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AN INFEASIBLE PRIMAL-DUAL ALGORITHM FOR TOTAL
BOUNDED VARIATION–BASED INF-CONVOLUTION-TYPE

IMAGE RESTORATION∗
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Abstract. In this paper, a primal-dual algorithm for total bounded variation (TV)–type
image restoration is analyzed and tested. Analytically it turns out that employing a global Ls-
regularization, with 1 < s ≤ 2, in the dual problem results in a local smoothing of the TV-
regularization term in the primal problem. The local smoothing can alternatively be obtained as
the infimal convolution of the !r-norm, with r−1 + s−1 = 1, and a smooth function. In the case
r = s = 2, this results in Gauss-TV–type image restoration. The globalized primal-dual algorithm
introduced in this paper works with generalized derivatives, converges locally at a superlinear rate,
and is stable with respect to noise in the data. In addition, it utilizes a projection technique which
reduces the size of the linear system that has to be solved per iteration. A comprehensive numerical
study ends the paper.
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1. Introduction. Image denoising based on total bounded variation regulariza-
tion (TV regularization) was introduced in [26]. Since then it has received a consider-
able amount of attention and is widely accepted as a reliable tool in edge preserving
image restoration; see the selected papers [1, 4, 5, 6, 9, 10, 14, 23, 29] and the recent
monograph [32] for further references.

Compared to classical H1-type regularization, such as
∫
Ω |∇u|2!2 dx with u repre-

senting the reconstructed image, or other techniques based on smooth (at least C1)
functionals, the TV term

∫
Ω |Du| is nondifferentiable in the Fréchet sense. This non-

differentiability is responsible for preserving edges in images, but at the same time,
it poses significant numerical challenges. Early computational techniques employed
global smoothing of the bounded variation (BV) seminorm to overcome the nondiffer-
entiability [9, 33]; see also the more recent work [2]. In many cases a C∞-function like∫
Ω(|∇u|2!2 + ε)1/2 dx, with ε > 0 fixed, is used as a smooth approximation of the

nondifferentiable TV term. For small smoothing parameter ε, this technique intro-
duces severe ill-conditioning of second derivatives and adversely affects, e.g., Newton’s
method for solving the first order conditions associated with the smoothed TV-type
problem. To remedy this ill-conditioning, in [6] a (dual) flux variable w is introduced
together with the requirement that the iterates wk stay in the interior of the unit
ball (strict feasibility) in the pointwise almost everywhere sense. Another type of
global regularization is introduced in the primal affine scaling technique in [21], where

∗Received by the editors August 11, 2004; accepted for publication (in revised form) February 22,
2005; published electronically March 3, 2006. This work was supported in part by the “Fonds zur
Förderung der wissenschaftlichen Forschung” under “SRC 03, Optimization and Control.”

http://www.siam.org/journals/sisc/28-1/61326.html
†Department of Computational and Applied Mathematics–MS 134, Rice University, 6100 Main

St., Houston, TX 77005 (hint@caam.rice.edu).
‡Institut für Mathematik und Wissenschaftliches Rechnen, Karl-Franzens-Universität Graz, Hein-

richstraße 36, A-8010 Graz, Austria (ge.stadler@uni-graz.at).

1



2 M. HINTERMÜLLER AND G. STADLER

the interior point treatment acts like a global regularization within a continuation
framework.

As the above-mentioned smoothing of the BV seminorm introduces artificial
global nonlinearity to the problem, several authors studied local smoothing [5, 10, 28];
see [31] for further references. The idea is to keep the original problem formulation to
the largest possible extent. While the above remarks on ill-conditioning persist, in the
local case the BV seminorm is changed only close to kinks. The utilized functionals
are typically only once continuously differentiable as opposed to the C∞-type global
smoothing.

Yet another approach that avoids global smoothing is based on active set tech-
niques; see [15, 17, 18] for closely related algorithms. Utilizing augmented Lagrangian
formulations, these methods predict the set of points where the BV seminorm is non-
differentiable, fix the gradient of the primal variable on this set, and compute it on
the complement set. It turns out that the original problem is approximated by a
sequence of problems which are almost as difficult to solve as the original one. In [15]
this drawback is overcome by using a penalization technique, which, to some extent,
acts like an additional regularization. In [18] a heuristic lumping technique is applied
for solving the auxiliary problems. In numerical practice these active set-type meth-
ods are significantly faster than the widely used gradient descent schemes [26] or fixed
point–type iterations [9, 33].

In this paper, we adopt the Hilbert space perspective of [15, 17, 18]; i.e., we
consider the problem

min
u∈H1

0 (Ω)

µ

2

∫

Ω
|∇u|22 dx +

1

2

∫

Ω
|Ku− z|2 dx + α

∫

Ω
|∇u|r dx,(P)

where Ω ⊂ R2 is an open, bounded (image) domain with Lipschitz-continuous bound-
ary ∂Ω, K : L2(Ω) → L2(Ω) is a continuous linear operator with K∗ its adjoint,
z ∈ L2(Ω) represents given noisy data, µ,α > 0, and |∇u|r = (|ux|r + |uy|r)1/r, with
1 ≤ r < +∞. Typically 0 < µ ( α such that (P) is a close approximation to the
TV-regularized problem

min
u∈BV(Ω)

1

2

∫

Ω
|Ku− z|2 dx + α

∫

Ω
|Du|r,(PBV )

where BV(Ω) denotes the space of functions of bounded variation; i.e., a function u
is in BV(Ω) if the BV seminorm

∫

Ω
|Du|r = sup

{∫

Ω
u div $v dx : $v ∈ (C∞

0 (Ω))2, |$v(x)|s ≤ 1

}
,

with r−1 + s−1 = 1, is finite. We recall that BV(Ω) ⊂ L2(Ω) for Ω ⊂ R2 [12]. For the
discretized version of (P) and as long as K∗K is invertible, we may even choose µ = 0
and obtain stable results; see section 5. A particular instance with K∗K invertible is
given by image denoising where K = id.

The aim of the present paper is to devise an implementable algorithm which
is based on a primal-dual approach, overcomes the difficulties of the methods in
[15, 17, 18], is locally rapidly convergent, and, in contrast to, e.g., [6], takes advantage
of local regularization only. The primal-dual framework is obtained by considering
the Fenchel dual to (P), which turns out to be a bound-constrained concave quadratic
maximization problem. The objective function of the dual problem involves the di-
vergence operator, which is responsible for the solution set not to be a singleton.



