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Abstract

We propose numerical algorithms for solving large deformation diffeomorphic image registration 

problems. We formulate the nonrigid image registration problem as a problem of optimal control. 

This leads to an infinite-dimensional partial differential equation (PDE) constrained optimization 

problem. The PDE constraint consists, in its simplest form, of a hyperbolic transport equation for 

the evolution of the image intensity. The control variable is the velocity field. Tikhonov 

regularization on the control ensures well-posedness. We consider standard smoothness 

regularization based on H1- or H2-seminorms. We augment this regularization scheme with a 

constraint on the divergence of the velocity field (control variable) rendering the deformation 

incompressible (Stokes regularization scheme) and thus ensuring that the determinant of the 

deformation gradient is equal to one, up to the numerical error. We use a Fourier pseudospectral 

discretization in space and a Chebyshev pseudospectral discretization in time. The latter allows us 

to reduce the number of unknowns and enables the time-adaptive inversion for nonstationary 

velocity fields. We use a preconditioned, globalized, matrix-free, inexact Newton–Krylov method 

for numerical optimization. A parameter continuation is designed to estimate an optimal 

regularization parameter. Regularity is ensured by controlling the geometric properties of the 

deformation field. Overall, we arrive at a black-box solver that exploits computational tools that 

are precisely tailored for solving the optimality system. We study spectral properties of the 

Hessian, grid convergence, numerical accuracy, computational efficiency, and deformation 

regularity of our scheme. We compare the designed Newton–Krylov methods with a globalized 

Picard method (preconditioned gradient descent). We study the influence of a varying number of 

unknowns in time. The reported results demonstrate excellent numerical accuracy, guaranteed 

local deformation regularity, and computational efficiency with an optional control on local mass 

conservation. The Newton–Krylov methods clearly outperform the Picard method if high accuracy 

of the inversion is required. Our method provides equally good results for stationary and 

nonstationary velocity fields for two-image registration problems.
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1. Introduction and motivation

Image registration has become a key area of research in computer vision and (medical) 

image analysis [54, 65]. The task is to establish spatial correspondence between two images, 

mR : Ω̄ → R, x ↦ mR(x), and mT: Ω̄ → R, x ↦ mR(x), with compact support on some 

domain Ω := (−π, π)d ⊂ Rd via a mapping y : Rd → Rd, x ↦ y(x), such that mT ∘ y ≈ mR 

[22, 27], where ∘ is the function composition. Here, mT is referred to as the template image 

(the image to be registered), mR is referred to as the reference image (the fixed image), and d 

∈ {2, 3} is the data dimensionality. We limit ourselves to non-rigid image registration. The 

search for y is typically formulated as a variational optimization problem [27, 54],

(1.1)

The proximity between mR and mT ∘ y is measured on the basis of an L2-distance (other 

measures can be considered [54, 65]). The functional  in (1.1) is a regularization model 

that is introduced to overcome ill-posedness. The regularization parameter β > 0 weights the 

contribution of . Various regularization models  have been considered (see [13, 14, 19, 

22, 25, 26, 28, 42, 63] for examples).

A key requirement in many image registration problems is that the mapping y is a 

diffeomorphism [4, 14, 23, 68, 69, 70]. This translates into the necessary condition det(∇y) > 

0, where ∇y ∈ Rd×d is the deformation gradient (also referred to as the Jacobian matrix). An 

intuitive approach is to explicitly safeguard against nondiffeomorphic mappings y by adding 

a constraint to (1.1) [39, 48, 61]. Another strategy is to perform the optimization on the 

manifold of diffeomorphic mappings [2, 3, 4, 44, 52, 53, 69, 70]. The latter models, in 

general, do not control geometric properties of the deformation field and may result in fields 

that are close to being nondiffeomorphic. Further, for certain image registration problems, 

restricting the search space to the manifold of diffeomorphisms does not necessarily 

guarantee that y is physically meaningful. Some applications may benefit from extending 

these types of models by introducing additional constraints. One example for such a 

constraint is incompressibility (i.e., enforcing det(∇y) = 1; see also [10, 16, 52, 62]). 

Incompressibility is a requirement that might be of interest in medical image computing 

applications. If required, we can modify the incompressibility constraint to control the 

deviation of det(∇y) from identity. This will be the topic of a follow-up paper, in which we 

will extend our formulation. Here, we focus on the algorithmic issues of incorporating the 

incompressibility constraint. Furthermore, we remark that our optimal control formulation 

can naturally be extended to account for more complex constraints on the velocity field, for 
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example, constraints related to biophysical models (examples of such models can be found 

in [31, 40, 45, 51, 66]).

In what follows, we outline our method (see section 1.1), summarize the key contributions 

(see section 1.2), list the limitations of our method (see section 1.3), and relate our work to 

existing approaches (see section 1.4).

1.1. Outline of the method

We assume the images are compactly supported functions, defined on the open set Ω := (−π, 

π)d ⊂ Rd with boundary ∂Ω and closure Ω̄ := Ω ∪ ∂Ω. The deformation is modeled in an 

Eulerian frame of reference. We introduce a pseudotime variable t > 0 and solve on a unit 

time horizon for a velocity field v : Ω̄ × [0, 1] → Rd, (x, t) ↦ v(x, t), as follows:

(1.2a)

where

(1.2b)

with periodic boundary conditions on ∂Ω. The parameter γ ∈ {0, 1} in (1.2b) is introduced 

to enable or disable this constraint on the control v. In PDE constrained optimization theory, 

m is referred to as the state variable and v as the control variable. The first equation in 

(1.2b), in combination with its initial condition (second equation), models the flow of mT 

subject to v, where m : Ω̄ × [0, 1] → R, (x, t) ↦ m(x, t), represents the transported 

intensities of mT. Accordingly, the final state m1 := m(·, 1), m1 : Ω̄ → R, x ↦ m1(x), 

corresponds to mT ∘ y in (1.1). We measure the proximity between the deformed template 

image m1 and the reference image mR in terms of an L2-distance. Once we have found v, we 

can compute y from v as a postprocessing step (this is also true for the deformation gradient 

∇y; see Appendix D for details). The third equation in (1.2b) is a control on the divergence 

of v and guarantees that the flow is incompressible (Stokes flow), i.e., the volume is 

conserved. This is equivalent to enforcing det(∇y) = 1 (see [33, p. 77ff.]).

We use either an H1- or an H2-seminorm for the smoothness regularization  (resulting in 

Laplacian or biharmonic vector operators, respectively; see section 3.1). We report results 

for standard H1- and H2-regularization (neglecting ∇·v = 0, i.e., γ = 0 in (1.2b)) and for a 

Stokes regularization scheme (incompressible flow; enforcing ∇ ·v = 0, i.e., γ = 1 in (1.2b)).

In section 4 we will see that the optimality condition for (1.2) is a system of space-time 

nonlinear multicomponent PDEs for the transported image m, the velocity v, and the adjoint 

variables for the transport and the divergence condition. Efficiently solving this system is a 
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significant challenge. For example, when we include the incompressibility constraint, the 

equation for the velocity ends up being a linear Stokes equation.

We solve for the first-order optimality conditions using a globalized, matrix-free, 

preconditioned Newton–Krylov method for the Schur complement of the velocity v (a 

linearized Stokes problem driven by the image mismatch). We first derive the optimality 

conditions and then discretize using a pseudospectral discretization in space with a Fourier 

basis. We use a second-order Runge–Kutta method in time. The preconditioner for the 

Newton–Krylov schemes is based on the exact spectral inverse of the second variation of .

1.2. Contributions

The fundamental contributions are as follows:

• We design a numerical scheme for (1.2) with the following key features:

– We use an adjoint-based Newton-type solver.

– We provide a fast Stokes solver.

– We introduce a spectral Galerkin method in time.

– We design a parameter continuation method for 

automatically selecting the regularization parameter β.

– Our framework guarantees deformation regularity.1

• We provide a numerical study for the designed framework. We compare a 

globalized Picard method (preconditioned gradient descent) to an inexact 

Newton–Krylov and a Gauss–Newton–Krylov method. We report results 

for synthetic and real-world problems. We study spectral properties, grid 

convergence, and numerical accuracy of the proposed scheme. We study 

the effects of compressible (plain H1- and H2-regularization) and 

incompressible (Stokes regularization) deformation models. We report 

results for a varying number of unknowns in time (i.e., inverting for 

stationary and nonstationary velocity fields).

The numerical discretization (pseudospectral) allows for an efficient solution of the Stokes-

like equations by eliminating the pressure (i.e., the adjoint variable for the incompressibility 

constraint ∇ ·v = 0 in (1.2b)).

The inf-sup condition for pressure spaces [12, p. 200ff.] is not an issue with our scheme.2 In 

fact, for smooth images, our scheme is spectrally accurate in space and second-order 

accurate in time. We will see that we can numerically enforce incompressibility up to almost 

1Note that controlling the magnitude of det(∇y) is not sufficient to guarantee that y is locally well behaved. Therefore, our framework 
features geometric constraints that guarantee a nice, locally diffeomorphic mapping y. In particular, we control the shear angle of the 
cells within the deformed grid during the parameter continuation in β.
2The inf-sup condition is an important requirement when solving Stokes-like problems via the finite element method (see [12, p. 
200ff.]; examples for a finite element discretization of similar problem formulations can be found in [16, 62]). Satisfying the inf-sup 
condition ensures that the finite element solution exists and is stable and optimal. Essentially, we require two different finite element 
spaces for the discretization of the pressure and the velocity. The inf-sup condition is key for the decision on an adequate pair of 
spaces. For our scheme, we can use the same basis (Fourier) for the discretization of the pressure and the velocity. Also, it is very 
efficient since we can eliminate the pressure from the optimality system (see section 4.3.4).
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machine precision. Also, our scheme allows for efficient preconditioning of the Hessian: at 

the cost of a diagonal scaling we obtain a problem with a bounded condition number.

Overall, we demonstrate that the designed framework(i) is efficient and accurate, (ii) 

features a precise control of the deformation regularity, and (iii) does not require manual 

tuning of parameters.

1.3. Limitations

The main limitations of our method are as follows:

• The considered model assumes a constant illumination of mR and mT (a 

consequence of the transport equation and the L2-distance in (1.2)). 

Therefore, it is (in its current state) not directly applicable to multimodal 

registration problems. Nevertheless, let us remark that the L2-distance is 

commonly used in practice [4, 16, 28, 41, 44, 48, 57, 71].

• The efficient use of a Fourier discretization for the PDEs requires periodic 

boundary conditions. If the images are not periodic, we artificially 

introduce periodic boundary conditions by mollification and zero padding.

1.4. Related work

Due to the vast body of literature, it is not possible to provide a comprehensive review of 

numerical methods for nonrigid image registration. Background on image registration 

formulations and numerics can be found in [27, 54, 65]. We limit the discussion to 

approaches that(i) model the deformation via a velocity field v, (ii) view image registration 

as a problem of optimal control, and/or (iii) constrain v to be divergence free (i.e., introduce 

a mass conservation equation as an additional constraint).

Fluid mechanical models have been introduced [18, 19] to overcome limitations of small 

deformation models [13, 25, 26]. The work in [18, 19] has been extended in [4, 23, 53, 68] 

using concepts from differential geometry. This class of approaches is referred to as large 

deformation diffeomorphic metric mapping (LDDMM). Under the assumption that v is 

adequately smooth, it is guaranteed that y is a diffeomorphism [23, 68]. The associated 

smoothness requirements are enforced by the regularization model  (typically an H2-norm) 

[3, 4]. The optimization is performed on the space of nonstationary velocity fields [4]. To 

reduce the number of unknowns, it has been suggested to perform the optimization either on 

the space of stationary velocity fields [1, 2, 44] or with respect to an initial momentum that 

entirely defines the flow of the map y [3, 71, 74].

