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AN INFEASIBLE BUNDLE METHOD FOR NONSMOOTH CONVEX
CONSTRAINED OPTIMIZATION WITHOUT A PENALTY

FUNCTION OR A FILTER∗

CLAUDIA SAGASTIZÁBAL† AND MIKHAIL SOLODOV†

Abstract. Global convergence in constrained optimization algorithms has traditionally been
enforced by the use of parametrized penalty functions. Recently, the filter strategy has been intro-
duced as an alternative. At least part of the motivation for using filter methods consists of avoiding
the need for estimating a suitable penalty parameter, which is often a delicate task. In this paper,
we demonstrate that the use of a parametrized penalty function in nonsmooth convex optimization
can be avoided without using the relatively complex filter methods. We propose an approach which
appears to be more direct and easier to implement, in the sense that it is closer in spirit and struc-
ture to the well-developed unconstrained bundle methods. Preliminary computational results are
also reported.
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1. Introduction and motivation. We consider the problem{
min
x∈Rn

f(x),

c(x) ≤ 0,
(1.1)

where f, c : R
n → R are convex functions which are, in general, nondifferentiable. We

note that there is no loss of generality in formulating (1.1) with only one constraint:
if necessary, c can be defined as the pointwise maximum of finitely many convex func-
tions, thus covering the case of multiple inequality constraints. In our development,
we assume that the Slater constraint qualification [28] holds; i.e., there exists x ∈ R

n

such that c(x) < 0. We also assume that an oracle is available, which for any given
x ∈ R

n computes the values f(x) and c(x), and one subgradient for each of the func-
tions, i.e., some gf ∈ ∂f(x) and some gc ∈ ∂c(x). We do not assume that there is any
control over which particular subgradients are computed by the oracle (for example,
for problems with more than one constraint, i.e., when c is defined by the maximum
operation, we may have subgradient information about only one constraint among
those with the largest value).

Nonsmooth optimization (NSO) problems are, in general, difficult to solve, even
when they are unconstrained. Among algorithms for NSO, we mention the subgradi-
ent [37], cutting-planes [6, 16], analytic center cutting-planes (ACCP) [12], and bundle
methods [14, 36]. Bundle and ACCP methods are stabilized versions of the cutting-
planes method, and they are currently recognized as the most robust and reliable NSO
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algorithms. ACCP methods are based on information given by a certain separation
procedure, which puts it somewhat outside of the oracle framework considered here.
In this paper we focus on bundle methods, specifically on their proximal form.

For unconstrained problems, iterates of a proximal bundle algorithm are generated
by solving a quadratic programming problem (QP). Each QP is defined by means
of a cutting-planes model of the objective function, stabilized by a quadratic term
centered at the best point obtained so far (which is referred to as the last descent or
serious step). An important feature of bundle methods is that the size of each QP
can be controlled via the so-called aggregation techniques; see, for instance, [3, Ch. 9]
and also section 2 below. We emphasize that the latter is crucial for any practical
implementation.

Constrained nonsmooth problems are more complex, and only a few practical
methods can be found in the literature. Convex problems with “easy” constraints
(such as bound or linear constraints) can be solved either by inserting the con-
straints directly into each QP or by projecting iterates onto the feasible set; see,
for instance, [11] and [20, 21]. For general convex constrained problems, such as prob-
lem (1.1) considered here, one possibility is to solve an equivalent unconstrained prob-
lem with an exact penalty objective function; see [18, 23]. This approach, however,
presents some drawbacks, which are typical whenever a penalty function is employed.
Specifically, estimating a suitable value of the penalty parameter is sometimes a deli-
cate task. Furthermore, if a large value of the parameter is required to guarantee the
exactness of a given penalty function, then numerical difficulties arise.

More recently, Fletcher and Leyffer [8] proposed the filter strategy [9] as an al-
ternative to the use of a penalty function in the framework of bundle methods for
solving (1.1). However, the development of [8] is quite involved and, in particular, the
resulting method appears considerably more complicated when compared, for exam-
ple, to standard bundle methods for the unconstrained case. Furthermore, techniques
for bundle compression and aggregation, although mentioned in [8], are not explicitly
addressed. As stated, the method of [8] does not guarantee that the number of con-
straints in the subproblems can be kept smaller than a given desired bound, even if
“inactive cuts” are removed from the bundle. Without this feature, a method cannot
be guaranteed to be practical.

For other bundle-type methods for (1.1) that do not use penalization, see [29, 30]
and [17, Ch. 5]. But it should be emphasized that in the cited methods all the serious
iterates, including the starting point, are required to be feasible. Therefore, there are
no concerns associated with the use of penalty functions and no need for alternative
strategies, such as filter methods. It should be noted that feasible methods suffer from
a serious drawback: computing a feasible point is required to start the algorithm. This
“phase I” general (nonsmooth) convex feasibility problem may be as difficult to solve
as (1.1) itself. As a result, the overall computational burden of solving the problem
may increase considerably. On the other hand, feasible methods can be useful in
applications in which problem function(s) may not be defined everywhere outside of
the feasible region. We point out that our method, if started from a feasible point,
stays feasible (see Proposition 4.1) and thus can operate “in feasible mode” if an
appropriate starting point is provided.

Before proceeding with our discussion, we introduce the improvement function
associated with problem (1.1). For a given x ∈ R

n, let

hx(y) := max{f(y) − f(x), c(y)}, y ∈ R
n.(1.2)

Among other things, it holds that x̄ is a solution to (1.1) if and only if x̄ solves the
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unconstrained problem of minimizing hx̄ (see Theorem 2.1 below). The use of hx̄ as
a theoretical tool in the convergence analysis of bundle-type methods can be traced
back to [29]; see also [17]. However, in none of these works is the improvement func-
tion used in the algorithms themselves. In addition, since in [29, 17] the infeasible
iterates are automatically declared “null steps,” the test to accept an iterate as the
next serious step involves the objective function f only. Thus the resulting sequence
of serious steps is both feasible and monotone in f . The piecewise linearization of the
improvement function has also been used in the methods of feasible directions for solv-
ing smooth problems (see, e.g., [39, 33]). However, those methods are again feasible
and the improvement function itself is not involved in the algorithms. To our knowl-
edge, the only algorithms where the improvement function has been used directly are
the (inexact) proximal point methods of [1]. In some sense, [1] can be considered as a
predecessor of the present paper, but keeping in mind the well-known important dif-
ferences between proximal point and bundle methods (conceptually solving proximal
subproblems, even if approximately, to obtain a new iterate versus accepting a new
iterate once a computationally realistic sufficient descent condition is satisfied).

Infeasible bundle methods are very rare. Prior to [8], we could find in the literature
only the “phase I–phase II” modification of the feasible method in [17, Ch. 5.7] and
the constrained level bundle methods of [25]. In [25], successive approximations of
the exact improvement function hx̄ are used in the algorithm. Specifically, in the
expression

hx̄(y) = max{f(y) − f(x̄), c(y)} = λf(y) + (1 − λ)c(y) − λf(x̄) for some λ ∈ [0, 1],

the values of λ and f(x̄) are estimated at each iteration. Those estimates are used
to define a certain gap function and an associated level parameter for the QP. It is
well known that level methods are especially suitable for those problems in which the
optimal value f(x̄) is either known or easy to estimate. This certainly is not true in
general. In fact, estimating the optimal value is a delicate issue, and inappropriately
chosen values may lead to infeasible QPs.

In this paper, we propose an infeasible proximal bundle method for solving (1.1),
which uses neither a penalty function nor a filter. With respect to [30, 17], the
advantage is that it is not necessary to compute a feasible point to start the algorithm.
Also, since serious steps can be infeasible, monotonicity in f is not enforced (outside of
the feasible set). Rather, there is a balance between the search for feasibility and the
reduction of the objective function. But this balance is followed in a manner different
from the filter strategy. We also emphasize that, compared to [8], our method is
much closer to the well-developed unconstrained bundle methods, and thus is easier
to implement. For example, we can manage the size of QPs by a suitable modification
of the standard aggregation techniques. Finally, compared to [25], QPs in our method
are always feasible independently of the choice of parameters.