PRIMAL-DUAL ALGORITHM FOR TV IMAGE RESTORATION 3

To avoid this nonuniqueness property, we propose a simple Ls-regularization,
with 1 < s ≤ 2 and Ls(Ω) = (Ls(Ω))2, such that the resulting regularized dual
problem admits a unique solution. Let γ > 0 denote the corresponding regularization
parameter. Then, in the context of the primal problem, for w ∈ Rn this regularization
is given by the inf-convolution

φr,γ(w) = inf{|ŵ|r + (rγ)−1|w − ŵ|rr : ŵ ∈ Rn}.

As a consequence, the regularized version of (P) involves the term
∫
Ω Φr,γ(∇u) dx,

with Φr,γ(∇u)(x) = φr,γ(∇u(x)), rather than
∫
Ω |∇u|r dx. In the special case s = 2

we obtain Gauss-TV regularization [28], which was recently shown to be an excellent
choice for medical imaging [20]. The latter statement is mainly based on the fact that
the Gauss-TV regularization employs a local smoothing of | · |2 and allows avoidance
of the adverse staircase or bulkiness effect well known in pure TV regularization; see,
e.g., [3]. Similar effects are obtained for 1 < s < 2. In our model, the choice of γ
influences the amount of local smoothing. Indeed, for small γ one finds that Φr,γ is
close to the BV seminorm, whereas for large γ, strong smoothing of | · |r takes place.
For further techniques to reduce the staircase effect we refer the reader to [19].

The rest of the paper is organized as follows. In section 2 we derive the Fenchel
dual problem of (P), introduce the dual regularization, and discuss some of its aspects.
The primal-dual algorithm is defined in section 3, where we also provide a discussion
of global as well as fast local convergence. In section 4 we consider aspects of the
implementation, and in section 5 we report on our numerical experience with the new
algorithm, validate the theoretical results, and we study the qualitative behavior of
our dual regularization technique.

Throughout the paper we shall frequently use the following notation. For a vector
v ∈ Rn, and r ∈ R we define |v|r := (|v1|r, . . . , |vn|r)& and σ(v) ∈ Rn with σ(v) =
(sign(v1), . . . , sign(vn))&. We use | · |s for the (s-vector norm in Rn. Further we
denote by ) the Hadamard product of vectors, i.e., v ) w = (v1w1, . . . , vnwn)&. For
vector-valued functions we write $p and p(x) ∈ Rn for its value at x. For a symmetric
matrix M ∈ Rm,m, λmin(M) denotes its smallest eigenvalue. In the case when M is
nonsymmetric, λmin(M) is the smallest eigenvalue of 1

2 (M+M&), the symmetrization
of M .

2. The Fenchel dual of (P) and its regularization. For the reader’s conve-
nience we now recall the Fenchel duality theorem in infinite-dimensional spaces; see,
e.g., [11]. For this purpose let V and Y be Banach spaces with topological duals
V ∗ and Y ∗, respectively. Further, let Λ ∈ L(V, Y ) be the space of continuous linear
operators from V to Y , and let F : V → R ∪ {∞}, G : Y → R ∪ {∞} be convex,
proper, and lower semicontinuous such that there exists v0 ∈ V with F(v0) < ∞,
G(Λv0) < ∞, and G continuous at Λv0. Then

inf
v∈V

{F(v) + G(Λv)} = sup
q∈Y ∗

{−F∗(Λ∗q) − G∗(−q)} ,(2.1)

where Λ∗ ∈ L(Y ∗, V ∗) is the adjoint of Λ. The convex conjugates F∗ : V ∗ → R∪{∞},
G∗ : Y ∗ → R ∪ {∞} of F and G, respectively, are defined by

F∗(v∗) = sup
v∈V

{〈v, v∗〉V,V ∗ − F(v)} ,

and analogously for G∗. The conditions imposed on F and G guarantee that the dual
problem (which is the problem on the right-hand side of (2.1)) admits a solution.
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Furthermore, the solutions v̄ ∈ V and q̄ ∈ Y ∗ are characterized by the optimality
conditions

Λ∗q̄ ∈ ∂F(v̄),

−q̄ ∈ ∂G(Λv̄),
(2.2)

where ∂ denotes the subdifferential from convex analysis.

2.1. Fenchel dual of (P). Now we apply the Fenchel calculus to

F(u) :=
1

2

∫

Ω
|Ku− z|2 dx +

µ

2

∫

Ω
|∇u|22dx,

G($q) := α

∫

Ω
|$q|r dx, Λu := (ux, uy)

&,

with V := H1
0 (Ω), Y := L2(Ω), 1 ≤ r < +∞. As a result we obtain

F∗(u∗) :=
1

2
|||u∗ + K∗z|||2H−1 −

1

2
‖z‖2

L2 ,

G∗($q ∗) := I{#w∈L2(Ω):|#w|s≤α a.e. in Ω}($q
∗),

where r−1+s−1 = 1, IS is the indicator function of the set S ⊂ L2(Ω), and |||v|||H−1 =
〈Hµ,Kv, v〉H1

0 ,H
−1 , v ∈ H−1(Ω), with Hµ,K = (K∗K − µ∆)−1. Here 〈· , ·〉H1

0 ,H
−1

denotes the duality pairing between H1
0 (Ω) and its dual H−1(Ω), and ∆ : H1

0 (Ω) →
H−1(Ω).

Setting $p = −$q, then, according to (2.1), the dual problem of (P) is

sup
#p ∈ L2(Ω),

|#p|s ≤ α a.e. in Ω

−1

2
|||div $p + K∗z|||2H−1 +

1

2
‖z‖2

L2 .(P%)

Note that the Fenchel dual of (P) is a bound constrained maximization problem with
a concave quadratic objective function. Further observe that the solution to (P%) is
not unique since the divergence operator has a nontrivial kernel.

From (2.2) we obtain the following characterization of solutions ū and $̄p of (P) and
(P%), respectively:

− µ∆ū + K∗Kū− div $̄p = K∗z in H−1(Ω),(2.3a)

−α(σ(∇ū) ) |∇ū|r−1) + |∇ū|r−1
r $̄p = 0 if |$̄p|s = α,

∇ū = 0 if |$̄p|s < α

}
in L2(Ω).(2.3b)

In (2.3a)–(2.3b) the expression |∇ū|r−1
r can be interpreted as a Lagrange multiplier

for the inequality constraint in the dual problem (P%). We summarize the above
results in the following theorem.