The idea of parameterizing a diffeomorphism y via a stationary velocity field [1] has also 

been introduced to the demons registration framework [52, 69, 70]. Here, optimization is 

performed in a sequential fashion, alternating between updates resulting from the distance 

measure (forcing term) and the application of a smoothing operator to regularize the 

problem (typically through Gaussian smoothing [67, 69, 70]). This scheme is somewhat 

equivalent to the Picard scheme we discuss in our paper, but it is unclear how one couples it 

with line search or trust region techniques.
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Approaches that more closely reflect an optimal control PDE constrained optimization 

formulation (1.2) are described in [10, 16, 41, 48, 49, 57, 62, 71]. The model in [16] is 

equivalent to (1.2). The model in [62] follows the traditional optical flow formulation [46]. 

The conceptual difference between our formulation and the latter is that in optical flow, the 

transport equation constraint appears in the objective (see, e.g., [46, 47, 62]) and is therefore 

only fulfilled approximately in an L2 least squares sense. We treat it as a hard constraint 

instead. In [57] an optimal mass transport formulation is described, which is based on the 

Monge-Kantorovich problem. The formulations in [41, 71] do not account for 

incompressibility. The optical flow approach in [10] treats incompressibility as an L2-

penalty. An optimal control formulation for a constant-in-time velocity field was proposed in 

[48, 49], in which the divergence of the velocity field is penalized along with smoothness 

constraints.

What sets our work apart are the numerical algorithms and the discretization scheme. 

Almost all existing efforts on large deformation diffeomorphic image registration that are 

closely related to our optimal control formulation exclusively use first-order information for 

numerical optimization [2, 4, 10, 16, 18, 19, 41, 44, 48, 49, 57, 62, 71, 74]. We use second-

order information. The only work3 in the context of large deformation diffeomorphic image 

registration that to our knowledge uses second-order information is [3]. The model in [3] is 

based on the LDDMM framework [4, 23, 48, 49, 53, 44, 68]. The inversion is, likewise to 

[71], performed with respect to an initial momentum. No additional constraints on v are 

considered. Another difference is that we use a Galerkin method in time to reduce the 

number of unknowns. This allows us to invert for stationary [1, 2, 44, 52, 69, 70] as well as 

time-varying [4, 10, 16, 41] velocity fields. Nothing changes in our formulation other than 

the number of unknowns. Furthermore, we globalize our methods with a line search strategy 

(i.e., we guarantee a sufficient decrease of the objective ). This is a standard—yet 

important—ingredient for guaranteeing convergence, which is often not accounted for [2, 

16, 17, 41, 52, 69, 70].

We, likewise to [10, 16, 48, 49, 52, 62], consider incompressibility as an optional constraint 

(see (1.2b)). Operating with divergence-free velocity fields is equivalent to enforcing det(∇y) 

= 1 up to numerical accuracy (see [33, p. 77ff.]; other formulations for controlling det(∇y) 

can be found in [14, 36, 37, 39, 50, 55, 58, 60, 61, 64, 73]). Unlike [10, 48, 49], which 

penalize the divergence of the velocity, we treat it exactly. We are not arguing that this 

approach is better per se. The use of penalties is adequate unless one has reasons to insist on 

an incompressible velocity field. In that case, a penalty method results in ill-conditioning.

Finally our pseudospectral formulation in space allows us to resolve several numerical 

difficulties related to the incompressibility constraint. For example, the inf-sup condition for 

pressure spaces is not an issue with our scheme. Regarding accuracy, for smooth images, our 

scheme is spectrally accurate in space and second-order accurate in time. We do not have to 

use different discretization models [16, 62] for solving the individual subsystems of the 

mixed-type (hyperbolic-elliptic) optimality conditions. Since we use second-order explicit 

time stepping in combination with Fourier spectral methods, we have at hand a scheme that 

3After the submission of our work, another contribution on second-order numerical optimization for LD-DMM appeared [43].
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displays minimal numerical diffusion and does not require flux-limiters [10, 16, 41, 71]. As 

we will see, the conditioning of the Hessian that appears in our Newton–Krylov scheme can 

be quite bad. Although the literature for preconditioners for PDE constrained optimization 

problem is quite rich (e.g., [6, 10, 8, 34]), none of these methods directly applies to our 

formulation. Developing effective preconditioning schemes for our formulation is ongoing 

work in our group.

2. Outline

In section 3 the mathematical model is developed. The numerical strategies are described in 

section 4. In particular, we specify(i) the optimality conditions (see section 4.1), (ii) 

strategies for numerical optimization (see section 4.2), and (iii) implementation details (see 

section 4.3). Numerical experiments on synthetic and real-world data are reported in section 

5. Final remarks can be found in section 6.

3. Continuous problem formulation

We provide a summary of the basic notation in Table 1. The original problem formulation is 

stated in section 1.1. The only missing building block is the considered choices for  in 

(1.2a). This is what we discuss next. Note that we neglect any technicalities with respect to 

the associated function spaces; we assume that the considered functions are adequately 

smooth (i.e., sufficiently many derivatives exist and are bounded).

3.1. Regularization models

In contrast to [10] we do not explicitly enforce continuity in time. We relax the model to an 

L2-integrability instead (see (1.2a)). This relaxation still yields a velocity field that varies 

smoothly in time [16].

Quadratic smoothing regularization models are commonly used in nonrigid image 

registration [27, 54, 56, 65]. They can be defined as

(3.1)

where ℬ is a differential operator that (together with its dual) defines the function space 

and β > 0 is a regularization parameter that balances the contribution of .

As images are functions of bounded variation, regularity requirements on v ∈ ,  := L2([0, 

1]; ) (i.e., the choice of  in (3.1)) have to be considered with care (for an analytical result 

see [16]). Experimental analysis suggests that an H1-seminorm is appropriate if 

incompressibility is considered (i.e., γ = 1 in (1.2b); see also [16]). Thus,
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This choice is motivated from continuum mechanics and yields a viscous model of linear 

Stokes flow (see section 4.1; Stokes regularization). If we neglect the incompressibility 

constraint (i.e., γ = 0 in (1.2b)), we use a vectorial Laplacian operator,

instead. This choice is motivated by the fact that H2-norm-based quadratic regularization is 

commonly used in large deformation diffeomorphic image registration [4, 41, 44].

4. Numerics

We describe the numerical methods used to solve (1.2) next. Whenever discretized quantities 

are considered, a superscript h is added to the continuous variables and operators (i.e., the 

discretized representation of v is denoted by vh). Likewise, if we refer to a discrete variable 

at a particular iteration, we will add the iteration index as a subscript (i.e., vh at iteration k is 

denoted by ).

We discretize the data on a nodal grid in space and time. The number of spatial grid points is 

denoted by  with spatial step size . The 

number of time points is denoted by nt ∈ N with step size ht = 1/nt, ht > 0.

We use the method of Lagrange multipliers to numerically solve (1.2) with Lagrange 

multipliers λ : Ω̄ ×[0, 1] → R, (x, t) ↦ λ(x, t) (for the hyperbolic transport equation in 

(1.2b)), and p : Ω̄ ×[0, 1] → R, (x, t) ↦ p(x, t) (pressure; for the incompressibility 

constraint in (1.2b)). We use an optimize-then-discretize approach (for a discussion on 

advantages and disadvantages see [32, p. 57ff.]). The resulting optimality conditions are 

described next.

4.1. Optimality conditions

Computing variations of the Lagrangian with respect to perturbations of the state (m), 

adjoint (λ and p), and control (v) variables, respectively, yields the (necessary) first-order 

optimality (KKT) conditions (in strong form)

(4.1a)

(4.1b)

(4.1c)
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(4.1d)

subject to the initial and terminal conditions

and periodic boundary conditions on ∂Ω; (4.1d) is referred to as the reduced gradient, where 

f := λ∇m, f : Ω̄ × [0, 1] → Rd, (x, t) ↦ f(x, t), is the applied body force and  = ℬℬH is the 

Gâteaux derivative of . In particular, we have

(4.2a)

(4.2b)

respectively. We refer to (4.1a) (hyperbolic initial value problem) as the state equation, to 

(4.1b) as the adjoint equation (hyperbolic final value problem) and to (4.1d) as the control 

equation (elliptic problem). Note that the adjoint equation (4.1b) is, likewise to (4.1a), a 

scalar conservation law that flows the mismatch between mR and m1 backward in time. If we 

neglect the incompressibility constraint in (1.2b), γ in (4.1) is set to zero (i.e., (4.1) consists 

only of (4.1a), (4.1b), and (4.1d)).

Taking second variations of the Lagrangian yields the system

(4.3a)

(4.3b)

(4.3c)

(4.3d)

subject to initial and terminal conditions m0̃ := m(̃·, 0) = 0, m0̃ : Ω̄ → R, x ↦ m0̃(x), and 

λ̃1 := λ̃(·, 1) = −m̃1, λ̃1 : Ω̄ → R, x ↦ λ̃1(x), m1̃ := m(̃·, 1), m1̃ : Ω̄ → R, x ↦ m1̃(x), 
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respectively, and periodic boundary conditions on ∂Ω. Here, (4.3a), (4.3b), and (4.3d) are 

referred to as the incremental state, adjoint, and control equations, respectively; the 

incremental variables are denoted with a tilde. Further, ℋ in (4.3d) is referred to as the 

reduced Hessian and f ̃:= λ∇̃m+ λ∇m,̃ f̃ : Ω̄ ×[0, 1] → R, (x, t) ↦ f̃(x, t), is the incremental 

body force. The operator  in (4.3d) represents the second variation of  with respect to 

the control v. We use the same symbol as in (4.1), since the second variation of  with 

respect to v is identical to its first variation (the corresponding vectorial differential operators 

are given in (4.2a) and (4.2b), respectively).

4.2. Numerical optimization

We discuss strategies for numerical optimization next. We consider second-order Newton–

Krylov methods (see section 4.2.1) and a first-order Picard method (see section 4.2.3).

We use a backtracking line search subject to the Armijo condition with search direction sk ∈ 
Rn and step size αk > 0 at (outer) iteration k ∈ N0 to ensure a sequence of monotonically 

decreasing objective values h (we use default parameters; see [59, Algorithm 3.1, p. 37]). 

Note that each evaluation of h requires a forward solve (i.e., the solution of (4.1a) to obtain 

 given some trial solution ). Therefore, it is desirable to keep the number of line 

search steps at minimum.

4.2.1. Inexact Newton–Krylov method—Applying Newton’s method to (4.1) yields a 

large KKT system that has to be solved numerically at each outer iteration k. We will refer 

to the iterative solution of this system as inner iterations.4 In reduced space methods, 

incremental adjoint and state variables are eliminated from the system via block elimination 

(under the assumption that state and adjoint equations are fulfilled exactly) [8, 9]. We obtain 

the reduced KKT system

(4.4)

where  corresponds to the reduced Hessian in (4.3d) (i.e., the Schur 

complement of the full Hessian for the control variable vh) and  to the incremental 

control variable in (4.3) (which is nothing but the search direction sk mentioned earlier). 

Further, the right-hand side  corresponds to the reduced gradient in (4.1d).

The numerical scheme amounts to a sequential solution of the optimality conditions (4.1) 

and (4.3). Algorithm 1 illustrates a realization of an outer iteration.5 Note that we eliminate 

(4.1c) and (4.3c) from the optimality conditions (see section 4.3.4). The inner iteration (i.e., 

the solution of (4.4)) is what we discuss next.

4As opposed to the steps for updating , which we refer to as outer iterations; see Algorithm 1.
5Note that the scheme in Algorithm 1 also applies to the Picard method (see section 4.2.3). The only difference is the way we compute 
the search direction sk in line 5.
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Forming or storing ℋh in (4.4) is computationally prohibitive. Therefore, it is desirable to 

use an iterative solver for which ℋh does not have to be assembled in practice. Krylov-

subspace methods are a popular choice [5, 8, 15, 34], as they only require matrix-vector 

products. We use a PCG method, exploiting the fact that ℋh is positive definite (i.e., ℋh ≻ 
0; see section 4.2.2 for a discussion) and symmetric.

