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Abstract. Linear complementarity problem noted (LCP) becames in present
the subject of many reseach interest because it arises in many areas and it
includes the two important domains in optimization:the linear programming
(LP) and the convex quadratic (CQP) programming. So the researchers aims
to extend the results obtained in (LP) and (CQP) to (LCP). Differents classes
of methods are proposed to solve (LCP) inspired from (LP) and (CQP).

In this paper, we present an infeasible interior point method to solve the
monotone linear complementarity problem. Comparative results of this method
with feasible interior point method are reported.
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1. Introduction

The monotone linear complementarity problem (PCL) is to find vector pair
(x, y) ∈ IRn × IRn that satisfy the following conditions:

y = Mx + q , (x, y) ≥ 0, xty = 0
where: q ∈ IRn and M is an n × n matrix supposed positive semidefinite

(in this case, (PCL) is said monotone).
Linear complementarity problems arises in many areas such as variational

inequalities, economic equilibria problems and bimatrix games. It is known
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that this problem trivially includes the two important domains in optimization:
the linear programming (PL) and the convex quadratic programming (QP)
in their usual formulations, then this problem became the subject of many
reseach interest.The aim of researchers is to extend all results obtained in
(LP) and (QP) to a more general class of problems known as monotone linear
complementarity problems.Two classes of methods have been proposed for
solving this problem:

- Direct methods based on the principle of the simplex method introduced
by dantzing in 1951. The famous algorithm for (LCP) is Lemke’s algorithm
(1969).

- Iterative methods based on interior point methods which became efficient
for solving many optimization problems after the introduction of Karmarkar’s
algorithm in 1984 for linear programming. Many authors tended to generalise
this algorithm for the resolution of nonlinear optimization problems. Two
approachs are proposed: feasible and infeasible interior point methods. For
feasible approach, successive work to solve (LCP) have been described by a
number of authors including Kojima, Mizuno and yoshize, ....

The most important class is the path following method , the algorithm
start with a strictly feasible point neighbour the central path and generates a
sequence of iterates which satisfy the same conditions.

these conditions are an expensive process in general. Most existing codes
make use of a starting point that satisfy strict positivity but not the equality
condition. For this reason, the authors tried to develop algorithms which start
with any strict positive point not necessarly feasible.

More recently, algorithms that do not require feasible starting point have
been the focus of active research (Zhang, Wright, Shanno, ....).These algo-
rithms are called infeasible interior point algorithms.

The paper is organized as follow: In section 2, we describe the feasible path
following methods. A presentation of an infeasible interior point algorithm is
given in section 3. In section 4, we present some numerical and comparative
results between the two algorithms. Concluding remarks are given in section
5.

2. Feasible interior point methods

2.1. Description of the feasible method. The linear complementarity prob-
lem (LCP ) determinates a vector pair (x, y) satisfying:

(LCP )

⎧⎨
⎩

y = Mx + q
(x, y) ≥ 0
xty = 0

............(1)

where M is an n × n matrix and q, x, y are vectors in IRn .
The set of all the feasible solutions is defined by S:
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S = {(x, y) ∈ IR2n \ (x, y) ≥ 0 et y = Mx + q}
and the set of strictly feasible points is Sint :
Sint = {(x, y) ∈ S \ (x, y) > 0}
and the set of solutions of (LCP ) is S(LCP ) :
S(LCP ) = {(x, y) ∈ S \ xty = 0}

Given a vector x, X denotes as the diagonal matrix defined by the vector.
The symbol e represents the vector of all ones with dimension n.
‖.‖ denote the euclidean norm.