Theorem 2.1. The problems (P) and (P%) are mutually dual, i.e., (2.1) holds
and the solutions ū of (P) and $̄p of (P%) are characterized by (2.3a)–(2.3b). The

solution of (P) is unique, while for two solutions $̄p
1
, $̄p

2
of (P%) there holds div($̄p

1−
$̄p

2
) = 0 and $̄p

1
= $̄p

2
on sets where ∇ū -= 0.

With respect to the special case µ = 0 we point out that
• in [15, Remark 2.1], for K = id, it is shown that the solution ū = ū(µ)

satisfies ū(µ) ⇀ ūBV weakly in L2(Ω) as µ → 0, where ūBV denotes the
unique solution to (PBV );
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• for µ = 0, in [14] the Fenchel predual problem of (P) in an (1-vector-norm
setting is derived. Surprisingly it turns out that the predual of the TV prob-
lem (PBV ) is posed in a Hilbert space. Its structure is similar to (P%). The
underlying function space is H0(div) = {$v ∈ L2(Ω) : div$v ∈ L2(Ω), $v · $n = 0
on ∂Ω}, where $n denotes the outward unit normal to ∂Ω. For a convergence
analysis of the proposed semismooth Newton method, however, an H1-type
regularization of the dual problem is necessary; for details see [14, section 3].

2.2. Regularization. Nonuniqueness of the solution to the dual problem may
cause instabilities in a numerical scheme utilizing primal and dual variables. As a
remedy we propose the following simple Tikhonov-type regularization of (P%):

sup
#p ∈ L2(Ω),

|#p|s ≤ α a.e. in Ω

−1

2
|||div $p + K∗z|||2H−1 +

1

2
‖z‖2

L2 −
γs−1

sαs−1
‖$p‖sLs ,(P%

γ )

where γ > 0 is the regularization parameter and 1 < s ≤ 2. Subtracting the term
s−1α1−sγs−1‖$p‖sLs from the objective functional of (P%) results in an Ls-uniformly
concave objective functional in (P%

γ ). Thus, (P%
γ ) admits a unique solution $̄pγ ∈ L2(Ω)

for every fixed γ > 0.
Due to the reflexivity of the involved function spaces, we compute the Fenchel

dual of (P%
γ ) and study the effect of the dual regularization in the primal problem.

For the Fenchel calculus, we set $p = −$q and

F($q) := I{#w∈L2(Ω):|#w|s≤α}($q) +
γs−1

sαs−1
‖$q‖sLs ,

G(Λ$q) :=
1

2
|||K∗z − div $q|||2H−1 −

1

2
‖z‖2

L2 , Λ$q := div $q,

with Y := H−1(Ω), V := L2(Ω). The Fenchel dual problem of (P%
γ ) is given by

min
u∈H1

0 (Ω)

µ

2

∫

Ω
|∇u|2 dx +

1

2

∫

Ω
|Ku− z|2 dx + α

∫

Ω
Φr,γ(∇u) dx,(Pγ)

where r−1 + s−1 = 1 and, for $w ∈ L2(Ω),

Φr,γ($w)(x) :=

{
|w(x)|r − r−1

r γ1/(r−1) if |w(x)|r ≥ γ1/(r−1),
1
rγ |w(x)|rr if |w(x)|r < γ1/(r−1).

The function Φr,γ is continuously differentiable. Hence, the objective functional in (Pγ)
is continuously differentiable and strictly convex. Thus, (Pγ) admits a unique solution
ūγ ∈ H1

0 (Ω). Further, Φr,γ(∇u) represents a local smoothing of
∫
Ω |∇u|r dx and, as

our analysis shows, it is connected to a particular regularization of the Fenchel dual
of (P%). In the case r = 2 we have

Φ2,γ($w)(x) :=

{
|w(x)|2 − γ

2 if |w(x)|2 ≥ γ,
1
2γ |w(x)|22 if |w(x)|2 < γ.

This choice is related to results in [5, p. 186] and [28], and it is known as Gauss-TV
regularization. In medical imaging it is in many cases superior to the Perona–Malik
filter [24], edge-flat-gray filter [16], and pure TV filtering. Let us also mention that
Φ2,γ is sometimes referred to as Huber function; see [10, 32].
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By (2.2), the solutions ūγ and $̄pγ of the regularized problems (Pγ) and (P%
γ ),

respectively, satisfy

− µ∆ūγ + K∗Kūγ − div $̄pγ = K∗z in H−1(Ω),(2.4a)

γ$̄pγ − α(|∇ūγ |r−1 ) σ(∇ūγ)) = 0 if |$̄pγ |s < α,

|∇ūγ |r−1
r $̄pγ − α(|∇ūγ |r−1 ) σ(∇ūγ)) = 0 if |$̄pγ |s = α

}
in L2(Ω).(2.4b)

One can easily verify that (2.4b) can be equivalently expressed as

max(γ, |∇ūγ |r−1
r )$̄pγ − α(|∇ūγ |r−1 ) σ(∇ūγ)) = 0.(2.5)

This reformulation is fundamental for the algorithm which we propose in the next
section.

Comparing (2.4b) and (2.3b) one finds that our regularization changes the opti-
mality conditions only on subsets of Ω where |∇ūγ |r < γ1/(r−1), i.e., on sets where
the pointwise constraint |$̄pγ |s ≤ α is inactive. At sharp edges in the image, |∇ūγ |r is
large and (2.4b) becomes

|∇ūγ |r−1
r $̄pγ = α(|∇ūγ |r−1 ) σ(∇ū)),

as it would be the case for the original problem (P). As a consequence, our regular-
ization does not smear sharp edges in the image. In addition, our local smoothing
prevents the adverse staircase or bulkiness effect which typically occurs in TV regu-
larization [16, 20]; see the discussion in section 5.2.

The following convergence result for (ūγ , $̄pγ) as γ → 0 justifies our dual regular-
ization analytically. The proof is given in Appendix A.

Theorem 2.2. The solutions ūγ of (Pγ) converge to the solution ū of (P) strongly
in H1

0 (Ω) as γ → 0. Moreover, as γ → 0, the solutions $̄pγ of (P%
γ ) converge to a

solution $̄p of (P%) weakly in L2(Ω).
We conclude this section by pointing out another interesting relation between

the dual regularization, Φr,γ , and inf-convolution. In fact, Φr,γ can be obtained in a
purely primal fashion. For this purpose consider for w ∈ Rn the inf-convolution

φr,γ(w) := inf{|ŵ|r + (rγ)−1|w − ŵ|rr : ŵ ∈ Rn}.