Solving (4.4) exactly can be prohibitively expensive and might not be justified if an iterate is 

far from the (true) solution [20]. A common strategy is to perform inexact solves. That is, 

starting with a large tolerance for the Krylov-subspace method we successively reduce the 

tolerance and by that solve more accurately for the search direction, as we approach a (local) 

minimizer [21, 24]. This can be achieved with the termination criterion

(4.5)

for the Krylov-subspace method. Here, , ηk ∈ [0, 1), is 

referred to as a forcing sequence (assuming superlinear convergence; details can be found in 

e.g., [59, p. 165ff.]); ι ∈ N in (4.5) is the iteration index of the inner iteration (i.e., for the 

iterative solution of (4.4)) at a given outer iteration k.

Algorithm 1

Outer iteration of the designed inexact Newton–Krylov method.

1:

 compute , and ; k ← 0

2: while true do

3:  stop ← (4.9)

4:  if stop break

5:

 sk ← solve (4.4) given , and 

▷ Newton step

6:  αk ← perform line search on sk

7:

  ,

8:

  

9:

   (4.1a) forward in time given 

▷ forward solve

10:

  

11:

   (4.1b) backward in time given  and 

▷ adjoint solve

12:

 compute  and  given , and 

13:  k ← k + 1

14: end while
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The course of an inner iteration follows the standard PCG steps (see, e.g., [59, p. 119, 

Algorithm 5.3]). During each inner iteration ι we have to apply ℋh in (4.3d) to a vector. We 

summarize this matrix-vector product in Algorithm 2. As can be seen, each application of 

ℋh requires an additional forward and adjoint solve (i.e., the solution of the incremental 

state and adjoint equations (4.3a) and (4.3b), respectively). This is a direct consequence of 

the block elimination in reduced space methods.

The number of inner iterations essentially depends on the spectrum of the operator ℋh. 

Typically, ℋh displays poor conditioning. An optimal preconditioner P ∈ Rn×n renders the 

number of iterations independent of n and β. The design of such a preconditioner is an open 

area of research [6, 7, 8, 34]. Standard techniques like incomplete factorizations or algebraic 

multigrid are not applicable, as they require the assembling of ℋh in (4.4). Geometric, 

matrix-free preconditioners are a valid option. This is something we will investigate in the 

future. Here, we consider a left preconditioner based on the exact spectral inverse of the 

regularization part of ℋh. That is, P := h (implementation details can be found in section 

4.3.3). Note that the PCG method only requires the action of P−1 on a vector (i.e., a matrix-

free implementation is in place). Since we use a Fourier spectral method, the cost of our 

preconditioning amounts to a spectral diagonal scaling. We will refer to this algorithm as the 

Newton-PCG (N-PCG) method.

Algorithm 2

Hessian matrix-vector product of the designed inexact Newton–Krylov algorithm at outer 

iteration k ∈ N. We illustrate the computational steps required for applying ℋh in (4.3d) to 

the PCG search direction at inner iteration index ι ∈ N.

1:

2:

 (4.3a) forward in time given , and 

▷ incremental forward solve

3:

4:

 (4.3b) backward in time given , and 

▷ incremental adjoint solve

5:

apply  in (4.3d) to the PCG search direction given , and 

4.2.2. GN approximation—Even though ℋh is in the proximity of a (local) minimum by 

construction positive semidefinite (i.e., ℋh ⪰ 0) it can be indefinite or singular far away 

from the solution. Accordingly, the search direction is not guaranteed to be a descent 

direction. One remedy is to terminate the inner iteration whenever negative curvature occurs 

[21]. Another approach is to use a quasi-Newton approximation. We consider a GN 

approximation  instead. Here, we drop certain expressions of ℋh, which in turn 

guarantees that . In particular, we drop all expressions in (4.3) in which λ appears. 

Accordingly, we obtain the (continuous) system
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(4.6a)

(4.6b)

(4.6c)

(4.6d)

We expect the rate of convergence to drop from quadratic to (super-)linear when turning to 

(4.6). However, if the L2-distance can be driven to zero, we recover fast local convergence 

close to the true solution v★, even if the adjoint variable is neglected. This is due to the fact 

that (4.1b) models the flow of the mismatch backward in time, such that λ → 0 for v → v★. 

We refer to this method as the (inexact) GN-PCG method [8, 9]. We remark that all 

algorithmic details described in this note apply to both Newton–Krylov methods.

4.2.3. Picard method—We consider a globalized Picard iteration (fixed point iteration) in 

addition to the described Newton–Krylov methods. Based on (4.1d) we have

(4.7)

Since we use Fourier spectral methods, the inversion of h in (4.7) comes at the cost of a 

diagonal scaling (implementation details can be found in section 4.3.3). Accordingly, this 

scheme does not require the (iterative) solution of a linear system. However, it potentially 

results in a larger number of outer iterations until convergence as we expect the optimization 

problem to be poorly conditioned.

We do not directly use the solution of (4.7) as a new iterate but compute a search direction sk 

instead. This in turn allows us to perform a line search on sk. That is, we subtract the new 

from the former iterate. This scheme can be viewed as a gradient descent in the function 

space induced by  (i.e., a preconditioned gradient descent scheme; see Appendix C).

Note that sk is, in contrast to Newton methods, arbitrarily scaled. Therefore, we provide an 

augmented implementation that tries to estimate an optimal scaling during the course of 

optimization. Details can be found in section 4.3.5.

4.2.4. Termination criteria—The termination criteria are in accordance with [56] (see 

[29, p. 305 ff.] for a discussion) given by
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(4.8)

Here, τ  > 0 is a user defined tolerance, εmach > 0 is the machine precision, and nopt ∈ N is 

the maximal number of outer iterations. The algorithm is terminated if

(4.9)

where ∧ denotes the logical or and ∨ the logical and operator, respectively.

4.3. Algorithmic details

This section provides additional specifics on the implementation. In particular, we 

describe(i) the numerical discretization (see section 4.3.1), (ii) the parameterization in time 

(see section 4.3.2), (iii) the inversion of the operator h (see section 4.3.3), and (iv) 

strategies for the parameter selection (see section 4.3.5).

4.3.1. Numerical discretization—We use a (regular) nodal grid for the discretization in 

space and time. The problem is defined on the space-time interval Ω × [0, 1], where Ω := 

(−π, π)d. Accordingly, we obtain the time step size via ht = 1/nt. The cell size (pixel or voxel 

size)  for a spatial grid cell can be computed via , i = 1, 

…, d, where  is the number of grid points along the ith spatial direction xi.

The derivative operators are discretized via Fourier spectral methods [11]. The time 

integrator for the forward and adjoint solves is an explicit second-order Runge–Kutta 

method, which, in connection with Fourier spectral methods, displays minimal numerical 

diffusion.

Following standard numerical theory for hyperbolic equations, the step size ht > 0 is 

bounded from above by ht,max := εCFL/ max(||vh||∞ ⊘ hx), ht,max > 0 (Courant–Friedrich–

Lewy (CFL) condition). Here, ⊘ denotes a Hadamard division and εCFL > 0 is the CFL 

number. The theoretical bound for ht,max is attained for εCFL = 1. We use εCFL = 0.2 for all 

experiments. Since we use a spectral Galerkin method in time (see section 4.3.2), we can 

adaptively adjust nt (and therefore ht) for the forward and adjoint solves as required by the 

CFL condition.

4.3.2. Spectral Galerkin method—To reduce the number of unknowns, v is expanded in 

time in terms of basis functions bl : [0, 1] → R, t ↦ bl(t), l = 1, …, nc,
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(4.10)

where vl : R
d → Rd, x ↦ vl(x), is a coefficient field. The coefficients vl are the new 

unknowns of our problem. This reduces the number of unknowns in time from nt to nc, 

where nc ≪ nt. Thus, we can invert for a stationary (nc = 1) or a nonstationary velocity field 

as required. Nothing changes in our formulation—just the number of unknowns.

We use Chebyshev polynomials as basis functions bl on account of their excellent 

approximation properties as well as their orthogonality (see Appendix A for details). The 

expansion (4.10) solely affects  and the (incremental) control equation (i.e., (4.1d) and 

(4.3d)); v is computed from the coefficient fields vl, l = 1, …, nc, during the forward and 

adjoint solves according to (4.10).

4.3.3. Inversion: Regularization operators—The Picard iteration in (4.7) as well as 

the preconditioning of (4.4) require the inversion of the differential operator h. Since we 

use Fourier spectral methods this inversion can be accomplished at the cost of a spectral 

diagonal scaling. However, h has a nontrivial kernel (which only includes constant 

functions due to the periodic boundary conditions). We make h invertible by setting the 

base frequency of the inverse of h (including the scaling by β) to one. This ensures not 

only invertibility, but also that the constant part of the (incremental) body force f (or f ̃, 
respectively) remains in the kernel of our regularization scheme. This in turn allows us to 

invert for constant velocity fields.

4.3.4. Elimination of p and p ̃—In our numerical scheme, we eliminate p and by that 

(4.1c) from (4.1). Details on the derivation can be found in Appendix B. We obtain

(4.11)

to replace (4.1d), where f is the body force as defined in section 4.1 and  the first variation 

of  with respect to v (see (4.2a) and (4.2b), respectively). It immediately follows that we 

obtain

(4.12)

to replace (4.3d); f ̃ denotes the incremental body force defined in section 4.1.

4.3.5. Parameter selection—To the extent possible, it is desirable to design a numerical 

scheme that does not require a selection of parameters (black-box solver). This is 

challenging for previously unseen data. In general, the user should only be required to 

decide on the following:
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• The desired accuracy of the inversion (controlled by the tolerance τ ; see 

section 4.2.4).

• The desired properties of the mapping y (controlled by εθ or εF, 

respectively; see below).

• The budget we are willing to assign to the computation (controlled by nopt; 

see section 4.2.4).

For the purpose of this numerical study we proceed as follows.

Optimization: We set the maximum number of iterations nopt (see (4.8)) to 1E6, as we do 

not want our algorithm to terminate early (i.e., we make sure that we terminate only if either 

we reach the defined tolerances or we no longer observe a decrease in h). For the 

convergence study in section 5, we use the relative change of the ℓ∞-norm of the gradient gh 

as a stopping criterion, as we are interested in studying convergence properties. This enables 

an unbiased comparison in terms of the required work to solve an optimization problem up 

to a desired accuracy. In particular, we terminate the optimization if the relative change of 

the reduced gradient gh is larger than or equal to three orders of magnitude.

Following standard textbook literature [29, 56] we use the stopping criteria in (4.8) for the 

remainder of the experiments. We set the tolerance to τ  = 1E–3. We qualitatively did not 

observe significant differences in the final results for the experiments performed in this 

study, when turning to smaller tolerances. We will further elaborate on the required accuracy 

for the inversion (i.e., the registration quality) in a follow-up paper.

The tolerance of the PCG method is set as discussed in section 4.2.1 (see (4.5)). The 

maximal number of iterations for the PCG method is set to n (order of the reduced KKT 

system in (4.4)). In theory, this guarantees that the PCG method converges to a solution. 

This choice not only ensures that we provide an unbiased study (i.e., we do not terminate 

early) but also makes sure that we do not miss any issues in the implementation or parameter 

selection. We converged for all experiments conducted in this study after only a fraction of n 

inner iterations. This statement is confirmed by the reported number of PDE solves.6

For all our experiments we initialized the line search with a factor of αk = 1 (see section 

4.2). This is a sensible choice, as search directions obtained from second-order methods are 

nicely scaled (i.e., we expect αk to be 1). However, this is not the case for the Picard scheme 

(i.e., the preconditioned gradient descent). Our implementation features an option to 

memorize the scaling of sk for the next outer iteration. That is, we introduce an additional 

scaling factor αk̃ > 0 that is applied to sk before entering the line search (initialized with αk̃ 

= 1). If the line search kicks in, we downscale αk̃ by αk. On the contrary, we upscale α̃k by a 

factor of two if αk = 1.

