t = 2 t = 3 

Coal [1917.26, 2261.39] [2368.54, 2716.00] [2971.14, 3075.91] 

Natural gas [1417.13, 1710.29] [1977.53, 2432.24] [2580.86, 2673.67] 

Imported electricity [670.26, 936.59] [281.15, 543.98] [0.00, 48.32] 
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substitute. The amount of imported electricity would decrease 

over three periods, i.e. [670.26, 936.59], [281.15, 543.98], 

[0.00, 48.32] PJ, respectively. This would somewhat enhance 

the stability and security of electric power supply. 

 

4.2. Solutions with GHG-emission Reduction 

In this scenario, GHG-emission control is considered 

based on Kyoto Protocol and local emission reduction plans. 

Table 6 presents the results of energy supply schemes. The ca- 

pacity-expansion amounts for renewable energy resource would 

increase in order to reduce GHG emission; meanwhile, it leads 

to an increased system cost. Coal-fired and gas-fired electricity 

would no longer be cost-effective option under GHG-emission 

reduction condition. Compared with the results in scenario 1, 

the coal supply would drop dramatically from [1886.19, 

1917.46] PJ in period 1 to [1631.07, 1828.86] PJ in period 2, 

and to [1369.47, 1558.49] PJ in period 3. The natural gas 

supply would decline from [1417.13, 1426.53] PJ in period 1 

to [1230.39, 1353.77] PJ in period 3. The coal supply would 

decrease 13.53% in period 2 and 16.04% in period 3, and na- 

tural gas supply would decrease 15.76% in period 3. In ge- 

neral, the supply of coal and natural gas show a downtrend, 

the fall of coal supply is larger than that of natural gas supply, 

especially in period 3. The main reason is attributed to the fact 

that the fossil fuel would generate a large amount of GHG and 

pollutant emissions in the conversion process. Subjected to 

the GHG-emission and environmental constraints, coal-fired 

power and gas-fired power would increasingly displaced by 

hydropower and wind power. However, within the limit of en- 

vironmental constraint, the major power generation techno- 

logy would still be coal-fired power and gas-fired power due 

to their low capital advantages.  

Figure 3 shows the amount of power generation and 

facility expansion schemes under GHG-emission reduction 

constraint. Coal-fired power generation would be [538.91, 

589.99] PJ in period 1 and [486.89, 589.95] PJ in period 2 

finally [427.96, 528.30] PJ in period 3, gas-fired power ge- 

neration would fluctuate from [528.34, 578.42] PJ in period 1 

to [534.95, 660.38] PJ in period 3. Gas-fired power would 

have been the major electricity supply since period 2. Its 

amount of power generation is basically remained unchanged 

in the period 3. The reason is that environmental carrying 

capacity has reached the maximum limit since period 2. In 

order to meet the rising electric demand, more electricity 

would turn to hydropower and wind power as well as 

imported electricity. The hydropower would grow from [84.70, 

94.33] PJ in period 1 to [165.38, 185.06] PJ in period 2, and 

to [248.00, 279.00] PJ in period 3. The wind power would 

soar from [32.5, 36.56] PJ in period 1 to [71.23, 80.85] PJ in 

period 2, and to [121.13, 138.94] PJ in period 3. Amount of 

hydropower would increase 95.25% in period 2 and 49.96% 

in period 3. Amount of wind power would increase 119.17% 

Table 6. Results of Energy Resources Supply with GHG-emission Reduction

Energy resources 
Energy supply (PJ)   

t = 1 t = 2 t = 3 

Coal [1886.19, 1917.46] [1631.07, 1828.86] [1369.47, 1558.49] 

Natural gas [1417.13, 1426.53] [1460.66, 1526.94] [1230.39, 1353.77] 

Imported electricity [801.86, 864.39] [779.38, 824.39] [892.20, 919.15] 

 

Figure 2. Amount of power generation and facility expansion schemes without GHG-emission reduction. 
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in period 2 and 70.05% in period 3. The development speed 

would drop in period 3. The reason is that the available 

amounts of renewable energy resources (hydropower and 

wind power) are limited. The facilities expanded capacity is 

0.2, 0.9, 1.3, and 0.9 GW for coal-fired power, gas-fired 

power, hydropower and wind power, respectively. The amount 

of imported electricity would generally increase over the three 

planning periods, i.e. [801.86, 864.39], [779.38, 824.39], and 

[892.20, 919.15] PJ, respectively. 

4.3. Comparative Analysis between Two Scenarios 

The power structure has changed dramatically under 

different scenarios, especially in the power supply ratio of 

coal-fired and gas-fired power. As shown in Figures 4 and 5, 

without considering GHG-emission reduction, the main power 

generation technologies are coal-fired and gas-fired power 

and the power supply ratio are increasing over the periods; 

while subjected to GHG-emission reduction constraint, the 

four power generation technologies show a tendency of ba- 

lanced development. Figure 6 shows the amount of capacity 

expansion under the two scenarios. The renewable energy ge- 

neration technologies do not proliferate fast, and slower than 

coal-fired and gas-fired power technologies in scenario 1. 

5. Conclusions

In this study, an interval-parameter credibility constrained 

programming was developed to support regional electric power 

system planning under uncertainty. The developed method coupled 

interval parameter programming and credibility constrained 

programming into a general framework, and could reflect un- 

certainties expressed as both discrete intervals and fuzzy sets. 

The model also allowed satisfaction of system constraints at 

Figure 3. Amount of power generation and facility expansion schemes under GHG-emission reduction. 
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Figure 4. Power structure in three periods under 
scenario 1. 
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specified confidence levels. Given the interval credibility le- 

vels for constraints, the ICCP model can be transformed to its 

equivalent two sub-models. The resulting solutions can pro- 

vide stable intervals for the objective function and decision 

variables with different levels of constraint-violation risks. 

The developed method was applied to a regional electric po- 

wer system planning case. 11 semantic scales were establi- 

shed to present the credibility levels of decision makers. Issues 

concerning energy resources allocation, capacity expansion of 

generating equipment as well as GHG-emission reduction were 

addressed. The results suggested that the proposed hybrid me- 

thod was applicable to practical problems associated with highly 

complex and uncertain information. The results also implied 

that the ICCP technique could be extended to other enginee- 

ring decision-making problems, such as water resource manage- 

ment and air pollution control planning (Liu et al., 2007a, b, 

2008). 

The proposed model could help regional electric power 

system mangers to obtain desired management schemes under 

various economic and risk considerations. However, there are 

still a lot of limitations of the proposed method. Compared 

with other inexact optimization methods, the model would 

encounter difficulties when the model’s right-hand-side coeffi- 

cients are highly uncertain; the random character of energy 

system parameters and theirs relationship can be hardly reflect 

by the ICCP model (Cai et al., 2009a, b; Fan and Huang, 2012; 

Li et al. 2009; Li et al., 2011; Fan et al., 2017; Wang et al., 

2018). Therefore, further studies are desired to mitigate these 

limitations.  
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