One finds

φr,γ(w) =

{
|w|r − r−1

r γ1/(r−1) if |w|r > γ1/(r−1),
1
rγ |w|

r
r if |w|r ≤ γ1/(r−1).

Thus, Φr,γ($q)(x) = φr,γ(q(x)) for x ∈ Ω.
Remark 2.3. In (P%

γ ) we could have chosen a different form of the regularization
parameter. If we replace γs−1/(sαs−1) by γ̃/s, γ̃ > 0, then (2.5) becomes

max(αγ̃r−1, |∇ūγ̃ |r−1
r )$̄pγ̃ − α(|∇ūγ̃ |r−1 ) σ(∇ūγ̃)) = 0.(2.6)

Choosing γ̃ = γs−1/αs−1, (2.6) is identical to (2.5).

3. Primal-dual algorithm and its convergence. As it turned out in recent
work, primal-dual schemes are typically superior to purely primal methods; see [6, 14].
Thus, we take (2.4a) and (2.5) as the starting point for devising an algorithm for solv-
ing the discrete analogue of (Pγ). In this way we naturally involve the primal variable
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u and the dual variable $p. Consequently, we compute the solutions to the discrete
versions of (Pγ) and (P%

γ ) simultaneously. The algorithm proposed here is related
to semismooth Newton methods [13, 25, 30]. In what follows we denote discretized
quantities by superscript h. For a vector w ∈ Rl we denote by D(w) := diag(w) the
l × l diagonal matrix with diagonal entries wi.

The discrete analogues of (2.4a) and (2.5) are

Bh
µū

h
γ − divh p̄hγ = (Kh)&zh,(3.1a)

max(γeh, ηr(∇hūh
γ)) ) p̄hγ − α

(
|∇hūh

γ |r−1 ) σ(∇hūh)
)

= 0,(3.1b)

where ūh
γ ∈ Rm, p̄hγ ∈ R2m, for some m ∈ N which depends on the image size,

solve the discrete analogues of (Pγ) and (P%
γ ). Further, zh ∈ Rm and ∇h ∈ R2m×m,

and eh ∈ R2m is the vector of all ones. We use Bh
µ = −µ∆h + (Kh)&Kh, with

∆h, (Kh)&Kh ∈ Rm×m. Throughout we assume that Bh
µ is symmetric and positive

definite. Note that this allows µ = 0 if (Kh)&Kh is invertible. The function ηr :
R2m → R2m is defined by

(ηr(v))i = (ηr(v))i+m = |(vi, vi+m)&|r−1
r for v ∈ R2m, 1 ≤ i ≤ m.

The discrete gradient operator is composed as

∇h =

( ∇h
x

∇h
y

)
∈ R2m×m,

where ∇h
x ∈ Rm×m corresponds to the discrete derivative in the x-direction and

∇h
y ∈ Rm×m corresponds to the derivative in the y-direction. In our implementation

we use

divh = −(∇h)&

and the implied ordering for the components of p̄hγ . Subsequently we will frequently
use the mapping ξt : R2m → R2m defined by

ξt(v)i = ξt(v)i+m := |(vi, vi+m)&|t

for v ∈ R2m, i = 1, . . . ,m, and 1 < t < +∞. Note that |ξt(v)|t−1 = ηt(v).

3.1. Approximate generalized Newton step. In the following we present
our algorithm for the solution of (3.1a)–(3.1b). We restrict our discussion to the case
2 ≤ r < +∞ (and thus 1 < s ≤ 2). It is well known that the max-operator and the
(r-norm involved in (3.1b) are generalized differentiable and semismooth [13, 22, 25].
This is also true for the composition of the semismooth functions occurring in (3.1b).
A particular element of the generalized Jacobian (see [8, 13, 25]) of max : Rl → Rl is
the diagonal matrix Gmax ∈ Rl×l with

(Gmax(w))ii :=

{
1 if wi ≥ 0,

0 if wi < 0
for 1 ≤ i ≤ l.

Given approximations uh
k , phk of ūh

γ , p̄hγ , the results on generalized differentiability
and semismoothness alluded to above and our assumption that r ≥ 2 justify the
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application of a Newton step to (3.1a)–(3.1b) at (uh
k , p

h
k):

(
Bh

µ (∇h)&(
−α(r − 1)D(|∇huh

k |r−2) + χAk+1D(phk)Nh
r (∇huh

k)
)
∇h D(mh

k)

)(
δu
δp

)

=

(
−Bh

µu
h
k − (∇h)&phk + (Kh)&zh

α
(
|∇huh

k |r−1 ) σ(∇huh
k)
)
−D(mh

k)phk

)
,

(3.2)

where we use mh
k = max(γeh, ηr(∇huh

k)) ∈ R2m for convenience, and χAk+1 = D(thk) ∈
R2m×2m with

(thk)i :=

{
1 if ηr(∇huh

k)i ≥ γ,

0 else.
(3.3)

Further, Nh
r denotes the Jacobian of ηr; i.e., for v = (vx, vy)& ∈ R2m, with vx, vy ∈

Rm, we have

Nh
r (v) = (r − 1)

(
D(ξr(v))

)−1
(
D(|vx|r−1 ) σ(vx)) D(|vy|r−1 ) σ(vy))
D(|vx|r−1 ) σ(vx)) D(|vy|r−1 ) σ(vy))

)
.

Since D(mh
k) is invertible, we can eliminate δp from the Newton system (3.2).

The remaining equation for δu is written as

Hkδu = fk,(3.4)

where the matrix Hk and the right-hand side fk are defined by

Hk := Bh
µ + (∇h)&D(mh

k)−1
(
α(r − 1)D(|∇huh

k |r−2) − χAk+1D(phk)Nh
r (∇huh

k)
)
∇h,

fk := −Bh
µu

h
k + (Kh)&zh − α∇hD(mh

k)−1
(
|∇huh

k |r−1 ) σ(∇huh
k)
)
.