6“PDE solve” refers to the solution of one of the hyperbolic PDEs that appear in the optimality system (4.1) and (4.3).

Mang and Biros Page 16

SIAM J Imaging Sci. Author manuscript; available in PMC 2016 September 07.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



PDE solver: The number of time steps nt is bounded from below due to stability 

requirements (see section 4.3.1). Since we use an expansion in time (see section 4.3.2), it is 

possible to adaptively adjust nt, so that numerical stability is attained.

However, we fix nt for the numerical experiments in section 5.3 as we are interested in 

studying the convergence behavior with respect to the employed grid size. We set nt to 4 

max(nx). This is a pessimistic choice. If we still encounter instabilities (as judged by 

monitoring the CFL condition (see section 4.3.1)), sk is scaled by a factor of 0.5 until 

numerical stability is attained, before entering the line search. For all numerical experiments 

conducted in this study, we did not observe any instabilities for the Newton–Krylov 

methods. However, for the Picard method we observed instabilities in the case when we did 

not consider the rescaling procedure detailed above. This is due to the fact that sk is 

arbitrarily scaled for first-order methods (as opposed to second-order methods). By 

introducing the additional scaling parameter αk̃ we could stabilize the Picard method—we 

did not observe a violation of the CFL condition for any of the conducted experiments (for nt 

fixed).

Regularization: Estimating an optimal value for β is an area of research by itself. A variety 

of methods has been designed (see, e.g., [72]). A key difficulty is computational complexity. 

Methods based on the assumption that differences between model output and observed data 

are associated with random noise (such as generalized cross validation) might not be reliable 

in the context of nonrigid image registration. This is due to the fact that the noise in the 

images is likely to be highly structured [38]. Another possibility is to estimate the 

regularization parameter on the basis of the spectral properties of the Hessian (see section 

5.3.1). That is, we can estimate the condition number of the problem during the PCG solves 

for the unregularized problem using the Lanczos algorithm (see [30, p. 528]). We can do this 

very efficiently by initializing the problem with a zero velocity field. Given v is zero, the 

application of the Hessian within the PCG is computationally inexpensive, as a lot of the 

terms in the optimality systems drop (see section 4.1). However, the level of regularization 

depends not only on properties of the data, but also on regularity requirements on y.

Another common strategy is to perform a parameter continuation in β (see, e.g., [35, 38]). In 

[38] it has been suggested to inform the algorithm about the required regularity of a solution 

on the basis of a lower bound on the L2-distance between the reference and the deformed 

template image. The decision on such bound, however, might not be intuitive for 

practitioners. Further, one is ultimately interested not only in a small residual but also in a 

bounded determinant of the deformation gradient. Therefore, we propose to inform the 

algorithm on regularity requirements in terms of a lower bound εF ∈ (0, 1) on  (i.e., 

a bound on the tolerable compression of a volume element). If the Stokes regularization 

scheme (γ = 1 in (1.2b) and  is an H1-seminorm) is considered, bounds on geometric 

constraints of the deformation of a volume element can be used. In particular, we use a lower 

bound εθ > 0 on the acute angle of a grid element. The upper bound on the obtuse angle is 

given by 2π − εθ. Note that it is actually necessary to monitor geometric properties to 

guarantee a local diffeomorphism; a lower bound on  is not sufficient.
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Our algorithm proceeds as follows. In the first step, the registration problem is solved for a 

large value of β (β = 1 in our experiments) so that we underfit the data.7 Subsequently, β is 

reduced by one order of magnitude until we reach εF (or εθ). From there on, a binary search 

is performed. The algorithm is terminated if the change in β is below 5% of the value for β, 

for which εF (or εθ) was breached. We add a lower bound of 1E–6 on β as well as a lower 

bound for the relative change of the L2-distance of 1E–2 to ensure that we do not perform 

unnecessary work. We never reached these bounds for the experiments conducted in this 

study.

Presmoothing: A numerical challenge in image computing is that images are functions of 

bounded variation. Therefore, an accurate computation of the derivatives becomes more 

involved. A common approach to ensure numerical stability and avoid the Gibbs phenomena 

is to reduce high-frequency information in the data. We use a Gaussian smoothing, which is 

parametrized by a user-defined standard deviation σ > 0. We experimentally found a value of 

σ = 2π/min(nx) to be adequate for the problems at hand. However, we note that we 

increased σ by a factor of 2 for one set of experiments in section 5.3.2. We also note that we 

implemented a method for grid and scale continuation for the images. This avoids the 

problem of deciding on σ. We will investigate an automatic selection strategy for σ in a 

follow-up paper.

It is important to note that the sensitivity of second-order derivatives to noise in the data is 

problematic. Therefore, we refrain from applying the N-PCG method to nonsmooth images.

5. Numerical experiments

We report results only in two dimensions. We test the algorithm on real-world and synthetic 

registration problems (see section 5.1). The measures to analyze the registration results are 

summarized in section 5.2. We conduct a numerical study (see section 5.3), which includes 

an analysis of(i) the spectral properties of the Hessian (see section 5.3.1), (ii) grid 

convergence (see section 5.3.2), and (iii) the effects of varying the number of the unknowns 

in time (see section 5.3.3). We additionally report results for a fully automatic registration on 

high-resolution images based on the designed parameter continuation in β (see section 5.4).

5.1. Data

We consider synthetic and real-world registration problems.8 These are illustrated in Figure 

1. All images have been normalized to an intensity range of [0, 1]. The synthetic problems 

are constructed by solving the forward problem to create an artificial template image mT 

given some image mR and some velocity field v★ (sinusoidal images and UT images in 

Figure 1). Here, v★ is chosen to live on the manifold of divergence-free velocity fields to 

provide a testing environment for the Stokes regularization scheme. Further, v★ is by 

construction assumed to be constant in time (i.e., nc = 1). In particular, we have

7Note that for large β the optimization problem is almost quadratic, so that Newton–Krylov methods converge quickly.
8The hand images are taken from [56].

Mang and Biros Page 18

SIAM J Imaging Sci. Author manuscript; available in PMC 2016 September 07.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



(5.1)

5.2. Measures of performance

We report the number of the (outer) iterations and the number of the hyperbolic PDE solves 

to assess the computational work load. The latter is a good proxy for the wall clock time. It 

provides a transparent comparison between the designed first- and second-order methods, 

given that the number of the hyperbolic PDE solves varies between these methods: Two 

hyperbolic PDE solves are required during each iteration of the Picard method (we have to 

solve (4.1a) and (4.1b) to evaluate the reduced gradient in (4.1d); see also Algorithm 1). For 

the Newton–Krylov methods, we require an additional two hyperbolic PDE solves per inner 

iteration (we have to solve (4.3a) and (4.3b) to compute the Hessian matrix-vector product 

given in (4.3d); see also Algorithm 2). Each evaluation of h in (1.2) (i.e., each line search 

step) requires an additional hyperbolic PDE solve (we have to compute the deformed 

template image at t = 1 by solving (4.1a)). Note that the solution of the forward and adjoint 

problems is the key bottleneck of our algorithm. We will report the wall clock times in a 

follow-up paper, in which we extend the current framework to a three-dimensional 

implementation. This study focuses on algorithmic features.

We report the relative change of(i) the L2-distance, (ii) the objective functional h, and (iii) 

the ℓ∞-norm of the (reduced) gradient gh to assess the quality of the inversion. We 

additionally report values for the determinant of the deformation gradient to study local 

deformation properties. These measures are defined more explicitly in Table 2.

We visually support this quantitative analysis on the basis of snapshots of the registration 

results. Information on the reconstruction accuracy can be obtained from pointwise maps of 

the residual difference between mR and m1. The deformation regularity and the mass 

conservation can be assessed via images of the pointwise determinant of the deformation 

gradient and/or of a deformed grid overlaid onto m1. Details on how these are obtained and 

on how to interpret them can be found in Appendix D.

5.3. Numerical study

We study the spectral properties of the Hessian (see section 5.3.1), grid convergence (see 

section 5.3.2), as well as the influence of an increase in the number of the unknowns in time 

(see section 5.3.3).

5.3.1. Spectral analysis

Purpose: We study the ill-posedness and the ill-conditioning of the problem at hand. We 

report spectral properties of ℋh. We study the eigenvalues and the eigenvectors with respect 

to different choices for β. We study the differences between plain H2-regularization and the 

Stokes regularization scheme (H1-regularization).

Setup: This study is based on the UT images (the true solution vh, ★ is divergence free; see 

section 5.1 for more details on the construction of this synthetic registration problem; nx = 
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(64, 64)⊤ and nc = 1 so that n = 8192). The eigendecomposition V Λ V −1, , νi ∈ 
Rn, ||νi||2 = 1, Λ = diag(Λ11, …, Λnn), Λii > 0, is computed at the true solution vh, ★ to 

guarantee that ℋh ≻ 0. The spectrum is computed for three different choices of β: for the 

unregularized problem (β = 0), an empirically determined (moderate) value (β = 1E–3), and 

solely for the regularization model (β = 1E6).

Results: Figure 2 displays the trend of the absolute value of the eigenvalues Λii, i = 1, …, n. 

They are sorted in descending order for β = 0 and in ascending order otherwise. If an 

eigenvalue drops below machine precision (i.e., 1E–16), it is set to 1E–16 (only for 

visualization purposes). The extremal real and imaginary part of the eigenvalues is 

summarized in Table 3. Figure 3 provides the spatial variation of the eigenvectors νi ∈ Rn 

that correspond to the eigenvalues Λii, i ∈ {1, 5, 20, 100, 1000}, in Figure 2 with respect to 

different choices for β and different regularization schemes. We only display the first 

component  of the coefficient field . The pattern for the second component is 

(qualitatively) alike.

Observations: The most important observations are that(i) the regularization schemes 

display a very similar behavior (as judged by the clustering of the eigenvalues as well as the 

spatial variation of the eigenvectors for β = 1E6), (ii) the smoothness of the eigenvectors 

decreases with a decreasing regularization parameter β and increasing eigenvalues (for β = 

1E–3 and β = 1E6) for both regularization schemes, and (iii) it is less clear how to identify 

the smooth eigenvectors within the eigenspace of the Stokes regularization scheme.

The eigenvalues Λii, i = 1, …, 8192, drop rapidly for the unregularized problem, 

approaching almost machine precision for i ≈ 4000 (see Figure 2). This demonstrates ill-

conditioning and ill-posedness. The eigenvalues are bounded away from zero for the 

regularized problem. Increasing β shifts the trend of |Λii| to larger numbers. The values in 

Table 3 confirm that ℋh ≻ 0 (up to almost machine precision) at the true solution vh, ★.

Turning to the eigenvector plots, we can see that the first eigenvector displays a delta peak 

like structure for both regularization schemes, since there is no local coupling of the spatial 

information. For the regularized problem we can observe a smooth spatial variation for the 

eigenvectors associated with large eigenvalues for both regularization schemes. The first 

eigenvector plot is almost constant for β = 1E6 (bottom row of each block in Figure 3). The 

structure of the pattern for β = 1E6 is analogue for both schemes, which indicates 

similarities in the behavior of both schemes. As the index i increases, the eigenvectors 

become more oscillatory. We can observe strong differences between the two schemes for a 

moderate regularization (β = 1E–3; middle row of each block in Figure 3). Also, we can 

observe a more complex structure for the Stokes regularization scheme for small eigenvalues 

(i.e., it is difficult to identify where the smoothest eigenvectors are located within the 

eigenspace).

Conclusion: We conclude that the Hessian operator is singular if we do not include a 

smoothness regularization model for the control variable. For practical values of the 

regularization parameter, the Hessian behaves as a compact operator; larger eigenvalues are 
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associated with smooth eigenvectors. It is well known that designing a preconditioner for 

such operators is challenging.