Our approach can be viewed as an unconstrained proximal bundle method [14, 17,
3] applied to the function hx(·) directly, with the important distinction that x is the
last serious step, and thus, the function being minimized varies along the iterations;
see section 3 for details. We emphasize that serious steps need not be monotone in f
or feasible. Of course, the fact that the improvement function changes along the itera-
tions makes standard convergence results not applicable directly, and specific analysis
is needed. Actually, some subtle modifications are needed also in the bundle method
itself. Nevertheless, our approach is quite close to standard unconstrained bundle
methods. Apart from leading to relative ease in the computer implementation, this
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also opens the potential for extending various results obtained for the unconstrained
bundle methods to the constrained case, e.g., the variable metric [2, 26, 27] and quasi-
Newton [5, 32] techniques, methods with inexact data [13, 38], etc.

This paper is organized as follows. In section 2, we state some basic properties of
the improvement function and also give an overview of proximal bundle methods for
the unconstrained case, including the aggregation and compression techniques. This
is done in order to set the notation for the algorithm, and also to build a link from
the well-known unconstrained method to the constrained one. The algorithm itself is
stated in section 3, where some preliminary properties also are established. Conver-
gence analysis is provided in section 4, and computational experience is reported in
section 5.

Our notation is fairly standard. The Euclidean inner product in R
n is denoted

by 〈x, y〉 =
∑n

j=1 xjyj , and the associated norm by ‖ · ‖. The positive-part function

is denoted by x+ := max{x, 0}. For a set X in R
n, convX denotes its convex hull.

By ∂εh(x) we denote the ε-subdifferential of a convex function h at the point x ∈ R
n,

with ∂0h(x) = ∂h(x) being the usual subdifferential.

2. Preliminaries. We start with the properties of the improvement function to
be used in what follows. Next, we discuss some basics of the standard bundle methods,
mainly to fix notation and remind the reader of the principal relations. Also, we use
this discussion to point out where appropriate modifications would be needed when
passing from the unconstrained to the constrained case. No proofs are given in this
section. Proofs and calculations are worked out in detail for the constrained algorithm
in section 4.

2.1. The improvement function. Directly by the definition (1.2), the subdif-
ferential of the improvement function is given by

∂hx(y) =

⎧⎪⎨
⎪⎩
∂f(y) if f(y) − f(x) > c(y),

conv{∂f(y)
⋃
∂c(y)} if f(y) − f(x) = c(y),

∂c(y) if f(y) − f(x) < c(y).

(2.1)

In addition, we have that

hx(x) = c+(x) = max{c(x), 0} for all x ∈ R
n.

Finally (see, e.g., [17, Lem. 2.16, p. 17]), the following holds.
Theorem 2.1. Suppose that the Slater constraint qualification is satisfied for

(1.1). Then the following statements are equivalent:
(i) x̄ is a solution to (1.1);
(ii) min{hx̄(y) | y ∈ R

n} = hx̄(x̄) = 0;
(iii) 0 ∈ ∂hx̄(x̄), i.e., 0 ∈ ∂ϕ(x̄), where ϕ(·) := hx̄(·).

2.2. An overview of unconstrained bundle methods. Consider, for the
moment, the unconstrained problem

min
x∈Rn

h(x),

where h(·) is some fixed convex function. For the sake of simplicity, we also suppose
for now that there is no bundle compression/aggregation in the algorithm. We refer
the reader to [3, Ch. 9.3] for proofs of the relations stated in this subsection.
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Let � be the current iteration index. Bundle methods keep memory of the past
in a bundle of information

B� :=
⋃
i<�

{(yi, hi = h(yi), gih ∈ ∂h(yi))} and (xk, h(xk)), k = k(�),

where k(�) denotes the index of the last serious step preceding the iteration �. Serious
iterates, also called stability centers, form a subsequence {xk} ⊂ {yi} such that
{h(xk)} is strictly decreasing. This will be made more precise later.

We mention two peculiarities of our notation. When it is clear from the context,
we shall not explicitly specify the dependence of k on the current iteration index �.
Also, in text that follows we shall write i ∈ B� to mean that there exists an element
in the set B� indexed by i. Although this notation is formally improper, it does not
lead to any confusion, while simplifying some relations below.

The bundle of past information is used to define at each iteration a cutting-planes
model of the objective function,

ψ�(y) := max
i∈B�

{hi + 〈gih, y − yi〉}.

An equivalent expression, better suited for implementations, centers the cutting-
planes model at the stability center xk:

ψ�(y) = h(xk) + max
i∈B�

{−eki + 〈gih, y − xk〉},(2.2)

where the terms eki are the (nonnegative) linearization errors

eki := h(xk) − hi − 〈gih, xk − yi〉.
In particular,

gih ∈ ∂eki h(xk),

i.e., h(y) ≥ h(xk) + 〈gih, y − xk〉 − eki for all y ∈ R
n.

Since the linearization errors depend on xk, they need to be updated every time
xk changes (for this reason, they are indexed by both k and i). For further reference,
note that the linearization errors obviously depend also on h (h is fixed in this section,
but not in the rest of the paper). Thus in the update of the linearization errors in
our algorithm, we shall also have to account for an eventual change in h.

The advantage of expressing the model in the form of (2.2) is that it requires less
memory for storing the relevant information: the bundle becomes

B� =
⋃
i<�

{(eki ∈ R+, g
i
h ∈ ∂eki h(xk))} and (xk, h(xk)).

Given μ�, a positive proximal parameter, the next iterate y� is generated by solving
a QP reformulation of the problem

min
y∈Rn

ψ�(y) +
1

2
μ�‖y − xk‖2.

Clearly, y� is unique. Furthermore, it is characterized by the following conditions
(see [3, Lem. 9.8]):

y� = xk − 1

μ�
ĝ�, where ĝ� ∈ ∂ψ�(y

�),

ĝ� ∈ ∂ε̂k� h(xk), where ε̂k� = h(xk) − ψ�(y
�) − 1

μ�
‖ĝ�‖2 ≥ 0.
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An iterate y� is considered good enough to become the next serious step when
h(y�) provides a significant decrease (with respect to h(xk)), measured in terms of
a nominal decrease. Specifically, let m ∈ (0, 1) be a given parameter. The nominal
decrease is defined by

δ� := h(xk) − ψ�(y
�) − 1

2
μ�‖y� − xk‖2 = ε̂k� +

1

2μ�
‖ĝ�‖2 ≥ 0.

When y� satisfies the descent test

h(y�) ≤ h(xk) −mδ�,(2.3)

a serious step is declared: xk+1 = y�. Otherwise, y� is declared a null step and xk

remains unchanged.
The algorithm stops when δ� is small enough (when compared to a given toler-

ance). In this case, both ε̂k� and ‖ĝ�‖ are small and, since ĝ� ∈ ∂ε̂k� h(xk), for any

M > 0 and all y ∈ R
n such that ‖y−xk‖ ≤ M , the approximate optimality condition

h(y) ≥ h(xk) − ε̂k� −M‖ĝ�‖ holds.
We next consider the effect of compressing the bundle.

2.3. Aggregation technique. The number of constraints in the QP used to
generate y� is precisely the number of elements in the bundle B�. Obviously, one
has to keep this number computationally manageable. Thus, the bundle has to be
compressed when the number of elements reaches some chosen bound. This has to be
done without impairing convergence of the algorithm. For this purpose, the so-called
aggregate function is fundamental:

lk,�(y) := h(xk) − ε̂k� + 〈ĝ�, y − xk〉, k = k(�).

Note that this function can be defined directly from the aggregate couple (ε̂k� , ĝ
� ∈

∂ε̂k� h(xk)). Alternatively, the same information can be retrieved from all the “active”

bundle elements, i.e., those defining ψ�(y
�).

Before looping from � to � + 1, the next bundle B�+1 is defined. If the bundle
has reached its maximum allowed size, it must be compressed. Reducing the bundle
amounts to replacing (at iteration �+ 1) the cutting-planes model (2.2) with another
function, defined by a smaller number of cutting-planes, which we shall still denote
by ψ�+1. As pointed out in [7, sect. 4, eqs. (4.7)–(4.9)], one can use any collection of
functions satisfying (for all y ∈ R

n) the following three conditions:

ψ�(y) ≤ h(y) for all � ≥ 1,(2.4a)

lk(�),�(y) ≤ ψ�+1(y) for those � for which y� is a null step,(2.4b)

h� + 〈g�h, y − y�〉 ≤ ψ�+1(y) for those � for which y� is a null step.(2.4c)

We note that (2.4a) will not be automatic in our setting. Indeed, as already mentioned,
the function h will change after every serious step. As a consequence, (2.4a) can be
violated unless appropriate care is taken.