Note that Hk is the Schur complement of D(mh
k) in the system matrix in (3.2). Further

properties of Hk are addressed next.
First, note that Hk is in general not symmetric, since

Ch
k := α(r − 1)D(|∇huh

k |r−2) − χAk+1D(phk)Nh
r (∇huh

k)

is not. However, in the solution, i.e., for (uh
k , p

h
k) = (ūh

γ , p̄
h
γ) we infer from (3.1b)

that (phk)i = α(ηr∇huh
k))−1

i |∇huh
k |

r−2
i σ(∇huh

k)i holds for all i ∈ {1, . . . , 2m} with
ηr(∇huh

k)i ≥ γ. Thus,

χAk+1D(phk)Nh
r (∇huh

k)

= (r − 1)χAk+1

(
D(ξr(∇huh

k))
)−1

D(phk)

·
(
D(|∇h

xu
h
k |r−1 ) σ(∇h

xu
h
k)) D(|∇h

yu
h
k |r−1 ) σ(∇h

yu
h
k))

D(|∇h
xu

h
k |r−1 ) σ(∇h

xu
h
k)) D(|∇h

yu
h
k |r−1 ) σ(∇h

yu
h
k))

)

= α(r − 1)χAk+1

(
D(ξr(∇huh

k))
)−r

(
D1 D2

D2 D3

)
,

where

D1 = D
(
|∇h

xu
h
k |2r−2

)
,

D2 = D
(
|∇h

xu
h
k |r−1 ) |∇h

yu
h
k |r−1 ) σ(∇h

xu
h
k) ) σ(∇h

yu
h
k)
)
,

D3 = D
(
|∇h

yu
h
k |2r−2

)
.
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Hence, in the solution the matrix Ch
k—and thus the entire system matrix Hk—is

symmetric.
In what follows we investigate definiteness properties of the matrix Hk. Whenever

Hk is not positive definite, these observations lead us to simple modifications to obtain
a uniformly positive definite matrix. This guarantees that in each (approximate)
Newton step a descent direction is computed.

We start by considering properties of Ch
k . Note that one can reorder the indices

such that D(phk)Nh
r (∇huh

k) becomes a block-diagonal matrix where every 2×2 diagonal
block has the structure

(nh
k)i :=

r − 1

(ξr(∇huh
k))i

(
(phk)i|∇h

xu
h
k |

r−1
i σ(∇h

xu
h
k)i (phk)i|∇h

yu
h
k |

r−1
i σ(∇h

yu
h
k)i

(phk)i+m|∇h
xu

h
k |

r−1
i σ(∇h

xu
h
k)i (phk)i+m|∇h

yu
h
k |

r−1
i σ(∇h

yu
h
k)i

)

for 1 ≤ i ≤ m. By this reordering, Ch
k is transformed into a block-diagonal matrix

with diagonal blocks

(chk)i := α(r − 1)

(
|∇h

xu
h
k |

r−2
i 0

0 |∇h
yu

h
k |

r−2
i

)
− (thk)i(n

h
k)i,(3.5)

where (thk)i ∈ {0, 1} is defined in (3.3). Obviously, (chk)i is positive semidefinite for
all inactive indices, i.e., for all i with (thk)i = 0. It remains to find conditions which
imply that (chk)i is positive semidefinite whenever (thk)i = 1. It is well known that
positive semidefiniteness of (chk)i is characterized by nonnegativity of all eigenvalues of
its symmetrization. Therefore, we compute the eigenvalues λ((ĉkh)i)+ and λ((ĉkh)i)−

of (ĉhk)i :=
(
(chk)i + (chk)&i

)
/2, where

(chk)i = (r − 1)

(
ak,i bk,i
ck,i dk,i

)

with

ak,i = α|∇h
xu

h
k |r−2

i − (ξr(∇huh
k))−1

i (phk)i|∇h
xu

h
k |r−1

i σ(∇h
xu

h
k)i,

bk,i = −(ξr(∇huh
k))−1

i (phk)i|∇h
yu

h
k |r−1

i σ(∇h
yu

h
k)i,

ck,i = −(ξr(∇huh
k))−1

i (phk)i+m|∇h
xu

h
k |r−1

i σ(∇h
xu

h
k)i,

dk,i = α|∇h
yu

h
k |r−2

i − (ξr(∇huh
k))−1

i (phk)i+m|∇h
yu

h
k |r−1

i σ(∇h
yu

h
k)i.

Since we are considering the case (thk)i = 1, from (3.3) it follows that (ξr(∇huh
k))i > 0

and thus the above expressions are well defined. For the eigenvalues of (ĉhk)i we obtain

λ((ĉhk)i)
± =

ak,i + dk,i
2

±

√(
ak,i + dk,i

2

)2

+

(
bk,i + ck,i

2

)2

− ak,idk,i.(3.6)

Let us now assume that the following two conditions hold:

ξs(p
h
k)i ≤ α and (bk,i + ck,i)

2 ≤ 4ak,idk,i.(C)

The first condition implies that ak,i ≥ 0 and dk,i ≥ 0. The second condition yields
that (bk,i + ck,i)2/4 − ak,idk,i is nonpositive. Comparing with (3.6) we obtain that
both eigenvalues λ((ĉhk)i)± are nonnegative real numbers, and hence (chk)i is positive
semidefinite.
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Let us briefly interpret the conditions in (C). The condition ξs(phk)i ≤ α corre-
sponds to feasibility of the dual variable. Assuming that this condition holds, the
latter condition in (C) is more likely to be satisfied if the matrix (chk)i is close to a
symmetric matrix, which can be seen as follows: assuming bk,i = ck,i we obtain

(bk,i + ck,i)2

4
− ak,idk,i = bk,ick,i − ak,idk,i

= −α2|∇h
xu

h
k |r−2

i |∇h
yu

h
k |r−2

i + α(ξr(∇huh
k))−1

i

· |∇h
xu

h
k |r−2

i |∇h
yu

h
k |r−2

i

(
(phk)i+m(∇h

yu
h
k)i + (phk)i(∇h

xu
h
k)i

)

≤ α|∇h
xu

h
k |r−2

i |∇h
yu

h
k |r−2

i (−α + (ξs(p
h
k))i)

≤ 0.

(3.7)

Above, the Hölder inequality and the assumption that ξs(phk)i ≤ α are used. We
summarize our results in the following lemma.

Lemma 3.1. Assume that condition (C) holds for all i ∈ {1, . . . ,m}. Then the
matrix Ch

k is positive semidefinite.
An immediate corollary of Lemma 3.1 is stated next.
Corollary 3.2. Let the assumption (C) hold for all i ∈ {1, . . . ,m} and k ∈ N.