5.3.2. Convergence study—We study the grid convergence of the considered iterative 

optimization methods on the basis of synthetic registration problems. We use a rigid setting 

to prevent bias originating from adaptive changes during the computations. That is, the 

results are computed on a single resolution level. No grid, scale, or parameter continuation is 

applied. The number of the time points is fixed to nt = 4max(nx) for all experiments. Further, 

we use empirically determined values for the regularization parameter β, namely, β ∈ {1E–

2, 1E–3}. Since we are interested in studying the convergence properties of our method, we 

consider the relative change of the ℓ∞-norm of the reduced gradient gh as a stopping 

criterion. This yields a fair comparison between the different optimization methods, as a 

reduction in the norm of gh directly reflects how well an optimization problem is solved (i.e., 

we exploit that gh = 0 is a necessary condition for a minimizer). We terminate if the relative 

change of the ℓ∞-norm of gh is at least three orders of magnitude. However, since the Picard 

method tends to converge slowly for low tolerances with respect to the gradient, we stop if 

we detect a stagnation in the objective. In particular, we terminate the optimization if the 

change in the objective in ten consecutive iterations was equal or below 1E–6. We solve for a 

stationary velocity field (i.e., nc = 1).

C∞ registration problem

Purpose: We study the numerical behavior for smooth registration problems. We report 

results for grid convergence and deformation regularity. We compare the Picard, GN-PCG, 

and N-PCG methods.

Setup: This experiment is based on the sinusoidal images (see section 5.1 for more details 

on the construction of this synthetic registration problem). Therefore, mT, mR ∈ C∞(Ω), and 

v★ ∈ L2([0, 1];C∞(Ω)d) so that the excellent convergence properties of Fourier spectral 

methods are expected to pay off. Additionally, it is not problematic to apply the N-PCG 

method. We report results for different grid sizes , i = 1, 

2, nt = 4max(nx). No presmoothing is applied. We use an experimentally determined value 

of β = 1E–3 for all experiments. The remainder of the parameters is chosen as stated in the 

introduction to this section as well as in section 4.3.5.

Results: The grid convergence results are summarized in Table 4. Values derived from the 

deformation gradient  are reported in Table 5. Exemplary results for the plain H2-

regularization (γ = 0) and the Stokes regularization scheme (γ = 1; H1-regularization) are 

displayed in Figure 4. The definitions of the quantitative measures reported in Table 4 and 

Table 5 can be found in Table 2.

Observations: The most important observations are that (i) there are significant differences 

in computational work between the Picard and Newton–Krylov methods with the latter 

being much more efficient, (ii) the differences between the Newton–Krylov methods are 

insignificant, (iii) the rate of convergence is independent of the grid resolution, and (iv) the 

numerical accuracy is almost at the order of machine precision.
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The registered images are quantitatively (see Table 4) and qualitatively (see Figure 4) in 

excellent agreement. For the considered tolerance (reduction of the ℓ∞-norm of the reduced 

gradient by three orders of magnitude) we can reduce the L2-distance between three 

(compressible deformation) and four (incompressible deformation) orders of magnitude (see 

Table 4). The search direction of the Newton–Krylov methods is nicely scaled. No additional 

line search steps are necessary. We require 1.57 to 1.71 line search steps for the Picard 

iteration (on average). Note that we prescale the search direction of the Picard method by an 

additional parameter αk̃, which is estimated during the computation (see section 4.3.5 for 

details). Otherwise, the number of the line search steps would be seven to eight on average 

for the Picard method. The Picard method did stagnate during the computations. This is why 

the gradient has not been reduced by three orders of magnitude for the Picard method. 

However, it is in general possible to reduce the gradient accordingly. We decided to report 

only until stagnation for the Picard method as the number of the iterations would 

significantly increase without making any real progress.

The Newton–Krylov methods display quick convergence. Only five outer iterations are 

necessary to reduce the gradient by more than four orders of magnitude. The results 

demonstrate a significant difference in the computational work between first- and second-

order methods for the considered tolerance.

The reconstruction quality improves by approximately one order of magnitude when 

switching from plain H2-regularization (γ = 0) to a Stokes regularization scheme (γ = 1; H1-

regularization), as judged by the relative change in the L2-distance. This is expected, since 

the synthetic problem has been created under the assumption of mass conservation (i.e., ∇ · 

v★ = 0). Second, we expect a smaller contribution of the H1-regularization model on the 

solution for the same values of β.

From a theoretical point of view, we expect N-PCG to outperform GN-PCG (quadratic 

versus superlinear convergence). The reported results demonstrate an almost identical 

performance. This is due to the fact that we can drive the residual almost to zero, such that 

we can recover fast local convergence for the GN-PCG method (see section 4.2.2 for 

details).

The Picard method converges faster for the Stokes regularization scheme. However, the 

differences between the Picard and the Newton–Krylov methods are still significant with an 

approximately four-fold difference in nPDE. For Newton–Krylov methods, we can globally 

observe a slight increase in the number of the inner iterations when switching from plain H2-

regularization to the Stokes regularization scheme. These differences have to be attributed to 

a varying relative change in the reduced gradient.9

The results reported in Table 5 demonstrate an excellent numerical accuracy for the mass 

conservation for all numerical schemes. The error in the determinant of the deformation 

gradient is (1E–12), i.e., we achieve an accuracy that is almost at the order of machine 

precision for a grid resolution of nx = (256, 256)⊤ and nt = 1024.

9Note that the tolerance of the Krylov-subspace method and therefore the number of the inner iterations depends on the gradient (see 
(4.5)).
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Conclusion: We conclude that we can interchangeably use the Newton–Krylov methods. 

Therefore, given that N-PCG is more sensitive to noise and discontinuities in the data, we 

will exclusively consider GN-PCG for the remainder of the experiments. Also, if we require 

an inversion with high accuracy, the Newton–Krylov methods clearly outperform the Picard 

method (i.e., the preconditioned gradient descent).

Images with sharp features

Purpose: We study the grid convergence and deformation regularity for an image with sharp 

features. We compare the Picard and the GN-PCG method.

Setup: We consider the UT images (see section 5.1 for details on the construction of this 

synthetic registration problem). We report results for experimentally determined values of β 
∈ {1E–2, 1E–3} with respect to different grid resolution levels 

, i = 1, 2, nt = 4max(nx). The remainder of the 

parameters are chosen as stated in the introduction of this section and in section 4.3.5. Both 

plain H2-regularization (γ = 0) as well as the Stokes regularization scheme (γ = 1; H1-

regularization) are considered.

For images of size nx = (256, 256)⊤ and a Stokes regularization scheme, we observed 

difficulties in the inversion (only the number of the outer and the inner iterations increased; 

the algorithm still converges to the same solution), due to a strong forcing (i.e., the sharp 

features pushed the solver at an early stage to a solution that was far away from the final 

minimizer). We increased the smoothing by a factor of two as a remedy. This is not an issue 

for the practical application of our algorithm, as our framework features a method for 

performing a scale continuation as well as a continuation in the regularization parameter. 

Therefore, the user does not have to decide on σ or on β. In addition to that, we currently 

investigate adaptive approaches to automatically detect insufficient smoothness during the 

course of the optimization to prevent a deterioration in the convergence behavior.

The remainder of the parameters are chosen as stated in the introduction of this section as 

well as in section 4.3.5.

Results: Table 6 summarizes the results of the convergence study. We illustrate intermediate 

results with respect to the first 13 (outer) iterations k in Figure 5 (plain H2-regularization; γ 
= 0). We report the trend of the individual building blocks of h (contribution of the L2-

distance and the regularization model h) in Figure 6. We report measures of deformation 

regularity in Table 7.

Observations: The most important observations are(i) the GN-PCG method displays a 

quicker convergence than the Picard method, (ii) we cannot achieve the same inversion 

accuracy with the Picard method as compared to the GN-PCG method, and (iii) the number 

of the (inner and outer) iterations increases and is no longer independent of the resolution 

level.
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The rate of convergence decreases compared to the results reported in the former section 

(see Table 4). Overall, we require more outer and inner iterations to solve the registration 

problem.

The residual differences between mR and m1 clearly depend on the choice of β (see Table 4 

and Figure 6). We achieve a similar reduction in the L2-distance for both the Picard and the 

GN-PCG method (two to four orders of magnitude). The residual differences are less 

pronounced when switching from plain H2-regularization to the Stokes regularization 

scheme as compared to the results reported in section 5.3.2.

We cannot guarantee that it is possible to reduce the gradient by three orders of magnitude if 

we use the Picard method. Even if we do not include a condition to terminate if we observe 

stagnation (i.e., the change in h is below or equal to 1E–6 for 10 consecutive iterations), it 

is for some of the experiments not possible to reduce the gradient by three orders of 

magnitude as the changes of the objective hit our numerical accuracy (which causes the line 

search to fail). We do not observe this issue when considering the GN-PCG method. Further, 

there are significant differences in terms of the computational work. If we do not account for 

the stagnation of the Picard method we have observed a number of hyperbolic PDE solves 

that is well above (1E4). Clearly, in a practical application we terminate the Picard method 

at an earlier stage, as we no longer make significant progress. However, in this part of the 

study we are interested in the convergence properties. This experiment demonstrates that we 

cannot guarantee a high inversion accuracy (i.e., a significant reduction in the gradient) 

when turning to first-order methods. Note that we have stabilized the Picard method by 

introducing an additional scaling parameter for the search direction that prevents additional 

line search steps (see section 4.3.5). If we neglect this scaling, we observe seven to nine line 

search steps on average (results not included in this study) for the considered problem; also, 

the optimization fails at an early stage. The search direction obtained via the GN-PCG 

method is nicely scaled; no additional line search steps are necessary.

The trend of the h, the L2-distance and h in Figure 6 confirm these observations. The 

plots in Figure 6 illustrate that the Picard and the GN-PCG method perform very similarly 

during the first few outer iterations. However, after about four outer iterations the differences 

between the methods manifest, in particular with respect to the reduction of the L2-distance. 

This observation confirms standard numerical optimization theory on convergence properties 

of the Picard and the inexact Newton–Krylov methods.

Focusing on the GN-PCG method we can observe that the number of the outer iterations is 

almost constant across different grid sizes. However, the effectiveness of the spectral 

preconditioner decreases with an increasing grid size as well as with a reduction of the 

regularization parameter (as judged by an increase in the number of the inner iterations). 

This demonstrates that the preconditioner is not optimal. A similar behavior can be observed 

for the Picard method.10

10Note that the Picard method is a gradient descent scheme in the function space induced by . We can interpret the inverse of h 

as a preconditioner acting on the body force f. This operator is exactly the spectral preconditioner we use for the Newton–Krylov 
methods, which explains the similar behavior.
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The numerical accuracy of the incompressibility constraint deteriorates (slightly, but not 

significantly) as compared to the results reported in the former section. In particular, we 

obtain a numerical accuracy of (1E–5) for the GN-PCG method (see Table 7).

Conclusion: We conclude that the GN-PCG is less sensitive, provides a better inversion 

accuracy, and overall displays quicker convergence if a high accuracy of the inversion is 

required and, therefore it is to be preferred.

5.3.3. Number of unknowns in time

Purpose: It is not immediately evident how the number of the coefficient fields 

, l = 1, …, nc, affects the registration quality. We study the effects of varying nc 

on the reconstruction quality and the rate of convergence. We also provide advice on how to 

decide on nc.

Setup: We report results for registration problems of varying complexity. The analysis is 

limited to the GN-PCG method. We consider the hand images (nx = (128, 128)⊤) and the 

brain images (nx = (200, 200)⊤). The number of the time steps is fixed to nt = 2max(nx). 

The regularization parameter is empirically set to β = 1E–3 and β = 2E–2, respectively. We 

consider the full set of stopping conditions in (4.8) with τ  = 1E–3, as we no longer 

compare different methods. The remainder of the parameters are set as stated in section 

4.3.5.