Through the paper, we assume that:
(H1) Sint �= ∅

(H2) M is positive semidefinite matrix

We know that (LCP ) can be written as a convex quadratic programming:

⎧⎨
⎩

min xty
y = Mx + q
(x, y) ≥ 0

............(2)

Most of interior point methods are motivated by the logarithmic barrier
function technique, so we apply the logarithmic barrier function to obtain the
following perturbed problem:

⎧⎪⎪⎨
⎪⎪⎩

min

[
xty − μ

n∑
i=1

log(xiyi)

]
, μ > 0

y = Mx + q
(x, y) > 0

...............(3)

The principle of these methods is to solve the system of KKT associated
with (LCP )μ by Newton method, so we have:

(x, y) is an optimal solution of (LCP )μ if and only if (x, y) satisfy the fol-
lowing system:

⎧⎨
⎩

XY e − μe = 0
y = Mx + q
(x, y) > 0

..............(4)

We apply Newton method to solve the system of non linear equations, we gets

the following linear system:
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{
Y Δx + XΔy = XY e − μe
Δy = MΔx

...............(5)

The new iterate is calculate as follow: (x, y) = (x, y) − (Δx,Δy)

The set of all solutions of the system (4) is called Central path following (CT ),
we note it by:

S(CT ) = {(x, y) ∈ Sint \ X y = μe, μ > 0}
The basic algorithm is described as follow:

2.2. Basic Algorithm. Let ε > 0 be a parameter and (0 < α ≤ 0.1) is a
given constant.

Initialisation:Given a strictly feasible pair (x0, y0) ∈ Scen(α) where Scen(α)
is a neighbourhood of the central path,

Scen(α) =

{
(x, y) ∈ Sint \

∥∥∥∥XY e − (
xty

n
)e

∥∥∥∥ ≤ (
xty

n
)α, α > 0

}
k = 0

Iteration:

While: (xk)tyk ≥ ε then:

- Compute: δ =
α

1 − α
, μ = (1 − δ√

n
)
(xk)tyk

n

- Determinate the Newton step (Δxk, Δyk) solution of the system (5).

- The new iterate: (xk+1, yk+1) = (xk, yk) − (Δxk, Δyk), k = k + 1.

End of While.
End of Algorithm.

Theorem 1.

Let 0 < α ≤ 0.1 and δ =
α

1 − α
.

we assume that: (xk, yk) ∈ Scen(α) and μ = (1 − δ√
n

)
(xk)tyk

n
then:

i) (xk+1, yk+1) ∈ Scen(α)



Infeasible interior point method 845

2.3. ii) (xk+1)tyk+1 ≤ (1 − δ

6
√

n
)(xk)tyk

Difficultis. The most expensive step in this algorithm is the initialisation:
the algorithm start with a strictly feasible point which must be neighbour of
the central path. These two conditions are difficults to ensure in practice. To
overcome these problems, we attempt to start the algorithm with any positive
point not necessarly feasible. These algorithms are called infeasible interior
point algorithms.

3. Infeasible interior point methods

The algorithm in this case start with an initial positive point (x0, y0) > 0 and
generate a sequence of iterates solutions of the system of nonlinear equalities:

⎧⎨
⎩

XY e = μe
y = Mx + q
(x, y) > 0

.............(6)

The displacement direction (Δx,Δy) is solution of the following system:

{
Y Δx + XΔy = XY e − μe
Δy − MΔx = y − Mx − q

.............(7)

Then, the new iterate is (x, y) = (x, y) − α(Δx,Δy)
To acheive feasibility and optimality, we introduce a merite function defined

by:

φ(x, y) = xty + ‖Mx + q − y‖
The term xty control optimality and the term ‖Mx + q − y‖ measure feasibil-
ity.

α is introduced in order to ensure the positivity of iterates and to contol the
reduction in φ at each step.

3.1. Basic algorithm (infeasible interior point algorithm). Let ε > 0
be a parameter of précision, γ ∈ (0, 1) is a factor of reduction.

Initialisation: start with: μ0 > 0, (x0, y0) > 0
k = 0, compute φ(xk, yk) = φk

Iteration:

While: φk ≥ ε then:

- Compute: μ = γ
(xk)tyk

n

- Determinate the displacement step (Δxk, Δyk) solution of the linear system:
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{
Y Δx + XΔy = XY e − μe
Δy − MΔx = y − Mx − q

- The new iterate: (xk+1, yk+1) = (xk, yk) − α(Δxk, Δyk), k = k + 1

End of While.
End of Algorithm.