Then, for all k ∈ N, the matrix Hk is positive definite, and λmin(Hk) ≥ λmin(Bh
µ) > 0.

Moreover, the sequence {H−1
k }k∈N is uniformly bounded.

Proof. The assertions follow from the fact that Bh
µ = −µ∆h + (Kh)&Kh is

symmetric and positive definite by assumption and from Lemma 3.1.
In the case r = s = 2 the second assumption in (C) is automatically satisfied, as

can be seen from the next lemma.
Lemma 3.3. In the case r = s = 2, the first condition in (C) implies the latter;

i.e., feasibility of the dual variable implies positive semidefiniteness of the matrix Ch
k .

Proof. Suppose that r = s = 2 and that the first condition in (C) is satisfied.
Then, for k ∈ N and i ∈ {1, . . . ,m},

(bk,i + ck,i)
2/4 − ak,idk,i

= (2ξ2(∇huh
k)i)

−2
(
(phk)2i (∇yu

h
k)2i + (phk)2i+m(∇xu

h
k)2i

− 2(phk)i(p
h
k)i+m(∇xu

h
k)i(∇yu

h
k)i

)
− α2

+ αξ2(∇huh
k)−1

i

(
(phk)i(∇xu

h
k)i + (phk)i+m(∇yu

h
k)i

)

= (2ξ2(∇huh
k)i)

−2
((

phk)2i + (phk)2i+m

)(
(∇xu

h
k)2i + (∇yu

h
k)2i

)

−
(
(phk)i(∇xu

h
k)i + (phk)i+m(∇yu

h
k)i

)2)− α2

+ αξ2(∇huh
k)−1

i

(
(phk)i(∇xu

h
k)i + (phk)i+m(∇yu

h
k)i

)

= −
(
α− (2ξ2(∇huh

k)i)
−1

(
(phk)i(∇xu

h
k)i + (phk)i+m(∇yu

h
k)i

))2

+
(
(phk)2i + (phk)2i+m

)
/4

≤ −α2/4 +
(
(phk)2i + (phk)2i+m

)
/4

≤ 0.
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Thus, for r = s = 2, the second condition in (C) follows from ξs(phk)i ≤ α as asserted
in the lemma.

Whenever (C) is satisfied, Lemma 3.1 and Corollary 3.2 guarantee that the so-
lution of (3.4) exists for all k and that it is a descent direction for the objective
function in (Pγ). In general, however, the assumptions in (C) are unlikely to hold for
all i ∈ {1, . . . ,m} and k ∈ N. To guarantee the positive definiteness of the system
matrix in our Newton-type step, in the subsequent algorithm we modify the term
involving D(phk)Nh

r (∇huh
k) for indices i which violate (C).

As above, we work with the reordered system matrix and consider for i ∈ {1, . . . ,m}
the 2×2 matrix (chk)i as defined in (3.5). To enforce the first condition in (C) we re-

place
(
(phk)i, (phk)i+m

)
by αmax

(
α, ξs(phk)i

)−1(
(phk)i, (phk)i+m

)
when assembling the

system matrix; i.e., we project phk onto the feasible set. The resulting 2×2 matrix is
denoted by

(c̃hk)i =

(
ãk,i b̃k,i
c̃k,i d̃k,i

)
.

Due to the projection step we have ãk,i ≥ 0 and d̃k,i ≥ 0. Then we check whether
(b̃k,i + c̃k,i)2/4 − ãk,id̃k,i ≤ 0 is satisfied. If this is not the case we dampen the

off-diagonal elements by νk,i = 2
√
ãk,id̃k,i/|b̃k,i + c̃k,i|. From this we obtain

(˜̃c
h
k)i =

(
ãk,i νk,ib̃k,i

νk,ic̃k,i d̃k,i

)
.

The resulting 2×2 matrix is positive semidefinite; i.e., its symmetrization has nonneg-
ative eigenvalues. Revoking the reordering of the indices results in a modified system
matrix which we denote by H+

k . It replaces Hk in (3.4). We have the following result
(compare with Corollary 3.2, also for a proof).

Lemma 3.4. The matrix H+
k is positive definite and λmin(H+

k ) ≥ λmin(Bh
µ) > 0,

respectively, for every k ∈ N. Moreover, the sequence {(H+
k )−1}k∈N is uniformly

bounded.

3.2. Algorithm. Now we are prepared for defining our approximate generalized
Newton method for solving (3.1a)–(3.1b). Whenever (C) is not satisfied, it operates
with H+

k ; otherwise the true system matrix Hk is used. In the next section we show
that the new algorithm converges at a locally superlinear rate. This convergence
result parallels the one for generalized Newton methods; see, e.g., [13, 30].

We propose the following algorithm.
Algorithm.
1. Initialize (uh

0 , p
h
0 ) ∈ Rm × R2m and set k = 0.

2. Estimate the active sets, i.e., determine χAk+1 ∈ R2m×2m.
3. Compute H+

k if (C) is not satisfied for all i = {1, . . . ,m}; otherwise set
H+

k = Hk. Solve

H+
k δu = fk

for δu.
4. Compute δp according to (3.2).
5. Update uh

k+1 := uh
k + δu, pk+1 := phk + δp.

6. Stop, or set k := k + 1 and go to step 2.
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Note that during the iteration of our algorithm the dual variable p is allowed to
become infeasible with respect to the discrete version of the Fenchel dual problem
(P%

γ ). This differs significantly from the method in [6], where the dual iterates are
forced to stay in the interior of the feasible region. Such a restriction may lead to
prohibitively small step sizes in Newton’s method.

3.3. Convergence analysis. In this section we investigate convergence proper-
ties of the above algorithm.

Lemma 3.5. Let ūh
γ , p̄hγ be the solutions to the discrete analogues of (Pγ) and

(P%
γ ), respectively, and assume that phk → p̄hγ and uh

k → ūh
γ . Then the modified system

matrices H+
k converge to Hk as k → ∞.

Proof. Our argumentation again utilizes the reordered system. As above we
argue for each 2×2 block separately. For inactive indices, i.e., for i with (thk)i = 0,
the original and the modified 2×2 blocks coincide.

Let us now turn to active indices, i.e., to indices where (thk)i = 1. First note
that the assumption phk → p̄hγ implies that (ξs(phk))i → (ξs(p̄hγ))i ≤ α. Hence, for the
projected dual variables it holds that

αmax
(
α, ξs(p

h
k)
)−1(

(phk)i, (p
h
k)i+m

)
→

(
(p̄hγ)i, (p̄

h
γ)i+m

)
.