One possibility to estimate an adequate number of coefficients for the registration of unseen 

images mR and mT is to compute the relative spectral power (see Table 2) of an individual 

coefficient field  for different choices of nc. If only a small number of coefficients is 

necessary to recover the deformation, this energy should decrease rapidly with an increasing 

l. The problem is stationary for nc = 1.

Results: The trend of the relative ℓ2-norm (i.e., the spectral power) of an individual 

coefficient field  for different choices of nc ∈ {1, 2, 4, 8, 16} is plotted in Figure 7. 

Convergence results are reported in Table 8. A qualitative comparison of the registration 

results for different choices of nc can be found in Figure 8.

Observations: The most important observation is that we obtain the same results for 

stationary as well as time varying velocity fields for two-image registration problems. 

Qualitatively, we cannot observe any differences for a varying number of coefficient fields 

(see Figure 8). This observation is confirmed by the values for the relative reduction in the 

L2-distance in Table 8. Increasing the number of the coefficients slightly reduces the L2-

distance. These differences, however, are practically insignificant. In particular, we (on 

average) observe a relative change in the L2-distance of 6.50E–2±1.20E–3 (hand images, 

plain H2-regularization) and 5.37E–1 ± 9.75E–3 (brain images, plain H2-regularization). 

Also, we obtain identical deformation patterns as judged by careful visual inspection (see 

Figure 8) and the variations in the determinant of the deformation gradient. We obtain 

identical results for the UT images (for plain H2-regularization and the Stokes regularization 

scheme; results are not included in this study).
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Turning to the required work load, we observe that the differences are also insignificant. The 

number of the outer iterations is almost constant; just the number of the inner iterations 

varies. In particular, we require 7 outer iterations with (on average) ≈280 inner iterations 

(hand images; plain H2-regularizatoin; γ = 0) and 20–21 outer iterations with (on average) 

≈693 inner iterations (brain images; plain H2-regularization; γ = 0). However, we have to 

keep in mind that each application of the reduced Hessian is slightly more expensive and we 

require more memory as nc increases. That is, we have to store more coefficient fields  (to 

all of which the regularization operator has to be applied). The cost of the forward and 

adjoint solves (which is the key bottleneck), however, is (almost) the same, since we expand 

vh (note that this expansion is not necessary for nc = 1; see section 4.3.2).

The power spectrum of the coefficient fields drops quickly (see Figure 7). This also indicates 

that only a small number of coefficients is required to obtain an excellent agreement 

between the images. However, we expect the differences to manifest, when registering time 

series of images (multiple time frames). Here, we might benefit from being able to invert for 

a time varying velocity field.

Conclusion: We conclude that it is sufficient to use stationary velocity fields for two-image 

registration problems.

5.4. Parameter continuation to estimate β

Purpose: We study the stability and accuracy of the designed parameter continuation 

method (see section 4.3.5) and the associated control over the properties of the mapping. 

That is, we study how the quantities of interest (determinant of the deformation gradient and 

L2-distance) behave during the course of the parameter continuation and how close we 

actually approach the given bounds.

Setup: The registration problems are solved on images with a grid size of nx = (512, 512)⊤. 

The number of time points is adapted as required by monitoring the CFL condition (see 

section 4.3.1). We use the full set of stopping conditions (see section 4.2.4) with a tolerance 

of τ  = 1E–3. We consider the hand images and the brain images (see Figure 1). We invert 

for a stationary velocity field (i.e., nc = 1). In case we consider a plain H1- and H2-

regularization (smoothness regularization; γ = 0), we set the lower bound on  to 1E–

1 (hand images) and 5E–2 (brain images), respectively. For the case of the Stokes 

regularization (γ = 1; H1-regularization) we set the bound on the grid angle to εθ = π/16 

(11.25°). The remainder of the parameters are set as described in section 4.3.5.

Results: We report the obtained estimates for β as well as results for the reconstruction 

quality and deformation regularity in Table 9. We provide an exemplary illustration of the 

obtained registration results in Figure 9. We report results for the course of the parameter 

continuation in Figure 10.

Observations: The most important observation is that we can precisely control the properties 

of our mapping without having to manually tune any parameters. We only have to decide on 
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geometric bounds (the smallest tolerable deformation of a grid element or a bound on the 

shear angle of the grid cell), the decision on which is intuitive for practitioners.

The accuracy of our method (in space) is only limited by the grid resolution (i.e., how many 

frequencies we can resolve; this statement is confirmed by the experiments conducted in 

section 5.3.2) as well as the defined bounds on the binary search used to estimate β (see 

section 4.3.5). Clearly, the desired level of accuracy competes with the computational work 

load we are willing to invest.

For plain H1- and H2-regularization, we achieve an excellent agreement between mR and m1 

(see Figure 9) with a reduction of the L2-distance by approximately half an order of 

magnitude for the brain images and 1.5 orders of magnitude for the hand images (see Table 

9). The discrepancy between the lower bound εF and  for the obtained optimal 

value of β is small. In particular, we are, e.g., bounded from above by an absolute difference 

of 1.13E–3 for the brain images (H2-regularization) and 5.10E–3 for the hand images (H2-

regularization). These values are well above the attainable accuracy reported in section 5.3.2.

For the results reported for the Stokes regularization scheme we can qualitatively (see Figure 

9) and quantitatively (see Table 9) observe that enforcing incompressibility up to numerical 

accuracy is a too-strong prior for the considered problem. However, the key observation and 

intention of this experiment is to demonstrate that we attain a deformation that is very well 

behaved (with ). A direct comparison to the result obtained for the 

incompressible case reveals that the mapping is diffeomorphic but displays a large variation 

in the magnitude of the determinant of the deformation gradient (see the leftmost image in 

the middle row and bottom row as well as the corresponding maps for  in Figure 9). 

If we further decrease the bound on  we will loose control and generate a mapping 

that locally is close to being nondiffeomorphic. We again emphasize that the intention of this 

work is the study of algorithmic properties. We will address the practical benefit of 

exploiting a model of (near-)incompressible flow in a follow-up paper and refer to [10, 16, 

52, 62] for potential applications. This exemplary result on real-world data demonstrates that 

it might be beneficial to consider a relaxation of the incompressibility constraint in order to 

improve the mismatch between the considered images while maintaining as much control on 

the deformation regularity as possible.

In future work, we will focus on improvements of the computational efficiency for 

estimating β. We have tested combining it with a grid continuation but could not observe 

strong improvements. We will also investigate the idea of providing a coarse estimation of β 
via the spectral properties of the Hessian and from there on do a parameter continuation (see 

section 4.3.5 for additional comments).

Conclusion: We conclude that the designed framework is highly accurate, is stable, 

guarantees deformation regularity (assuming that the user-defined tolerance is sufficiently 

bounded away from irregularities), and does not require any additional tuning of parameters. 

The user merely has to provide a lower bound on an acceptable volume change or a bound 
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on the distortion of a volume element (shear angle), the decision on which is intuitive for 

practitioners.

6. Conclusions

We have presented numerical methods for large deformation diffeomorphic nonrigid image 

registration that(i) operate in a black-box fashion, (ii) introduce novel algorithmic features 

(including a second-order Newton–Krylov method, spectral preconditioning, an efficient 

solver for Stokes problems, and a spectral Galerkin method in time), (iii) is stable and 

efficient and (iv) guarantees deformation regularity with an explicit control on the quality of 

the deformation.

In addition, we have conducted a detailed numerical study to demonstrate computational 

performance and numerical behavior on synthetic and real-world problems. The most 

important observations of our study are the following:

• The Newton–Krylov methods outperform the globalized Picard method 

(see section 5.3.2) as we increase the image size and the registration 

fidelity.

• We can enforce incompressibility with high accuracy. The numerical 

accuracy (in space) is only limited by the resolution of the data (see 

section 5.3.2).

• We can compute deformations that are guaranteed to be regular (i.e., a 

local diffeomorphism) up to user specifications. Controlling the magnitude 

of det(F1) is not sufficient, as volume elements might still collapse 

(deformation field with strong shear). Therefore, we introduced a 

parameter continuation in β that can be interfaced not only with lower 

bounds on the determinant of the deformation gradient but also with 

bounds on the geometric properties of the grid cells (in particular, the 

shear angle of a grid cell; see section 5.4).

• The experiments reported in this study demonstrate that it is adequate to 

limit the inversion to stationary velocity fields when considering two-

image registration problems. This observation is in accordance with results 

reported for other classes of large deformation image registration 

algorithms [1, 3, 44, 52, 69, 70]. We have additionally provided advice on 

how to decide on the number of unknowns in time (see section 5.3.3).

The control equation for the velocity is a space-time nonlinear elliptic system. But the main 

cost in our formulation is the solution of transport problems to compute the image 

transformation and the adjoint variables. That is, we require two hyperbolic PDE solves for 

computing the gradient (which essentially corresponds to one Picard iteration or one outer 

iteration of a Newton–Krylov method; see Algorithm 1) and an additional two hyperbolic 

PDE solves for evaluating the incremental control equation (Hessian matrix-vector product 

in Newton–Krylov methods; see Algorithm 2) in each inner iteration of the Krylov-subspace 

method. Because we use a pseudospectral discretization in space, the elliptic solve for the 
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Picard iteration is (for quadratic regularization models) only at the cost of a spectral diagonal 

scaling. For the Newton–Krylov methods, we have to solve a linear system using an iterative 

solver. The Picard scheme has a lower cost per iteration but requires more iterations than the 

Newton–Krylov scheme.

Our results demonstrate that there is a significant difference in stability, computational work, 

and accuracy between the Picard and Newton–Krylov methods, especially when we require 

a high accuracy of the inversion. If we require an inaccurate solution or use a strong 

regularization, the differences between Picard and Newton–Krylov methods are less 

pronounced. Better preconditioning of the Hessian would make the Newton–Krylov 

approach preferable across the spectrum of accuracy requirements. The Newton–Krylov 

approach is not significantly more complex, since we essentially use the same numerical 

tools that have been used for the solution of the first-order optimality conditions. Also, the 

individual building blocks ((incremental) forcing term, regularization operator  and the 

projection operator ) that appear in the first- and second-order optimality system are very 

similar. Therefore, the difference of solving the first- or the second-order optimality 

conditions essentially amounts to interfacing a Krylov-subspace method to solve the saddle 

point problem.

By formulating the nonrigid image registration as a problem of optimal control, we target 

the design of a generic, biophysically constrained framework for large deformation 

diffeomorphic image registration. Further, there are many applications that do require 

incompressible or near-incompressible deformations, for example, in medical image 

analysis. Our framework provides such a technology.

We report results only in two dimensions. Nothing in our formulation and numerical 

approximation is specific to the two-dimensional case. The next steps will be its extension to 

three-dimensions and to problems that have time sequences of images. For such cases, we 

expect to have to invert for a nonstationary velocity field. In addition, we aim at designing a 

framework that allows for a relaxation of the incompressibility constraint, as we observed in 

this study that incompressibility might be a too-strong prior. We also observed (results not 

included in this study) that the use of an incompressibility constraint can promote shear. In a 

follow-up paper, we will target this problem by introducing a novel continuum mechanical 

model that allows us to control the shear inside the deformation field.

Table 4.
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Appendix A. Expansion in time: Derivation

This section summarizes modifications of the regularization operator as well as the 

(incremental) control equation on account of the expansion in time (see section 4.3.2). 

Inserting (4.10) into (3.1) yields

(A.1)

Taking first and second variations with respect to the lth expansion coefficient vl yields the 

control equation

(A.2)

and the incremental control equation

(A.3)

respectively. Accordingly, the operators ℬ and  simply act on vl instead of v. The 

definition for these operators can be found in section 4.1.