Suppose, however, that (2.4a) holds. In terms of bundle information, the remain-
ing conditions mean that it is enough for the new bundle to contain both the aggregate
information (to ensure (2.4b)) and the last generated information (to ensure (2.4c)).
These values are, respectively, (ε̂k� , ĝ

�) and (y�, h�, g
�
h ∈ ∂h(y�)). In particular, at

any iteration, the bundle can contain as few elements as we wish (as long as the two
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specified above are included). Note also that if the bundle is not compressed at the
current iteration, then the aggregate information is redundant (because it is already
contained in the bundle elements, which are active in the QP subproblem).

Accordingly, we shall write the next bundle in the form

B�+1 := Boracle
�+1

⋃
Bagg
�+1 and (xk, h(xk)), k = k(� + 1), the last serious iterate,

where the oracle bundle is any set such that

{(ek� , g�h)} ⊆ Boracle
�+1 ⊆

⋃
i≤�

{(eki ∈ R+, g
i
h ∈ ∂eki h(xk))},

while the aggregate bundle satisfies

{(ε̂k� , ĝ�)} ⊆ Bagg
�+1 ⊆

⋃
i≤�

{(ε̂ki ∈ R+, ĝ
i ∈ ∂ε̂ki h(xk))}.

The leftmost inclusions in the last two relations above need to be specified explicitly
only when there is bundle compression at the �th iteration (if there is no compression,
they hold automatically because of the rightmost inclusions). We note that, similarly
to updating the linearization errors eki , the quantities ε̂ki also need to be updated every
time k changes; see (2.5) and (3.6) below.

The next cutting-planes model is then defined by

ψ�+1(y) = h(xk) + max

{
max

i∈Boracle
�+1

{−eki + 〈gih, y − xk〉},

max
i∈Bagg

�+1

{−ε̂ki + 〈ĝi, y − xk〉}
}
, k = k(� + 1).

As already mentioned, every time a new serious step has been declared, both lin-
earization and aggregate errors need to be modified. The update aims at satisfying
the key relations

gih ∈ ∂eki h(xk+1) and ĝi ∈ ∂ε̂ki h(xk+1),

which should hold for all elements in the new bundle. The following simple updating
formulas guarantee the required properties (when h is fixed):{

ek+1
i := eki + h(xk+1) − h(xk) + 〈gih, xk − xk+1〉 if i ∈ Boracle

�+1 ,

ε̂k+1
i := ε̂ki + h(xk+1) − h(xk) + 〈ĝi, xk − xk+1〉 if i ∈ Bagg

�+1.
(2.5)

We next show how to adapt the unconstrained bundle methodology described above
to solving the constrained problem (1.1).

3. Defining the constrained algorithm. Given the last serious iterate xk

(we note that the starting point x0 is considered a serious iterate), we apply an
unconstrained proximal bundle method to the function h(·) := hk(·) = hxk(·) until
the next serious iterate xk+1 is generated. At this time, we change h(·) to hk+1(·) =
hxk+1(·), make the necessary changes to the bundle, and repeat the process. We point
out that the development is not straightforward. For one thing, it is possible that
f(xk+1) > f(xk). As is easy to observe, in that case we have hk+1(·) ≤ hk(·). As
a consequence, the accumulated cutting-planes model for hk(·) may not be a valid
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(lower) approximation for hk+1(·). Thus, the model has to be revised and adjusted
to ensure that conditions (2.4a)–(2.4c) (in particular, (2.4a)) are satisfied for the new
h(·) := hk+1(·). Note that this adjustment is independent of compressing the bundle,
which will require additional care.

In the following, we explain how to build the model ψ� satisfying (2.4a)–(2.4c),
even when h(·) changes at a serious step.

3.1. Bundle information. Since h(·) varies with k, past information relevant
for constructing the model is no longer just (ei, g

i
h). In particular, separate information

about the objective and constraint functions needs to be kept. This information is
(fi = f(yi), ci = c(yi)) and (gif ∈ ∂f(yi), gic ∈ ∂c(yi)), or, equivalently, (efki , ec

k
i , g

i
f ∈

∂efki
f(xk), gic ∈ ∂eck

i
c(xk)), where the linearization errors for f and c, respectively, are

efki := f(xk) − fi − 〈gif , xk − yi〉,
(3.1)

ecki := c(xk) − ci − 〈gic, xk − yi〉.

The purpose of keeping the bundle information separated is twofold:
• First, knowing (fi, ci) makes it possible to compute the function and subgra-

dient values for different functions h; see Lemma 3.1 below.
• Second, as shown in Lemma 3.2 below, separate linearization errors can be

updated by a simple formula, even when h changes.
Therefore, we define

B� := Boracle
�

⋃
Bagg
� and (xk, f(xk), c(xk)), k = k(�), the last serious iterate,

with Boracle
� ⊆

⋃
i<�

{(
fi, ci, efki , ec

k
i , g

i
f ∈ ∂efki

f(xk), gic ∈ ∂eck
i
c(xk)

)}
(3.2)

and Bagg
� ⊆

⋃
i<�

{(ε̂ki , ĝi ∈ ∂ε̂ki hk(x
k))}.

Lemma 3.1. In the notation of (3.1) and (3.2), for each i ∈ Boracle
� , define{

eki := efki + c+(xk) and gihk
:= gif if fi − f(xk) ≥ ci,

eki := ecki + c+(xk) − c(xk) and gihk
:= gic if fi − f(xk) < ci.

(3.3)

Then eki ≥ 0 and gihk
∈ ∂eki hk(x

k).

Proof. By (3.1) and the convexity of f and c, efki ≥ 0 and ecki ≥ 0. Since also

c+(xk) ≥ 0 and c+(xk) − c(xk) ≥ 0, (3.3) implies that eki ≥ 0.
Recalling that hk(x

k) = c+(xk), we have to show that for all y ∈ R
n, it holds

that hk(y) ≥ c+(xk) + 〈gihk
, y − xk〉 − eki . By using the definitions of hk, of the

subdifferential, and of the errors efki , ecki , we obtain that

hk(y) = max

{
f(y) − f(xk)

c(y)

≥ max

{
fi − f(xk) + 〈gif , y − yi〉
ci + 〈gic, y − yi〉

= max

{
〈gif , y − xk〉 − efki
c(xk) + 〈gic, y − xk〉 − ecki .
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By adding and subtracting c+(xk) in the right-hand side of the relation above, and
using the definition of gihk

, we obtain that

hk(y) ≥ c+(xk) + 〈gihk
, y − xk〉 −

{
(efki + c+(xk)) if fi − f(xk) ≥ ci,

(ecki + c+(xk) − c(xk)) if fi − f(xk) < ci.

The result now follows from the definition of eki in (3.3).
The cutting-planes model associated with (3.2), (3.3) is given by

ψ�(y) = c+(xk) + max

{
max

i∈Boracle
�

{−eki + 〈gihk
, y − xk〉},

(3.4)

max
i∈Bagg

�

{−ε̂ki + 〈ĝi, y − xk〉}
}
, k = k(�).

For this model to satisfy (2.4a)–(2.4c) when passing to the iteration �+1, we consider
separately the two cases of the �th iteration being a null step and the �th iteration
being a serious step.

Suppose first that the QP subproblem defined with ψ� given by (3.4) generates y�

as a null step. By construction, the new bundle satisfies (3.2) and (3.3) with � replaced
by � + 1 (k remains the same). Thus, Lemma 3.1 holds, and gihk

∈ ∂eki hk(x
k) for all

i ∈ Boracle
�+1 . Likewise, aggregate subgradients satisfy the inclusion ĝi ∈ ∂ε̂ki hk(x

k) for

all i ∈ Bagg
�+1. Therefore, (2.4a) (with � replaced by � + 1) is automatically satisfied.