4. Numerical résults

In the implementation of the two algorithms, we have selected the displace-
ment step α by a praticul procedure as follow:

α = min(αx, αy)

αx =

{
min

xi

Δxi
if Δxi > 0

1 else

αy =

{
min

yi

Δyi
if Δyi > 0

1 else

Remark 1. For the initialisation step of the feasible interior point algorithm
we have used Karmarkar’s algorithm and Weighted logarithmic barrier function

4.1. Karmarkar’s algorithm. We use Karmarkar’s algorithm to find a strict

positive point (x0, y0) > 0 by solving the system:

{
y = Mx + q
(x, y) > 0

This system can be written as: Av = q, v ≥ 0..........(8), where A =

[I M ] and v =
[
xT yT

]T ∈ R
2n.

The last system is equivalent to the following linear program:

min
λ

λ s.t. Av + λ(q − Av0) = q, v ≥ 0, λ ≥ 0.............(9)(1)

where v0 > 0, is chosen arbitrary in R
n
+,and λ is an artificial real variable.

Notice that the problem is always feasible, just take v = v0 and λ = 1, and we
have:

If the problem (9) admits a solution (vT , λ)T ∈ R
2n such that λ � ε0 with

ε0 sufficiently small. Then the problem (8) is feasible, otherwise the problem
is not feasible.
To solve the problem (9), we use a variant of Karmarkar’s algorithm.
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4.2. Weighted logarithmic barrier function. To ensure that the initial
point satisfy: (x0, y0) ∈ Scen(α), we introduce a weighted logarithmic barrier
function defined as:

xT y − μ (
∑n

i=1 ri log xiyi) , μ > 0
where r = (r1, r2, ..., rn)

T ∈ R
n, is a weighted vector associated to the loga-

rithmic barrier function with ri > 0, i = 1, .., n.

In this case, the algorithm is described as follows:
A primal-dual weighted (IPM) path-following algorithm

Initialization:

let ε > 0, be a given tolerance and (x0, y0) ∈ Sint, μ0 =
‖X0y0‖√

n
, r =

X0y0

μ0
,

R =diag(r), and set k = 0;
Step 1:
while:(xk)T Ryk ≥ ε do:

• compute η =
n

min
i=1

ri, δ = (1 −
√

2

2
)η, μ = (1 − δ√

n
)
(xk)T Ryk

n
,

• compute a Newton step (Δxk, Δyk) solution from (4).
Step 2:
• updates the iterates: let xk+1 = xk +Δxk, yk+1 = yk +Δyk,and let k = k+1;
and go back to step 1.

End of While.
End of algorithm

4.3. Numerical implementation. The results in number of iterations and

calculation time for some problems with different dimensions are illustrated in
the following table:

n Iter1 Iter2 T1 T2
2 7 5 0.01 0.01
5 6 6 0.11 0.01
8 7 9 0.37 0.05
12 10 9 1.48 0.05
15 11 40 2.63 0.49
20 13 38 7.75 1.10
20 15 51 9.12 1.48

n is the dimension of problems
Iter1 notes the number of iterations of the feasible algorithm
Iter2 notes the number of iterations of the infeasible algorithm
T1 is the calculation time of the feasible algorithm in seconds
T2 is the calculation time of the infeasible algorithm in seconds.
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5. Concluding remarks

In this paper, we have presented an infeasible interior point method for
solving the monotone linear complementarity problem. The feasible algorithm
require the use of two procedures in the stape of initialisation ( Karmarkar’s
algorithm and a weighted logarithmic barrier function to calculate a strictly
feasible point which must be neighbour of the central path.). But in the case
of infeasible algorithm we start the algorithm with any positive point.
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