We use a global basis on the unit time horizon for the expansion (see section 4.3.2). We use 

Chebyshev polynomials as basis functions in (4.10) on account of their excellent 

approximation properties as well as their orthogonality. The latter property considerably 

reduces the computational complexity, since cll′ = 0 for all l, l′, l′ ≠ l, and cll = 1 (see (A.1), 

(A.2) and (A.3)). To avoid Runge’s phenomenon (see, e.g., [11, p. 82ff.]) Chebyshev–

Gauss–Labatto nodes are used.

Appendix B. Incompressibility constraint: Elimination

Here, we derive the elimination of p and p̃ from the optimality systems for the Stokes 

regularization scheme. We only consider a quadratic H1-regularization for the velocity v. 

However, the same line of arguments applies to the H2-regularization model.

Applying the divergence to (4.1d) results in11

11Since we discuss the implementation of the incompressibility constraint we set γ = 1.
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Under the optimality assumption ∇ · v = 0 it follows from the definition of the vectorial 

Laplacian that p = −Δ−1(∇ · f). Inserting this expression into (4.1d) projects v onto the 

manifold of divergence-free velocity fields and as such eliminates (4.1c) (assuming that the 

initial v is divergence free). Accordingly, we obtain the control equation (reduced gradient)

(B.1)

to replace (4.1d). This expression is equivalent to (4.11) in the case when an H1-

regularization model is used (i.e.,  = −Δ). As stated above, the derivation also holds for the 

H2-regularization operator. We only have to replace −βΔv by βΔ2v. Computing the second 

variations of the weak form of the eliminated system yields the incremental control equation

where ĝ is the reduced gradient in (B.1).

Appendix C. Relation to LDDMM

In this section we relate our work to [41] and by that to approaches based on LDDMM [3, 4, 

23, 53, 68]. Since the work in [4, 41] is based on first-order information, we only consider 

the reduced gradient in (4.1d) (setting γ = 0). In weak form we have

The expression βv + (ℬℬH)−1[f] = v + (βℬℬH)−1[f] is exactly the gradient in the function 

space  that has been used in [41]. This expression yields the preconditioned gradient 

descent scheme

where (βℬhℬh,H)−1[fh] is nothing but a Picard iterate (see (4.7)). Subtracting  translates 

this iterate into an update. This is exactly the formulation we have used in this work (see 

section 4.2.3) so that the considered first-order method is equivalent to the solver used in 

[41] (under the assumption that αk = 1, i.e., if we neglect the line search). Accordingly, the 

same line of arguments used in [41] to relate their work to LDDMM apply to our numerical 

framework.
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Appendix D. Measures of deformation regularity

D.1. Deformation map

To visualize the deformation pattern, y has to be inferred from v. This can be done by 

solving

(D.1)

with periodic boundary conditions on ∂Ω. Here, u : Ω̄ × [0, 1] → Rd, (x, t) ↦ u(x, t), is a 

displacement field and y := x − u1, y : Ω̄ → Rd, where u1 := u(·, t = 1), u1 : Ω̄ → Rd, x ↦ 
u1(x).

Visualization

As can be seen in the visualization of the deformed grids, the mapping y actually 

corresponds the inverse of the deformation map applied to an image. This reflects the fact 

that our model is formulated in an Eulerian frame of reference. Note that all images reported 

are high-resolution vector graphics. Zooming in on the digital version of the paper will 

reveal local properties of the deformation map.

D.2. Deformation gradient

It is well known from calculus that the determinant of the Jacobian matrix det(∇y) can be 

used to assess invertibility of y as well as local volume change, provided that y ∈ C2(Ω)d. In 

the framework of continuum mechanics, we can obtain this information from the 

deformation tensor field F : Ω̄ × [0, 1] → Rd×d, where F is related to v by

(D.2)

with periodic boundary conditions on ∂Ω. Here, I = diag(1, …, 1) ∈ Rd×d; det(F1) is 

equivalent to det(∇y), where F1 := F(·, t = 1), F1 : Ω̄ → Rd×d, x ↦ F1(x).

Visualization

We limit the color map for the display of det(F1) to [0, 2]. In particular, the color map ranges 

from black (compression: det(F1) ∈ (0, 1); black corresponds to values of 0 or below (due to 

clipping), which represents a singularity or the loss of mass, respectively) to orange (mass 

conservation: det(F1) = 1) to white (expansion: det(F1) > 1; white represents values of 2 or 

greater (due to clipping)).
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Figure 1. 

Synthetic and real-world registration problems. All images have been normalized to an 

intensity range of [0, 1]. The registration problems are referred to as sinusoidal images (top 

row, left), UT images (top row, right), hand images (bottom row, left), and brain images 

(bottom row, right). Each row displays the reference image mR, the template (deformable) 

image mT, and a map of their pointwise difference (from left to right as identified by the 

inset in the images). We provide an illustration of the deformation pattern y (overlaid onto 

mT) for the synthetic problems. This mapping is computed from v★ in (5.1) via (D.1).
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Figure 2. 

Trend of the absolute value of the eigenvalues Λii, i = 1, …, 8192, of the reduced Hessian 

ℋh for plain H2-regularization (γ = 0; left) and the Stokes regularization scheme (γ = 1; H1-

regularization; right) for β ∈ {0, 1E–2, 1E6} (as indicated in the legend of the plots). We 

report the trend of the entire set of 8192 eigenvalues. The test problem is the UT images (see 

section 5.1 for details on the construction of this synthetic registration problem; nx = (64, 

64)⊤ and nc = 1). The Hessian is computed at the true solution vh, ★ to ensure that ℋh ≻ 0 

(this statement is confirmed by the values reported in Table 3). The eigenvalues (absolute 

value) are sorted in descending order for the unregularized problem (i.e., for β = 0) and in 

ascending order otherwise (i.e., for β = 1E–3 and β = 1E6).
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Figure 3. 

Eigenvector plots of the reduced Hessian ℋh ∈ Rn×n, n = 8192, for β ∈ {0, 1E–3, 1E6} for 

plain H2-regularization (γ = 0; top) and for the Stokes regularization scheme (γ = 1; H1-

regularization; bottom). The results correspond to the eigenvalue plots reported in Figure 2. 

We refer to Figure 2 and the text for details on the experimental setup. Each plot provides 

the spatial variation of the portion of an eigenvector νi ∈ Rn associated with the first 

component of the coefficient field , l = nc, nc = 1. The individual plots correspond to the 

eigenvalues Λii > 0, i = 1, 5, 20, 100, 1000 in Figure 2. The range of the values for  is 

provided below each plot.
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Figure 4. 

Qualitative comparison of exemplary registration results of the convergence study reported 

in Table 4. In particular, we display the results for the N-PCG method for a grid size of nx = 

(256, 256)⊤. We refer to Table 4 and the text for details on the experimental setup. We report 

results for plain H2-regularization (γ = 0; images to the left) and the Stokes regularization 

scheme (γ = 1; H1-regularization; images to the right). We display the deformed template 

image m1, a pointwise map of the residual differences between mR and m1 (which appears 

completely white, as the residual differences are extremely small), as well as a pointwise 

map of the determinant of the deformation gradient det(F1) (from left to right as identified 

by the inset in the images). The values for the det(F1) are reported in Table 5. Information 

on how to interpret these images can be found in Appendix D.
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Figure 5. 

Illustration of the course of the optimization for the Picard (top block) and the GN-PCG 

(bottom block) methods with respect to the (outer) iteration index k for exemplary results of 

the convergence study reported in Table 6. We refer to Table 6 and the text for details on the 

experimental setup. We report results for plain H2-regularization (γ = 0), with an empirically 

chosen regularization parameter of β = 1E–3 for images of grid size nx = (256, 256)⊤. We 

report results until convergence of the GN-PCG method (k★ = 13). We display the deformed 

template m1 (top row) and a map of the pointwise difference between mR and m1 (bottom 

row) for both iterative optimization methods (as identified by the inset on the right of the 

images). Information on how to interpret these images can be found in Appendix D.
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Figure 6. 

Trend of the objective h, the L2-distance, and the regularization model h (logarithmic 

scale) for the Picard and the GN-PCG method with respect to the (outer) iteration index k for 

exemplary results of the convergence study reported in Table 6. We refer to Table 6 and the 

text for details on the experimental setup. The trend of the functionals is plotted for different 

(empirically determined) choices of β (left column: β = 1E–2; right column: β = 1E–3) and a 

grid size of nx = (256, 256)⊤. We report results for plain H2-regularization (γ = 0; top row) 

and the Stokes regularization scheme (γ = 1; H1-regularization; bottom row).
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Figure 7. 

Relative power spectrum of the individual coefficient fields , l = 1, …, nc, for 

different choices of nc used to solve the considered registration problems. We report results 

for plain H2- regularization. The reported results correspond to Table 8. We refer to Table 8 

and the text for details on the experimental setup. We report exemplary results for the brain 

images (nx = (200, 200)⊤; left) and the hand images (nx = (128, 128)⊤; right). We choose nc 

to be in {1, 2, 4, 8, 16} as indicated in the legend of each plot. The definition of the relative 

ℓ2-norm (relative power spectrum) of  can be found in Table 2.
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Figure 8. 

Qualitative comparison of exemplary registration results for nc = 1 (images to the left) and 

nc = 16 (images to the right) of the study reported in Table 8. We refer to Table 8 and the text 

for details on the experimental setup. We report results for the hand images (nx = (128, 

128)⊤) and the brain images (nx = (200, 200)⊤) for plain H2-regularization. We display (for 

each experiment) the deformed template image m1, a pointwise map of the absolute 

difference between mR and m1, and a map of the determinant of the deformation gradient 

det(F1) (from left to right as identified by the inset in the images). Information on how to 

interpret these images can be found in Appendix D.
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Figure 9. 

Qualitative illustration of exemplary registration results of the results for the parameter 

continuation in β reported in Table 9. We refer to Table 9 and the text for details on the 

experimental setup. We report results for the brain images (top row; plain H2-regularization; 

γ = 0) and the hand images (middle row: plain H2-regularization (γ = 0); bottom row: 

Stokes regularization scheme (γ = 1; H1-regularization)). We display the deformed template 

image m1, a map of the absolute difference between mR and mT and between mR and m1 

and a map of the determinant of the deformation gradient det(F1) (from left to right as 

indicated in the inset in the images). Information on how to interpret these images can be 

found in Appendix D.
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Figure 10. 

Exemplary illustration of the course of the parameter continuation in β for the quantitative 

results reported in Table 9. We refer to Table 9 and the text for details on the experimental 

setup. We report results for the brain images (top row) and the hand images (bottom row) for 

plain H2-regularization. For each experiment, we display (from left to right) (i) the trend of 

the minimal value of the determinant of the deformation gradient (the dashed line indicates 

the user-defined lower bound on , (ii) the trend of the L2-distance (hd is the grid cell 

volume and , r ∈ Rñ, ) and (iii) the trend of β, all with respect to the 

parameter continuation step. We indicate our judgment on the results in color. That is, if a 

result is accepted (i.e., ) we plot the marker in green, and if a result is 

rejected (i.e., ) we plot the marker in red. The optimal value is plotted in 

blue. The plots correspond to the results reported in Table 9.
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Table 1

Notation (frequently used acronyms and symbols).