Finally, for conditions (2.4b) and (2.4c) to hold, it is enough to make sure that

{(ek� , g�hk
∈ ∂ek� hk(x

k))} ⊆ Boracle
�+1 and

{(ε̂k� , ĝ� ∈ ∂ε̂k� hk(x
k))} ⊆ Bagg

�+1 if there is compression.

Those inclusions are also automatically satisfied if the bundle is managed as in any
standard method; see Step 4 in Algorithm 3.1 below.

Therefore, when there is a null step, the update of the bundle (and of the model)
does not present any problem. This is as expected, since the function h(·) = hk(·) is
fixed between consecutive serious steps. The situation changes when y� is declared a
serious step. Specifically, the aggregate bundle elements need a special update. We
discuss this case next.

3.2. Adjusting the model after a serious step. Suppose that for some it-
eration � the descent test is satisfied (i.e., condition (2.3) with h replaced by hk) so
that a new stability center xk+1 = y� is generated. This means, in particular, that at
the next iterate we start working with the new function hk+1(·) = hxk+1(·).

As mentioned in [7], conditions (2.4a)–(2.4c) guarantee that the bundle technique
applied to the new function h(·) = hk+1(·) produces a descent step after a finite
number of null steps, or else the point xk+1 is a minimum of hk+1(·). However,
condition (2.4a) (with � = � + 1) is not automatic in our setting, and the model may
need to be properly adjusted. Indeed, even though

ψ�(y) ≤ hk(y),

and c+(xk) + 〈ĝi, y − xk〉 − ε̂ki ≤ hk(y), i ∈ Bagg
� ,

the same inequalities may not hold with hk replaced by hk+1. Specifically, if f(xk) <
f(xk+1), which is possible, then we have that hk(y) ≥ hk+1(y). Thus, the key rela-
tions (2.4a)–(2.4c) are not guaranteed and, in general, do not hold.
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There are various ways to ensure (2.4a)–(2.4c) after a serious step is taken. In
fact, as discussed in [7], any approximation satisfying (2.4a) is acceptable—even a
bad one—because the future null steps satisfying (2.4b) and (2.4c) would eventually
build up a good approximation (of course, starting with a bad approximation is com-
putationally inefficient). We next present one approach to ensure that all bundle
elements correspond to appropriate approximate subgradients of the new function
hk+1 at xk+1 so that both convergence and computational efficiency are guaranteed.
For oracle bundle elements, we need only center (separate) linearization errors of f
and c at the new point xk+1. For the aggregate bundle elements, some special care is
needed.

Lemma 3.2. Let ψ� be defined by (3.4), using (3.2) and (3.3). Suppose that the
associated y� is declared a serious step, i.e., xk+1 = y�. Then the following holds:

(i) For each i ∈ Boracle
� , the linearization errors

efk+1
i

= efki + f(xk+1) − f(xk) + 〈gif , xk − xk+1〉,
ec

k+1
i = ecki + c(xk+1) − c(xk) + 〈gic, xk − xk+1〉

(3.5)

satisfy (3.1) with k = k + 1. As a result, gihk+1
∈ ∂ek+1

i
hk+1(x

k+1), where ek+1
i ≥ 0

and gihk+1
are defined in (3.3) with k replaced by k + 1.

(ii) For each i ∈ Bagg
� , define

ε̂k+1
i := ε̂ki + c+(xk+1) − c+(xk) + (f(xk+1) − f(xk))+ + 〈ĝi, xk − xk+1〉.(3.6)

Then ε̂k+1
i ≥ 0 and ĝi ∈ ∂ε̂k+1

i
hk+1(x

k+1).

Proof. Let i ∈ Boracle
� . Because gif ∈ ∂efki f(xk), for all y ∈ R

n we have that

f(y) ≥ f(xk) + 〈gif , y − xk〉 − efki
= f(xk+1) + 〈gif , y − xk+1〉

− (efki + f(xk+1) − f(xk) + 〈gif , xk − xk+1〉).

Hence, gif ∈ ∂efk+1

i

f(xk+1). By the same argument, gic ∈ ∂eck+1
i

c(xk+1). Since f and

c are convex, and efki and ecki are nonnegative, (3.5) implies that efk+1
i

, ec
k+1
i ≥ 0.

The remaining assertion of item (i) then follows by applying Lemma 3.1, where the
quantities (�, k, efki , ec

k
i ) are replaced by (� + 1, k + 1, efk+1

i
, ec

k+1
i ), respectively.

Now, let i ∈ Bagg
� . By (3.2), ĝi ∈ ∂ε̂ki hk(x

k). Hence, for all y ∈ R
n, it holds that

hk(y) ≥ hk(x
k) + 〈ĝi, y − xk〉 − ε̂ki = c+(xk) + 〈ĝi, y − xk〉 − ε̂ki .(3.7)

In particular, for y = xk+1, using the definitions of hk and ε̂k+1
i , (3.7) yields

max{f(xk+1) − f(xk), c(xk+1)} ≥ c+(xk) + 〈ĝi, xk+1 − xk〉 − ε̂ki

= −ε̂k+1
i + c+(xk+1) + (f(xk+1) − f(xk))+.

Thus, ε̂k+1
i ≥ c+(xk+1) + (f(xk+1) − f(xk))+ − max{f(xk+1) − f(xk), c(xk+1)} ≥ 0.

Now rewrite (3.7) as follows:

hk(y) ≥ c+(xk+1) + 〈ĝi, y − xk+1〉 −
(
ε̂ki + c+(xk+1) − c+(xk) + 〈ĝi, xk − xk+1〉

)
.
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Using (3.6), we obtain that

hk(y) ≥ hk+1(x
k+1) + 〈ĝi, y − xk+1〉 − (ε̂k+1

i − (f(xk+1) − f(xk))+).(3.8)

The assertion of item (ii) follows from (3.8) if we establish that

hk+1(y) ≥ hk(y) − (f(xk+1) − f(xk))+ for all y ∈ R
n.(3.9)

We now prove (3.9).
If f(xk+1) ≤ f(xk), it easily follows that hk+1(y) ≥ hk(y) for all y ∈ R

n. This
obviously implies (3.9). Suppose now that f(xk+1) > f(xk). For y ∈ R

n such
that f(y) − f(xk+1) ≥ c(y), we have that hk+1(y) − hk(y) = −f(xk+1) + f(xk) =
−(f(xk+1)−f(xk))+, and so (3.9) holds. If f(y)−f(xk+1) < c(y) and f(y)−f(xk) ≤
c(y), then hk+1(y) = hk(y) = c(y), implying (3.9). Finally, if f(y) − f(xk+1) < c(y)
and f(y) − f(xk) > c(y), we have that hk+1(y) > f(y) − f(xk+1) = hk(y) + f(xk) −
f(xk+1), which again gives (3.9). The proof is complete.

As a consequence of Lemma 3.2, regardless of whether the �th iteration produced
a null step or a serious step, if

Boracle
�+1 ⊆

⋃
i≤�

{(
fi, ci, efk+1

i
, ec

k+1
i , gif , g

i
c

)}
and Bagg

�+1 ⊆
⋃
i≤�

{(ε̂k+1
i , ĝi)},

then the model

ψ�+1(y) = c+(xk) + max

{
max

i∈Boracle
�+1

{−eki + 〈gihk
, y − xk〉},

max
i∈Bagg

�+1

{−ε̂ki + 〈ĝi, y − xk〉}
}
, k = k(� + 1),

satisfies (2.4a) with � replaced by �+1, with h(·) = hk(·), and with k = k(�+1). Fur-
thermore, if (ε̂k� , ĝ

�) ⊆ Bagg
�+1, then ψ�+1 satisfies (2.4b), and if (f�, c�, ef�, ec�, g

�
f , g

�
c) ⊆

Boracle
�+1 , then ψ�+1 satisfies (2.4c).

3.3. An infeasible constrained proximal bundle method. We are now in
a position to give the algorithm in full detail.

Algorithm 3.1 (infeasible constrained proximal bundle method (ICPBM)).
Step 0. Initialization.