Moreover, the matrix (chk)i converges to a symmetric matrix as (uh
k , p

h
k) → (ūh

γ , p̄
h
γ)

(recall the discussion on page 8). Hence, the estimate (3.7) implies that ek,i :=
(bk,i + ck,i)2/4 − ak,idk,i → eγ,i ≤ 0 for all i. If eγ,i < 0, then ek,i < 0 for all k ≥ k0

with some k0 ∈ N. Thus, for all k ≥ k0 no dampening of the off-diagonal elements
occurs. If eγ,i = 0, it is easy to see that νk,i → 1 as phk → p̄hγ and uh

k → ūh
γ . Hence,

all modified 2×2 diagonal blocks converge to the original blocks as k → ∞. Revoking
the reordering of the indices ends the proof.

The local convergence of the above algorithm is the subject of the next theorem.
Theorem 3.6. The iterates (uh

k , p
h
k) of the algorithm converge superlinearly to

(ūh
γ , p̄

h
γ) provided that (uh

0 , p
h
0 ) is sufficiently close to (ūh

γ , p̄
h
γ).

Proof. Recall that (3.1a)–(3.1b) are semismooth. However, since we possibly mod-
ify our system matrix, we end up with an approximate semismooth Newton method,
and fast local convergence does not follow from standard arguments.

Utilizing a technique similar to that in the proof of Lemma 3.5 we can show that
for each ∆ > 0 there exists a radius ρ > 0 such that if (uh

k , p
h
k) is in a ρ-ball around

(ūh
γ , p̄

h
γ), then there exists C2 > 0 with

‖Hk −H+
k ‖ ≤ ∆ and ‖H+

k ‖ ≤ C2.

Thus, the assumptions of Theorem 4.1. in [30] are satisfied. Using this theorem we
obtain that the iterates (uh

k , p
h
k) converge to (ūh

γ , p̄
h
γ) at a linear rate, provided that

(uh
0 , p

h
0 ) is sufficiently close to (ūh

γ , p̄
h
γ). Then, Lemma 3.5 implies that H+

k → Hk.
As a consequence, the assumptions of Theorem 4.2. in [30] are satisfied, which yields
that the iterates converge locally superlinearly.

As a globalization strategy for the above algorithm we use an Armijo linesearch
technique with backtracking for the functional of the primal regularized problem (Pγ).
Let us point out, however, that in our numerical experiments the step size is almost
always equal to one; i.e., a full step of our generalized Newton algorithm leads to a
sufficient decrease in the functional.
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4. Aspects of the implementation. To illustrate the feasibility of our ap-
proach for large scale systems, our implementation utilizes an inexact solve of the
linear system arising in step 3 of the algorithm.

In the case r = 2 (Gauss-TV regularization) the system matrix arising in our
algorithm simplifies and no dampening of the off-diagonal elements is necessary to
obtain positive definiteness of the system matrix (see Lemma 3.3). However, an
immediate application of the preconditioned conjugate gradient (PCG) method for
the solution of the linear system in each Newton step is not feasible since H+

k (like Hk)
is in general not symmetric. Therefore, in our implementation we replace Nh

r (∇huh
k)

by its symmetrization Ñh
k (∇huh

k) := 1/2
(
Nh

r (∇huh
k) +Nh

r (∇huh
k)&

)
. As a result, the

system matrix H̃+
k is symmetric and the PCG method can be applied.

The symmetrization of H+
k is justified by the fact that in the solution the system

matrix Hk (respectively, H+
k ) is symmetric and therefore coincides with its sym-

metrization H̃k (see page 8). Thus, using the symmetrization of H+
k in step 3 of our

algorithm still results in a locally superlinearly convergent algorithm. Obviously, a
similar observation holds true for the case r > 2. However, our numerical experience
shows that proceeding with the nonsymmetric matrix gives slightly better results
with respect to the number of primal-dual iterations (usually 0–3 fewer iterations
are needed). Therefore, we utilize the biconjugate gradient stabilized (BICGSTAB)
algorithm (see, e.g., [27]) to solve the nonsymmetric positive definite linear system
arising in each Newton step. We point out that alternatively one may use specialized
techniques such as the recently developed semiconjugate direction method; see [34].

Next we address the accuracy required when solving the Newton-type system in
every iteration. For this purpose let resk denote the residual of the nonlinear system.
Motivated by the superlinear convergence rate we stop the PCG or the BICGSTAB
iteration as soon as the norm of the residual of the linearized system drops below

tolk+1 := 0.1 min

{(
resk
res0

)3/2

,
resk
res0

}
.

As a preconditioner for the system matrix we use an incomplete Choleski factor of
the symmetrization of H+

k . The algorithm is initialized with a Gaussian smoothing
of the noisy image z and with ph0 = 0. We stop the Newton iteration as soon as the
initial residual is reduced by a factor of 10−6.

5. Numerical results. In this section we present numerical results for the
Gauss-TV case r = 2, as well as for the case r > 2. We discretize the Laplace
operator with the standard five-point stencil with homogenous Dirichlet boundary
conditions and use forward differences for the gradient and the corresponding discrete
adjoint scheme for the divergence operator. Unless otherwise specified we concentrate
on image denoising, i.e., K = id. The choice of the parameters α and γ is based on
the quality of the restored images, i.e., the parameters are adjusted manually.

5.1. Behavior of the algorithm. Here, we study the behavior of our proposed
method with respect to its reconstruction ability, convergence properties such as speed
of convergence, stability with respect to the noise level, the choice of r, and possible
violations of the dual bound constraint during the iteration. In the following section
we provide a qualitative study of the influence of the regularization parameter γ on,
e.g., the staircase effect.
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Fig. 5.1. Example 1: Original image ( 256 × 256 pixels) and image with 20% Gaussian white
noise (upper row), images containing 50% and 80% noise (lower row).

Table 5.1
Example 1: Number of primal-dual iterations (#PD) and overall number of CG iterations

(#CG) for different noise levels.