Notation Description

GN Gauss–Newton

KKT system Karush–Kuhn–Tucker system

PCG preconditioned conjugate gradient method

PDE partial differential equation

PDE solve solution of hyperbolic PDEs of optimality systems (4.1) and (4.3)

mR reference (fixed) image (mR : Rd → R)

mT template image (image to be registered; mT: Rd → R)

y mapping (deformation; y : Rd → Rd)

v velocity field (control variable; v : Rd × [0, 1] → Rd)

m state variable (transported image; m : Rd × [0, 1] → R)

m1 state variable at t = 1 (deformed template image; m1 : Rd → R)

λ adjoint variable (transported mismatch; λ : Rd × [0, 1] → R)

f body force (drives the registration; f : Rd × [0, 1] → Rd)

F1 deformation gradient (tensor field) at t = 1 (F1 : Rd → Rd×d)

objective functional

regularization functional

differential operator (first and second variation of )

β regularization parameter

γ parameter that enables (γ = 1) or disables (γ = 0) the incompressibility constraint

nt number of time points (discretization)

nc number of coefficient fields (spectral Galerkin method in time)

nx

number of grid points (discretization; )

g reduced gradient (first variation of Lagrangian with respect to v)

ℋ reduced Hessian (second variation of Lagrangian with respect to v)
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Table 2

Overview of the quantitative measures that are used to assess the registration performance. We report the 

number of outer iterations (steps for updating the control variable vh) and the number of hyperbolic PDE 

solves (i.e., how often we have to solve one of the hyperbolic PDEs (4.1a), (4.1b), (4.3a), and (4.3b) that 

appear in the optimality systems) to assess the work load. We report the relative change of the L2-distance, the 

objective, and the reduced gradient to assess the quality of the inversion. We report values for the determinant 

of the deformation gradient to assess the regularity of the computed deformation map. We report the relative 

power spectrum of the coefficients  to assess which of the coefficients of the expansion in (4.10) are 

significant.

Description Definition

# of required outer iterations k★

# of required hyperbolic PDE solves nPDE

Relative change of L2-distance

Relative change of objective value

Relative change of reduced gradient

Determinant of deformation gradient

Relative power spectrum of 
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Table 3

Extrema of the eigenvalues Λii, i = 1, …, 8192, of the reduced Hessian reported in Figure 2. We report values 

for plain H2-regularization (γ = 0; top block) and the Stokes regularization scheme (γ = 1; H1-regularization; 

bottom block). We refer to Figure 2 and the text for details on the experimental setup. We report the smallest 

and the largest real part as well as the largest absolute value of the imaginary part of the eigenvalues Λii with 

respect to different choices of the regularization parameter β ∈ {0, 1E–2, 1E6}.

H2-regularization (γ = 0)

β

0 −8.35E–15 3.72E1 3.26E–7

1E–3 2.59E–3 4.19E3 0.

1E6 1.30 4.19E12 0.

Stokes regularization (γ = 1)

β

0 −3.74E–13 2.48E1 5.92E–6

1E–3 1.00E–3 2.56E1 2.59E–6

1E6 1.29 2.05E9 1.43E–7
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Table 7

Values for the determinant of the deformation gradient  for exemplary results of the convergence study 

reported in Table 6. We report results for the Picard and the GN-PCG method. We refer to Table 6 and the text 

for details on the experimental setup. We report results for the Stokes regularization scheme (γ = 1; H1-

regularization). The regularization parameter is set to β = 1E–3. The grid size is nx = (256, 256)⊤. These 

results directly relate to those reported for the smooth registration problem (see section 5.3.2, in particular 

Table 5).

Picard 10.00E–1 1.00 1.00 2.03E–5

GN-PCG 10.00E–1 1.00 1.00 2.29E–5
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	5.3.3. Number of unknowns in time
	Purpose: It is not immediately evident how the number of the coefficient fields , l = 1, …, nc, affects the registration quality. We study the effects of varying nc on the reconstruction quality and the rate of convergence. We also provide advice on how to decide on nc.Setup: We report results for registration problems of varying complexity. The analysis is limited to the GN-PCG method. We consider the hand images (nx = (128, 128)⊤) and the brain images (nx = (200, 200)⊤). The number of the time steps is fixed to nt = 2max(nx). The regularization parameter is empirically set to β = 1E–3 and β = 2E–2, respectively. We consider the full set of stopping conditions in (4.8) with τ
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 = 1E–3, as we no longer compare different methods. The remainder of the parameters are set as stated in section 4.3.5.One possibility to estimate an adequate number of coefficients for the registration of unseen images mR and mT is to compute the relative spectral power (see Table 2) of an individual coefficient field  for different choices of nc. If only a small number of coefficients is necessary to recover the deformation, this energy should decrease rapidly with an increasing l. The problem is stationary for nc = 1.Results: The trend of the relative ℓ2-norm (i.e., the spectral power) of an individual coefficient field  for different choices of nc ∈ {1, 2, 4, 8, 16} is plotted in Figure 7. Convergence results are reported in Table 8. A qualitative comparison of the registration results for different choices of nc can be found in Figure 8.Observations: The most important observation is that we obtain the same results for stationary as well as time varying velocity fields for two-image registration problems. Qualitatively, we cannot observe any differences for a varying number of coefficient fields (see Figure 8). This observation is confirmed by the values for the relative reduction in the L2-distance in Table 8. Increasing the number of the coefficients slightly reduces the L2-distance. These differences, however, are practically insignificant. In particular, we (on average) observe a relative change in the L2-distance of 6.50E–2±1.20E–3 (hand images, plain H2-regularization) and 5.37E–1 ± 9.75E–3 (brain images, plain H2-regularization). Also, we obtain identical deformation patterns as judged by careful visual inspection (see Figure 8) and the variations in the determinant of the deformation gradient. We obtain identical results for the UT images (for plain H2-regularization and the Stokes regularization scheme; results are not included in this study).Turning to the required work load, we observe that the differences are also insignificant. The number of the outer iterations is almost constant; just the number of the inner iterations varies. In particular, we require 7 outer iterations with (on average) ≈280 inner iterations (hand images; plain H2-regularizatoin; γ = 0) and 20–21 outer iterations with (on average) ≈693 inner iterations (brain images; plain H2-regularization; γ = 0). However, we have to keep in mind that each application of the reduced Hessian is slightly more expensive and we require more memory as nc increases. That is, we have to store more coefficient fields  (to all of which the regularization operator has to be applied). The cost of the forward and adjoint solves (which is the key bottleneck), however, is (almost) the same, since we expand vh (note that this expansion is not necessary for nc = 1; see section 4.3.2).The power spectrum of the coefficient fields drops quickly (see Figure 7). This also indicates that only a small number of coefficients is required to obtain an excellent agreement between the images. However, we expect the differences to manifest, when registering time series of images (multiple time frames). Here, we might benefit from being able to invert for a time varying velocity field.Conclusion: We conclude that it is sufficient to use stationary velocity fields for two-image registration problems.
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	5.4. Parameter continuation to estimate β
	Purpose: We study the stability and accuracy of the designed parameter continuation method (see section 4.3.5) and the associated control over the properties of the mapping. That is, we study how the quantities of interest (determinant of the deformation gradient and L2-distance) behave during the course of the parameter continuation and how close we actually approach the given bounds.Setup: The registration problems are solved on images with a grid size of nx = (512, 512)⊤. The number of time points is adapted as required by monitoring the CFL condition (see section 4.3.1). We use the full set of stopping conditions (see section 4.2.4) with a tolerance of τ
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 = 1E–3. We consider the hand images and the brain images (see Figure 1). We invert for a stationary velocity field (i.e., nc = 1). In case we consider a plain H1- and H2-regularization (smoothness regularization; γ = 0), we set the lower bound on  to 1E–1 (hand images) and 5E–2 (brain images), respectively. For the case of the Stokes regularization (γ = 1; H1-regularization) we set the bound on the grid angle to εθ = π/16 (11.25°). The remainder of the parameters are set as described in section 4.3.5.Results: We report the obtained estimates for β as well as results for the reconstruction quality and deformation regularity in Table 9. We provide an exemplary illustration of the obtained registration results in Figure 9. We report results for the course of the parameter continuation in Figure 10.Observations: The most important observation is that we can precisely control the properties of our mapping without having to manually tune any parameters. We only have to decide on geometric bounds (the smallest tolerable deformation of a grid element or a bound on the shear angle of the grid cell), the decision on which is intuitive for practitioners.The accuracy of our method (in space) is only limited by the grid resolution (i.e., how many frequencies we can resolve; this statement is confirmed by the experiments conducted in section 5.3.2) as well as the defined bounds on the binary search used to estimate β (see section 4.3.5). Clearly, the desired level of accuracy competes with the computational work load we are willing to invest.For plain H1- and H2-regularization, we achieve an excellent agreement between mR and m1 (see Figure 9) with a reduction of the L2-distance by approximately half an order of magnitude for the brain images and 1.5 orders of magnitude for the hand images (see Table 9). The discrepancy between the lower bound εF and  for the obtained optimal value of β is small. In particular, we are, e.g., bounded from above by an absolute difference of 1.13E–3 for the brain images (H2-regularization) and 5.10E–3 for the hand images (H2-regularization). These values are well above the attainable accuracy reported in section 5.3.2.For the results reported for the Stokes regularization scheme we can qualitatively (see Figure 9) and quantitatively (see Table 9) observe that enforcing incompressibility up to numerical accuracy is a too-strong prior for the considered problem. However, the key observation and intention of this experiment is to demonstrate that we attain a deformation that is very well behaved (with 
). A direct comparison to the result obtained for the incompressible case reveals that the mapping is diffeomorphic but displays a large variation in the magnitude of the determinant of the deformation gradient (see the leftmost image in the middle row and bottom row as well as the corresponding maps for 
 in Figure 9). If we further decrease the bound on 
 we will loose control and generate a mapping that locally is close to being nondiffeomorphic. We again emphasize that the intention of this work is the study of algorithmic properties. We will address the practical benefit of exploiting a model of (near-)incompressible flow in a follow-up paper and refer to [10, 16, 52, 62] for potential applications. This exemplary result on real-world data demonstrates that it might be beneficial to consider a relaxation of the incompressibility constraint in order to improve the mismatch between the considered images while maintaining as much control on the deformation regularity as possible.In future work, we will focus on improvements of the computational efficiency for estimating β. We have tested combining it with a grid continuation but could not observe strong improvements. We will also investigate the idea of providing a coarse estimation of β via the spectral properties of the Hessian and from there on do a parameter continuation (see section 4.3.5 for additional comments).Conclusion: We conclude that the designed framework is highly accurate, is stable, guarantees deformation regularity (assuming that the user-defined tolerance is sufficiently bounded away from irregularities), and does not require any additional tuning of parameters. The user merely has to provide a lower bound on an acceptable volume change or a bound on the distortion of a volume element (shear angle), the decision on which is intuitive for practitioners.
	Purpose: We study the stability and accuracy of the designed parameter continuation method (see section 4.3.5) and the associated control over the properties of the mapping. That is, we study how the quantities of interest (determinant of the deformation gradient and L2-distance) behave during the course of the parameter continuation and how close we actually approach the given bounds.Setup: The registration problems are solved on images with a grid size of nx = (512, 512)⊤. The number of time points is adapted as required by monitoring the CFL condition (see section 4.3.1). We use the full set of stopping conditions (see section 4.2.4) with a tolerance of τ
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). A direct comparison to the result obtained for the incompressible case reveals that the mapping is diffeomorphic but displays a large variation in the magnitude of the determinant of the deformation gradient (see the leftmost image in the middle row and bottom row as well as the corresponding maps for 
 in Figure 9). If we further decrease the bound on 
 we will loose control and generate a mapping that locally is close to being nondiffeomorphic. We again emphasize that the intention of this work is the study of algorithmic properties. We will address the practical benefit of exploiting a model of (near-)incompressible flow in a follow-up paper and refer to [10, 16, 52, 62] for potential applications. This exemplary result on real-world data demonstrates that it might be beneficial to consider a relaxation of the incompressibility constraint in order to improve the mismatch between the considered images while maintaining as much control on the deformation regularity as possible.In future work, we will focus on improvements of the computational efficiency for estimating β. We have tested combining it with a grid continuation but could not observe strong improvements. We will also investigate the idea of providing a coarse estimation of β via the spectral properties of the Hessian and from there on do a parameter continuation (see section 4.3.5 for additional comments).Conclusion: We conclude that the designed framework is highly accurate, is stable, guarantees deformation regularity (assuming that the user-defined tolerance is sufficiently bounded away from irregularities), and does not require any additional tuning of parameters. The user merely has to provide a lower bound on an acceptable volume change or a bound on the distortion of a volume element (shear angle), the decision on which is intuitive for practitioners.
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