Choose parameters m ∈ (0, 1), tol ≥ 0, and an integer |B|max ≥ 2.
Choose x0 ∈ R

n. Set y0 := x0, and compute (f0, c0, g
0
f , g

0
c ). Set k =

0, � = 1, ef0 := 0, ec0 := 0 and define the starting bundles Boracle
1 :=

{(ef00, ec
0
0, f0, c0, g

0
f , g

0
c )} and Bagg

1 := ∅.
Step 1. Quadratic programming subproblem.

Choose μ� > 0 and compute y� as the solution to

min
y∈Rn

ψ�(y) +
1

2
μ�‖y − xk‖2,(3.10)

where ψ� is defined by (3.4) and (3.3). Compute

ĝ� = μ�(x
k − y�), ε̂k� = c+(xk) − ψ�(y

�) − 1

μ�
‖ĝ�‖2, δ� = ε̂k� +

1

2μ�
‖ĝ�‖2.

Compute (f�, c�, g
�
f , g

�
c) and (efk� , ec

k
� ) using (3.1) written with i = �.
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Step 2. Stopping test.

If δ� ≤ tol, stop.
Step 3. Descent test.

Compute h� := hk(y
�) = max{f� − f(xk), c�}.

If h� ≤ c+(xk) −mδ�, then declare a serious step. Otherwise, declare a null
step.

Step 4. Bundle management.

Set Boracle
�+1 := Boracle

� and Bagg
�+1 := Bagg

� .
If the bundle has reached the maximum bundle size, i.e.,
if |Boracle

�+1 ∪ Bagg
�+1| = |B|max, then:

Delete at least two elements from Boracle
�+1 ∪ Bagg

�+1.

Insert the aggregate couple (ε̂k� , ĝ
�) in Bagg

�+1.

Append (efk� , ec
k
� , f�, c�, g

�
f , g

�
c) to Boracle

�+1 .
Step 5. Model adjustment (serious step).

If y� is a serious step, then:
Define the next stability center: (xk+1, f(xk+1), c(xk+1)) := (y�, f�, c�).
Update the linearization errors for i ∈ Boracle

�+1 using (3.5) in Lemma 3.2.
Update the aggregate errors for i ∈ Bagg

�+1 using (3.6) in Lemma 3.2.
Set k = k + 1.

Loop. Set � = � + 1 and go to Step 1.
Some remarks are in order. Recalling the definition of hk(·), we conclude that if

the descent test is satisfied and a serious step is declared, then it must hold that

f(xk+1) − f(xk) ≤ c+(xk) −mδ�(3.11)

and

c(xk+1) ≤ c+(xk) −mδ�.(3.12)

In particular, if xk is infeasible, then f(xk+1) > f(xk) is possible (since c+(xk) > 0).
Therefore, the method is not monotone with respect to f when outside of the feasible
region. However, outside of the feasible region it is monotone with respect to c because
c(xk+1) < c+(xk) = c(xk) for xk infeasible. This seems intuitively reasonable: while it
is natural to accept the increase in the objective function value in order to decrease
infeasibility, it is not so clear why one would want to decrease the objective function
at the expense of moving away from the feasible region. The situation reverses when
xk is feasible. In that case, c+(xk) = 0 so that f(xk+1) < f(xk). But although (3.12)
implies that xk+1 is feasible too, it is possible that c(xk+1) > c(xk) (except when c(xk)
is exactly zero). This also appears completely reasonable: while preserving feasibility,
we allow c to increase (so that the boundary of the feasible set can be approached),
while at the same time obtaining a decrease in the objective function.

In Algorithm 3.1, we do not specify any rule for choosing the proximal parameter
μ�. Conditions that μ� should satisfy for convergence are very mild, and they are
stated in the convergence results of section 4. That said, a sound strategy for choosing
this parameter is important for computational efficiency. Actually, this is yet another
advantage of having our development closely follow the well-established and well-
tested unconstrained bundle methods: we can use the update rules for the former,
which are already known to perform well in practice; see, e.g., [22, 26, 35].
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Subproblem (3.10) is handled by solving its equivalent quadratic programming for-
mulation

c+(xk) +

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min
(y,t)∈Rn+1

t +
1

2
μ�‖y − xk‖2,

s.t. −eki + 〈gihk
, y − xk〉 ≤ t, i ∈ Boracle

� ,

−ε̂ki + 〈ĝi, y − xk〉 ≤ t, i ∈ Bagg
�

(3.13)

or the dual of this problem. The dual of (3.13) can be written as a QP on the
unit simplex, for which specialized and highly effective methods are available; see,
e.g., [10, 19]. The number of variables in the latter is precisely the number of elements
in the bundle, which shows the importance of Step 4 of Algorithm 3.1.

The following well-known characterization of the solution of (3.10) follows from [3,
Lem. 9.8]. Those relations have already been discussed in section 2, but here we state
them in the notation of Algorithm 3.1.

Lemma 3.3. In the setting of Algorithm 3.1, it holds that
(i) y� = xk − 1

μ�
ĝ�, where ĝ� ∈ ∂ψ�(y

�).

(ii) ĝ� ∈ ∂ε̂k� hk(x
k), where ε̂k� ≥ 0.

In particular, it follows that δ� ≥ 0 in Algorithm 3.1. Moreover, if δ� = 0 for
some k, then ε̂k� = 0 and ĝ� = 0. Hence, 0 ∈ ∂hk(x

k), and xk is a solution to (1.1)
by Theorem 2.1.

4. Convergence results. We assume from now on that the stopping tolerance
tol is set to zero, δ� > 0 for all �, and thus Algorithm 3.1 does not terminate and
generates an infinite sequence of iterates. As usual in the convergence analysis of
bundle methods, we consider the following two possible cases: the number of serious
steps is either infinite or finite (in the second case, the last generated serious step is
followed by an infinite number of null steps).

In what follows, D denotes the feasible set of (1.1), i.e.,

D := {x ∈ R
n | c(x) ≤ 0}.

Given an index k of a serious step, let �(k) be the index of y�, which produced this
serious step, i.e., y�(k) = xk. Finally, the set Ls := {� | y� is a serious step} collects
the indices of serious steps in the sequence {y�}.

Proposition 4.1. For any serious iteration index k0 ≥ 0, it holds that

xk ∈ {x ∈ R
n | c(x) ≤ c+(xk0)} for all k ≥ k0.

In particular, if xk1 ∈ D for some k1 ≥ 0, then xk ∈ D for all k ≥ k1.
Proof. Fix an arbitrary k0 ≥ 0. If k0 is the last serious step (i.e., all the subsequent

steps are declared null), then the first assertion is trivial.
Suppose now that there exists the (k0 + 1)st serious step. If xk0 
∈ D, then (3.12)

implies that c(xk0+1) < c+(xk0) = c(xk0). Furthermore, if xk 
∈ D for all k ≥ k0, then
repeating the above argument we conclude that the sequence {c(xk)} is nonincreasing.
In particular, c(xk) ≤ c(xk0) = c+(xk0) for all k ≥ k0.

Suppose now that xk1 ∈ D for some k1. If k1 is the last serious step, the second
assertion is trivial. If there exists the (k1 + 1)st serious step, then (3.12) implies that
c(xk1+1) ≤ −mδ�(k1+1) < 0. Using (3.12) recursively, we conclude that c(xk) < 0 =

c+(xk1) for all k > k1, i.e., xk ∈ D. Thus the second assertion holds.
Noting that c(xk) < c(xk0) = c+(xk0) for k0 ≤ k ≤ k1, and that c(xk) < 0 ≤

c+(xk0) for k > k1, concludes the proof.
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Proposition 4.2. Let f be bounded below on D, and suppose that Algorithm 3.1
generates an infinite number of serious steps. Then {ε̂k� }�∈Ls → 0. Furthermore,

(i) if

∑
�∈Ls

1

μ�
= +∞,(4.1)

then zero is an accumulation point of the sequence {ĝ�}�∈Ls
.

(ii) if for some μ̄ > 0 it holds that

μ� ≤ μ̄, � ∈ Ls,(4.2)

then {ĝ�}�∈Ls
→ 0.

Proof. We first show that ∑
�∈Ls

δ� < +∞.(4.3)

By Proposition 4.1, either xk 
∈ D for all k, or there exists some index k1 such that
xk ∈ D for all k ≥ k1. We examine the two possibilities separately.

In the first case, (3.12) gives that

mδ�(k+1) ≤ c(xk) − c(xk+1), k ≥ 0.(4.4)

Thus, the sequence {c(xk)} is decreasing, and since xk 
∈ D for all k, this sequence is
bounded below (by zero). It follows that it converges to some c̄ ≥ 0 and, furthermore,
that c(xk) ≥ c̄ for all k. Therefore, summing up the relation (4.4) over all � ∈ Ls, we
obtain that

∑
�∈Ls

δ� ≤
c(x0) − c̄

m
.

Consider now the second case, i.e., xk ∈ D for k ≥ k1 (and let k1 be the first index
such that xk1 ∈ D). Then (3.11) yields

mδ�(k+1) ≤ f(xk) − f(xk+1), k ≥ k1.(4.5)

Hence, the sequence {f(xk)}k≥k1 is decreasing and bounded below by f̄ = inf{f(x) |
x ∈ D}. Recall that for k < k1, xk 
∈ D, and thus (4.4) holds. Summing up the
relations in (4.4) and (4.5), we obtain that

∑
�∈Ls

δ� =
∑

�∈Ls, �<�(k1)

δ� +
∑

�∈Ls, �≥�(k1)

δ� ≤
1

m
(c(x0) − c(xk1−1) + f(xk1) − f̄).

This completes the proof of (4.3).
By the definition of δ� in Algorithm 3.1, for all � it holds that

1

2μ�
‖ĝ�‖2 ≤ δ� and ε̂k� ≤ δ�.(4.6)

By (4.3), {δ�}�∈Ls → 0. It immediately follows that {ε̂k� }�∈Ls → 0. If (4.2) holds, it
clearly follows also that {ĝ�}�∈Ls → 0.
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To prove item (i), suppose that the sequence {‖ĝ�‖}�∈Ls
is bounded away from

zero. Then, by (4.6) and (4.1), we obtain that
∑

�∈Ls
δ� = +∞, in contradiction

with (4.3).
We next exhibit the conditions under which the serious iterates are bounded.
Proposition 4.3. Suppose that problem (1.1) has a solution x̄ and that Algo-

rithm 3.1 generates an infinite sequence of serious steps. Then the sequence {xk} is
bounded if either of the following conditions is satisfied:

(i) The feasible set D is bounded,
or

(ii) there exists some iteration index k1 such that f(x̄) ≤ f(xk) + c+(xk) for all
k ≥ k1 (in particular, this is true if xk1 ∈ D for some k1) and μ� ≥ μ̂, � ∈ Ls for
some μ̂ > 0.

Proof. Since D is a level set of c, it follows that if (i) holds, then the convexity
of c implies that all the level sets of c are bounded. Boundedness of {xk} now follows
from the first assertion of Proposition 4.1.

Suppose now that (ii) holds. (Observe that if xk1 ∈ D for some k1, then xk ∈ D
for all k ≥ k1 by Proposition 4.1. In that case, f(x̄) ≤ f(xk) = f(xk) + c+(xk) holds
automatically.) For � = �(k + 1), we have that

‖xk+1 − x̄‖2 = ‖xk − x̄‖2 − 2

μ�
〈ĝ�, xk − x̄〉 +

1

μ2
�

‖ĝ�‖2

≤ ‖xk − x̄‖2 +
2

μ�

(
hk(x̄) − hk(x

k) + ε̂k� +
1

2μ�
‖ĝ�‖2

)
(4.7)

= ‖xk − x̄‖2 +
2

μ�
(hk(x̄) − hk(x

k) + δ�),

where we have used the fact that xk+1 − xk = y� − xk = ĝ�/μ� and ĝ� ∈ ∂ε̂k� hk(x
k)

(see Lemma 3.3) and the definition of δ� in Algorithm 3.1.
Observe further that

hk(x̄) − hk(x
k) = max{f(x̄) − f(xk), c(x̄)} − c+(xk).

The quantity above is clearly nonpositive if f(x̄)−f(xk)−c+(xk) ≤ 0. This inequality
is ensured by the second condition in (ii) for all k ≥ k1. In that case, (4.7) (using also
that μ� ≥ μ̂ > 0) yields

‖xk+1 − x̄‖2 ≤ ‖xk − x̄‖2 +
2

μ̂
δ�, k ≥ k1, � = �(k + 1) ∈ Ls.(4.8)

By (4.3) and [34, Lem. 2, p. 44], we conclude that the sequence {‖xk+1−x̄‖} converges.
Hence, the sequence {xk} is bounded.

The assumption that the feasible set of (1.1) is bounded was also imposed in [8,
20, 23, 25, 29]. According to Proposition 4.3, we do not need this assumption if
the iterates enter the feasible region. Methods in [17] are all feasible, except for
the “phase I–phase II” modifications briefly sketched in [17, Ch. 5.7]. The main
convergence result therein is [17, Thm. 5.7.4], which does not assume boundedness
of the feasible set, but also does not establish the existence of accumulation points
for infeasible sequences of serious steps. Rather, the analysis concerns properties of
accumulation points, without claiming their existence.

We next present the final convergence result for the case of the infinite number
of serious steps.
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Theorem 4.4. Assume that (1.1) satisfies the Slater constraint qualification and
that its solution set is nonempty. Suppose that Algorithm 3.1 generates an infinite
sequence of serious steps, which is bounded (this holds, for example, under any of the
two assumptions of Proposition 4.3).

If condition (4.1) holds, then the sequence {xk} has an accumulation point which
is a solution to (1.1).

If condition (4.2) holds, then all the accumulation points of {xk} are solutions
to (1.1).

If either (4.1) or (4.2) holds, then in the setting of Proposition 4.3(ii), the whole
sequence {xk} converges to a solution to (1.1).

Proof. Fix an arbitrary y ∈ R
n. By Lemma 3.3, for any serious step index k, it

holds that

hxk(y) ≥ c+(xk) + 〈ĝ�, y − xk〉 − ε̂k� , � = �(k) ∈ Ls.(4.9)

If (4.1) holds, there exists a subsequence of {ĝ�}�∈Ls converging to zero (by Proposi-
tion 4.2). Also, {ε̂k� }�∈Ls → 0. Since {xk} is bounded, taking a further subsequence
(if necessary), and passing to the limit in (4.9), we obtain that

hx̄(y) ≥ c+(x̄) + 〈0, y − x̄〉 − 0 = c+(x̄) = hx̄(x̄),

where x̄ is an accumulation point of {xk}. Since y ∈ R
n is arbitrary, the above

means that

min{hx̄(y) | y ∈ R
n} = hx̄(x̄) = c+(x̄).(4.10)

According to Theorem 2.1, it remains to prove that

hx̄(x̄) = c+(x̄) = 0.

If c+(x̄) > 0, by continuity it holds that c+(y) = c(y) > f(y) − f(x̄) for all y
in some neighborhood of x̄. Hence, in such a neighborhood, hx̄(y) = c+(y). It
follows from (4.10) that c+(·) has a local minimum at x̄, with c+(x̄) > 0. Since
c+(·) is convex, this minimum must be also global, which contradicts the fact that
D = {x ∈ R

n | c+(x) = 0} 
= ∅.
If (4.2) holds, then {ĝ�}�∈Ls → 0, and we can repeat the above argument by

passing to the limit along any convergent subsequence of {xk}.
Finally, in the setting of Proposition 4.3(ii), we can choose x̄ in (4.8) as an

accumulation point of {xk}, which is a solution to (1.1). Then {‖xk − x̄‖} conv-
erges. Since it has a subsequence converging to zero, it must be the case that {xk} →
x̄.

We conclude by considering the case when the number of serious steps is finite,
i.e., there exists �ast = max{� | � ∈ Ls}. We denote the corresponding last serious
iteration by k�ast. Then the function h(·) = hxk�ast (·) is fixed from that point on,
and the algorithm generates only null steps. The fact that xk�ast is a solution to (1.1)
can be proved similarly to standard results on bundle methods; see, e.g., [7]. Note,
however, that unlike [7] we do not assume that the proximal parameter is fixed after
the last serious step.

Theorem 4.5. Assume that (1.1) satisfies the Slater constraint qualification.
Suppose that Algorithm 3.1 takes a finite number of serious steps. If μ̄ ≥ μ�+1 ≥ μ�

for all � ≥ �ast, then xk�ast is a solution to (1.1).
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Proof. In what follows, we consider � ≥ �ast and denote h(·) = hxk�ast (·). Observe
first that for any y ∈ R

n,

lk,�(y) = h(xk�ast) − ε̂k� + 〈ĝ�, y − xk�ast〉
= ψ�(y

�) + μ�〈xk�ast − y�, y − y�〉.

In particular, lk,�(y
�) = ψ�(y

�) and, further,

lk,�(y) +
1

2
μ�‖y − xk�ast‖2

(4.11)

= ψ�(y
�) +

1

2
μ�‖y� − xk�ast‖2 +

1

2
μ�‖y − y�‖2, y ∈ R

n.

We have that

h(xk�ast) ≥ ψ�+1(x
k�ast)

≥ ψ�+1(y
�+1) +

1

2
μ�+1‖y�+1 − xk�ast‖2

(4.12)

≥ lk,�(y
�+1) +

1

2
μ�‖y�+1 − xk�ast‖2

= ψ�(y
�) +

1

2
μ�‖y� − xk�ast‖2 +

1

2
μ�‖y�+1 − y�‖2,

where the first inequality holds by (2.4a), the second inequality by the definition of
y�+1, the third by (2.4b) and μ�+1 ≥ μ�, and the equality holds by (4.11).

It follows from (4.12) that the sequence {ψ�(y
�) + 1

2μ�‖y� − xk�ast‖2} is nonde-
creasing and bounded above. Hence, it converges. Fixing y = xk�ast in (4.11), we
have that

h(xk�ast) ≥ lk,�(x
k�ast) =

(
ψ�(y

�) +
1

2
μ�‖y� − xk�ast‖2

)
+

1

2
μ�‖y� − xk�ast‖2,

where the inequality holds by (2.4a) and (2.4b). Since {ψ�(y
�) + 1

2μ�‖y� − xk�ast‖2}
converges, it follows that {y�} is bounded. Also, since {μ�} is bounded below by
μ�ast > 0, (4.12) implies that

{y�+1 − y�} −→ 0, � −→ ∞.(4.13)

Since {y�} is bounded, the convex function h can be considered Lipschitz-continuous
(on the bounded set of interest), and we further have that {ĝ�} is bounded on that
set. Hence,

L‖y�+1 − y�‖ ≥ h(y�+1) − h(y�)

≥ ψ�+1(y
�+1) − h(y�)

≥ 〈ĝ�, y�+1 − y�〉,

where the second inequality holds by (2.4a) and the third by (2.4c). Thus (4.13)
implies that

{h(y�) − ψ�+1(y
�+1)} −→ 0, � −→ ∞.(4.14)
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Let ȳ be any accumulation point of {y�}, i.e., {y�i} → ȳ as i → ∞. Note that,
by (4.13), we have that {y�i−1} → ȳ. Then (4.14) and the continuity of h imply that

{ψ�i(y
�i)} −→ h(ȳ), i −→ ∞.(4.15)

Moreover, for any y ∈ R
n, we have that

h(y) ≥ ψ�(y) ≥ ψ�(y
�) + 〈ĝ�, y − y�〉 = ψ�(y

�) + μ�〈xk�ast − y�, y − y�〉,

where the first inequality holds by (2.4a) and the other relations hold by Lemma 3.3.
Passing to the limit along the specified subsequence as i → ∞, and using (4.15), we
conclude that

h(y) ≥ h(ȳ) + μ̃〈xk�ast − ȳ, y − ȳ〉, y ∈ R
n,

where μ̃ is the limit of the (nondecreasing and bounded above) sequence {μ�}. It
follows that

μ̃(xk�ast − ȳ) ∈ ∂h(ȳ),(4.16)

or equivalently,

ȳ is the solution to min
y∈Rn

h(y) +
1

2
μ̃‖y − xk�ast‖2.

In particular, the latter means that

h(ȳ) +
1

2
μ̃‖ȳ − xk�ast‖2 ≤ h(xk�ast).(4.17)

On the other hand, since the descent test never holds for � ≥ �ast, we obtain that

h(y�) − h(xk�ast) > −mδ�

= −m

(
h(xk�ast) − ψ�(y

�) − 1

2
μ�‖y� − xk�ast‖2

)
≥ −m(h(xk�ast) − ψ�(y

�)).

Passing to the limit along the specified subsequence as i → ∞, and using (4.15), we
obtain that

0 ≥ (1 −m)(h(xk�ast) − h(ȳ)).

As m ∈ (0, 1), we have that h(xk�ast) ≤ h(ȳ). But then (4.17) implies that ȳ = xk�ast .
Recalling (4.16), we have that 0 ∈ ∂h(xk�ast), where h(·) = hxk�ast (·). By Theorem 2.1,
xk�ast is a solution to (1.1).

5. Preliminary computational experience. For our numerical assessment,
we use the following set of academic problems:

• CHAIN, a problem that minimizes a linear function over a piecewise quadratic
constraint set. The physical interpretation of this problem is to find the equilibrium
of a bidimensional chain formed by 20 links. The chain has end points fixed at the
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Table 5.1

Some problem data.

Name n f(x̄) Feasible x0 Infeasible x0

CHAIN 38 −9.103962328 see (5.1a) see (5.1b)

MAXQUAD 10 −0.368166 xi = 0 xi = 10

LOCAT 4 23.88676767 (15, 22, 26, 11) xi = 10

MINSUM 6 68.82956 (0, 0, 0, 0, 3, 0) xi = 10

ROSEN 4 −44 xi = 0 (−1, 2,−3,−4)

HILBERT 50 0 − xi = 10

coordinates (0, 0) and (1, 0). The length of each link should be less than 0.10; see [25,
p. 146]. To choose the starting point, we consider two chains lying on the horizontal
axis with end points as above, but different lengths:

Feasible: 20 identical links, each one of length 0.10.(5.1a)

Infeasible: 20 identical links, each one of length 0.12.(5.1b)

• MAXQUAD, a problem in which the piecewise quadratic objective function is
taken from [24, p. 151], and the constraint is given by c(x) = max{maxi=1,... ,10

|xi| ≤ 0.05,
∑10

i=1 xi ≤ 0.05}.
• LOCAT, a minimax location problem of dimension 4 with the objective function

given by the maximum of weighted normed functions, and with a piecewise quadratic
constraint [4].

• MINSUM, a minsum location problem of dimension 6, with the objective function
given by a weighted sum of norms, and a linear constraint [4].

• ROSEN, the Rosen–Susuki problem from [15, p. 66]. It has dimension 4, solution
x̄ = (0, 1, 2,−1), f(x) = x2

1 + x2
2 + 2x2

3 + x2
4 − 5x1 − 5x2 − 21x3 + 7x4, and

c(x) = max

⎧⎪⎨
⎪⎩
x2

1 + x2
2 + x2

3 + x2
4 + x1 − x2 + x3 − x4 − 8

x2
1 + 2x2

2 + x2
3 + 2x2

4 − x1 − x4 − 10

x2
1 + x2

2 + x2
3 + 2x1 − x2 − x4 − 5

⎫⎪⎬
⎪⎭ .

• HILBERT, a Hilbert-like feasibility problem of dimension n. For f(x) ≡ 0, the

constraint is given by c(x) = maxi≤n{maxk≤n |
∑n

=1
xj−1

i+k+j−2 |}, so x̄ = (1, . . . , 1) is
the solution.

Table 5.1 shows some additional relevant data for the problems, including the
dimensionality, optimal value, and starting points. For each of the problems we used
two starting points: feasible and infeasible. The exception is HILBERT, which is a
feasibility problem, and so only an infeasible starting point is of interest.

Since all these problems have known optimal values, the exact improvement func-
tion hx̄ is available. For comparison purposes, we first solve the unconstrained
problem of minimizing hx̄ using n1cv2, the proximal bundle method for uncon-
strained problems described in [26] (with QP subproblems solved by the method de-
scribed in [19]) and available upon request from www-rocq.inria.fr/estime/modulopt/
optimization-routines/n1cv2.html. These runs can be thought of as providing an ideal
situation, in which the constrained optimization problem (1.1) is replaced by a single
(equivalent) unconstrained problem. The obtained results can therefore be used as
a benchmark for icpbm, whose implementation was built on top of n1cv2 and, in
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Table 5.2

Summary of results.

CHAIN MAXQUAD LOCAT MINSUM ROSEN HILBERT

Iter Acc Iter Acc Iter Acc Iter Acc Iter Acc Iter Acc

n1cv2

x0 feas. 112 4 65 4 22 6 57 6 20 6 - -

n1cv2

x0 infeas. 167 4 97 5 33 6 63 6 22 6 31 7

icpbm

x0 feas. 210 5 160 6 19 6 86 5 38 5 - -

icpbm

x0 infeas. 361 4 241 5 30 6 115 5 37 5 29 5

particular, employs the same warm start-ups and update rules for all parameters,
including the crucial update of μ�.

All runs were performed on a 400 MHz Pentium II with 128 Mb RAM. The size
of the bundle was limited to 100 elements. Optimality is declared when

ε̂k� ≤ 10−4 and ‖ĝ�‖2 ≤ 10−8.

We note that the above split stopping criterion is generally preferable to the one based
on δ�, because the split criterion does not depend on μ�.

Our numerical results are reported in Table 5.2. For each run, and for both
algorithms, we give the total number of iterations (i.e., calls to the oracle) and the
final accuracy with respect to the (known) optimal value of the problem (i.e., the
number of exact digits in the final objective function value). In all cases, the final
value of the constraint obtained with icpbm was less than 10−4.

In our opinion, Table 5.2 shows a reasonable performance of icpbm. In all the
cases, the method succeeds in obtaining a reasonably high accuracy, at the price of less
than three times the number of oracle calls required by n1cv2 to solve the “ideal” un-
constrained problem of minimizing hx̄. Furthermore, the results for HILBERT (whose
objective function is constant) confirm that the two codes are almost equally efficient
when solving a problem of the same complexity (in that case, in some sense uncon-
strained). With respect to the influence of starting points, icpbm’s behavior does not
seem much affected by the choice of an infeasible x0. The slowest convergence is ob-
served in CHAIN and MAXQUAD. We conjecture that some undesirable bound interferes
with these problems (a similar behavior is observed for n1cv2).

In our opinion, comparing our numerical results with those obtained by other
authors is problematic, even if some of our test problems seem similar to theirs. First
of all, when discussing numerical results in NSO, an important issue arises, which
is sometimes referred to as the “curse of nondifferentiability.” Namely, because of
discontinuity of the subdifferential, even the same code can produce very different
outputs when running on different computational platforms; see [3, p. 102]. This phe-
nomenon, together with the lack of a standard, universally accepted NSO problems
library, makes broad numerical comparisons difficult. Thus some caution should be
exercised when making the conclusions. Nevertheless, the limited experience reported
above suggests that the approach presented in this paper is computationally viable.
But to be fair, we should mention that our results appear worse than those reported
in [23] for some of the same problems. However, we note that even our results for
minimizing the fixed “ideal” unconstrained function hx̄ by n1cv2 are worse than what
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Fig. 5.1. Constraint values for LOCAT.

is reported in [23]. For example, while on average the five algorithms in [23] solve
MAXQUAD in 33/42 iterations (for the feasible/infeasible starting point, respectively),
n1cv2 needs 65/97 iterations to minimize hx̄. We do not have a specific explana-
tion, as this could be caused by various implementational differences, all secondary
to the ideas of the respective methods themselves: rules for choosing the proximal
parameter, linesearch rules, bundle selection rules, oracle rules for choosing subgra-
dients, treating linear constraints and bounds inside or outside of QP subproblems,
etc.

In particular, one implementational difference, which can be significant, is that
in [23] some linear constraints are inserted into the QP subproblems, while we do not
make a distinction between linear and nonlinear constraints. In fact, the results of
ours that compare better to the results in [23] are precisely the two problems which do
not have any linear constraints, i.e., LOCAT and ROSEN (19/30 and 38/37 iterations for
icpbm versus 12/15 and 22/30 iterations on average for the five algorithms in [23]).
For this reason, we made a more thorough study of the performance of icpbm on
these two problems. Specifically, we analyze whether the algorithm is closely follow-
ing the (curved) boundary of the feasible set, a behavior that is known to prevent
fast convergence. Figures 5.1 and 5.2 show, for LOCAT and ROSEN, respectively, the
(last iterates of the) constraint values generated by icbpm, starting from feasible and
infeasible points.

In Table 5.2 we see that the faster convergence is achieved for LOCAT, which, as
shown in Figure 5.1, is not generating iterates close to the boundary of the feasible
set. By contrast, this phenomenon does occur in ROSEN: note that the scale in the
vertical axis of Figure 5.1 is 10 times larger than in Figure 5.2.

We next analyze the effect of constraint scaling, which is a general concern in con-
strained optimization. We ran icpbm on nine instances of the test problem LOCAT, with
the constraints multiplied by a factor in the range {0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100}.
We kept the same stopping tolerances as for the unscaled problem and obtained, for
all instances, between 6 and 9 digits of accuracy, with (unscaled) constraint values of
the order of 10−3 or better.

Figure 5.3 shows, for both feasible and infeasible starting points, icpbm’s total
number of iterations in relation to the scaling factor, displayed in the semilogarithmic
scale. As expected, the number of iterations increases as the factor gets bigger.



BUNDLE METHOD FOR CONSTRAINED CONVEX OPTIMIZATION 167

0 2 4 6 8 10 12 14 16
5

5

0

0.5

1

1.5

0 2 4 6 8 10 12 14 16
5

5

0

0.5

1

1.5

0 2 4 6 8 10 12 14 16
1.5

1

0.5

0

0.5

1

1.5

Last Iterations

C
on

st
ra

in
t v

al
ue

x0 feasible 

x0 infeasible 

_

_

_

Fig. 5.2. Constraint values for ROSEN.

10
   2

10
   1

10
0

10
1

10
2

0

10

20

30

40

50

60

70

Constraint Scaling Factor

Ite
ra

tio
ns

x0 infeasible 

x0 feasible 

_ _

Fig. 5.3. The effect of scaling.

However, the overall behavior of the algorithm is not dramatically changed, especially
for the infeasible starting point. More precisely, the average number of iterations for
the 9 instances with a feasible starting point is 28, about a 50% increase over the 19
iterations for the unscaled case in Table 5.2. In contrast, the infeasible starting point,
which could be thought of as more difficult, gave an average number of iterations
equal to 32, versus 30 iterations needed for the unscaled case in Table 5.2.

To conclude, we note that in [31, sec. 5] a bundle algorithm for one-dimensional
problems is presented, where an appropriate modification in the definition of lineariza-
tion errors makes directions independent of constraint scaling. Those ideas are also
valid in R

n, and therefore could be incorporated in icpbm, if scaling is of concern.

6. Concluding remarks. We have presented a new idea for handling con-
straints in nonsmooth convex minimization. Among the features of this approach,
which can be useful, we mention the following:

• the method can start from infeasible points;
• the method does not use penalty functions, and thus does not require estimating

a suitable value of penalty parameter;
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• the method does not use complex filter technologies;
• the method is close in spirit and structure to standard unconstrained bundle

methods, and thus can build on the available software and theory (e.g., aggregation
and compression techniques);

• convergence is established under mild assumptions.
Our preliminary numerical results show the viability of the method, although imple-
mentational improvements are both possible and necessary.

An interesting subject of future research could be an extension of the method to
the nonconvex case. This, however, seems to be a nontrivial task, since underlying the
method are properties of the improvement function defined by (1.2), which strongly
rely on convexity. But if a suitable extension of Theorem 2.1 to the nonconvex case
can be found, then one can try to extend the algorithm by using the subgradient
locality measures, instead of the linearization errors, along the lines of [17, 29].

Acknowledgments. We thank the two anonymous referees for careful reading
of our first version and for constructive suggestions.
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[26] C. Lemaréchal and C. Sagastizábal, Variable metric bundle methods: From conceptual to
implementable forms, Math. Program., 76 (1997), pp. 393–410.
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