Noise #PD #CG

20% 11 48
50% 12 58
80% 13 61

5.1.1. Example 1. Our first test examples are displayed in Figure 5.1. On the
upper left-hand side the original 256× 256 image, which is similar to the ones used in
[6, 14], is shown. A degraded image containing 20% of Gaussian white noise is given by
the upper right plot. In the lower row images with a noise level of 50% respectively 80%
are depicted. First we consider Gauss-TV regularization, i.e., r = 2 in (Pγ). We
choose µ = 0, γ = 10−3, and α = 0.35 for denoising the image with 20% noise. For
the images containing 50% and 80% Gaussian white noise α = 0.90 and α = 1.35 are
chosen, respectively. The numbers of primal-dual iterations of the algorithm for the
three different noise levels are shown in Table 5.1, where we also provide the overall
number of CG iterations. Note that our method behaves very stably with respect
to the noise level. In our tests we also observe that the algorithm’s performance is
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Fig. 5.2. Example 1: Results of our algorithm with r = 2 for the image with 20% noise (upper
row, left), with 50% noise (upper row, right), and with 80% noise (lower row).
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Fig. 5.3. Example 1: Norm of the residual (left) and number of pixels where the dual variable
is infeasible (right) versus iterations.

rather independent of its initialization. Even for seemingly poor initializations uh
0

the algorithm converges and requires only two to three additional iterations when
compared to a run initialized by the smoothed noisy image. The denoised images
produced by our algorithm are shown in Figure 5.2. To document the convergence
behavior we show the residual of the nonlinear system for the three noise levels in
a logarithmic plot (Figure 5.3, left). We observe a fast decrease towards the end of
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the iterations, which indicates a rapid local convergence of the method. To emphasize
that our method, in contrast to the algorithm in, e.g., [6], allows violations of the dual
constraints, in the right plot of Figure 5.3 we depict the number of points, where the
iterates phk are infeasible, i.e., where |phk |s > (1 + ε)α. Here ε = 10−5 is introduced
to compensate roundoff errors. Since the dual variable is initialized with ph0 = 0, the
number of infeasible points is small for the starting iterations, then it increases before
it tends to zero as the algorithm approaches the solution.

Dependence on µ and γ. In our numerical tests we observe that the performance
of the algorithm and the reconstructions are comparable for µ with 0 ≤ µ ( α. In
particular, our choice µ = 0 appears unproblematic. For large values of µ (i.e., µ ∼ α
and larger), the quality of the reconstruction degrades (sharp edges are smoothed) and
the number of overall PCG steps decreases. Concerning the influence of the parameter
γ on the convergence behavior we observe that the method is not very sensitive with
respect to γ. However, let us point out that large γ tends to decrease the iteration
numbers.

Dependence on the image resolution. We also tested our algorithm for images
having different resolutions. For this purpose, the image containing 50% noise in
Figure 5.1 was chosen, and reconstructions for analog images having 128 × 128 and
512×512 pixels were computed. Our algorithm stopped after 11, 12, and 11 iterations
and overall 51, 58, and 57 PCG iterations for the resolutions 128×128, 256×256, and
512 × 512, respectively. This shows a remarkable stability with respect to the image
size.

Case r > 2. Next we test our algorithm with r = 2.5. For our test we use the
image from Figure 5.1 containing 50% of Gaussian white noise and a rotated version
of the same image. The parameters are set to µ = 0, α = 0.9, and γ = 2.5 · 10−5. We
point out that for r > 2 the parameter γ must be chosen smaller as for r = 2 in order to
obtain a reconstruction of comparable quality. This can be seen from the dual problem
formulation (P%

γ ), where s also influences the weight of the regularizing term; see the
discussion in Remark 2.3. For both, the original and the rotated image, our algorithm
terminates after 20 primal-dual iterations. Overall, 61 and 65 BICGSTAB iterations
are needed, respectively. We observe local fast convergence of the iterates as expected
from Theorem 3.6. Furthermore, during the iterations many components of the dual
iterates violate the pointwise constraints. Since we are in the case r > 2, off-diagonal
entries may be dampened in order to guarantee positive definiteness of the system
matrix (see the discussion on page 11). In our computations, for the rotated image
only in the first 10 iterations a few (at most 71) off-diagonal elements are scaled by
dampening factors between 0.7 and 1. After iteration 10 no dampening is necessary.
We contribute this behavior to the fact that the system matrix is already close to a
symmetric matrix for which no dampening of off-diagonal elements is required (see
the discussions on page 8 and (3.7)).

Results of our computations are shown in Figure 5.4. The reconstruction of the
rotated image differs from the rotated reconstruction of the original image. This is
partly due to the fact that the unit ball of the (r-norm is not invariant with respect to
rotations for r -= 2. Obviously, there are other reasons for the different reconstructions
as well: rotating introduces errors to the image. Furthermore, one-sided differences
for the gradients influence the flow of information in the reconstruction process.

Simultaneous image deblurring and denoising. Finally, we illustrate the restora-
tion ability of our algorithm for blurred noisy images, i.e., for K -= id. We consider
the image from Figure 5.1 without noise and choose a block Toeplitz matrix (see,
e.g., [32]) for the discrete blurring operator Kh. Block Toeplitz matrices occur as
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Fig. 5.4. Example 1: Results of our calculations with r = 2.5 for the image from Figure 5.1
containing 50% of noise (left) and a rotated version of this image (right).

Fig. 5.5. Example 1: Blurred noisy image (left) and reconstruction with r = 2, α = 0.3, and
γ = 10−3 (right).

matrix representations of discrete convolution operators, which represent a model for
blurring of images. After applying Kh to the image, 20% of Gaussian white noise is
added. The resulting degraded image can be seen on the left of Figure 5.5. For the
reconstruction process we choose r = 2, α = 0.3, γ = 10−3, and µ = 0. The result
obtained after 16 primal-dual iterations can be seen on the right side of Figure 5.5.

5.1.2. Example 2 (validation of Theorem 3.6). In a second example we
apply our method for enhancing the image shown in the left plot of Figure 5.6 that
contains 10% of Gaussian white noise. Its resolution is 512 × 512 pixels. We apply
Gauss-TV regularization, i.e., r = 2, with parameters µ = 0, α = 0.08, and γ = 10−3.
The result obtained after 11 iterations is shown in the right plot of Figure 5.6. To
illustrate the convergence behavior of the method, in Table 5.2 we report on the norm
of the nonlinear residual, the number of dually infeasible points, the step length, and
the quotient

qk =
‖uh

k+1 − ūh
γ‖

‖uh
k − ūh

γ‖
(5.1)

for each iteration. Above, ūh
γ denotes a beforehand calculated solution of the problem.
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Fig. 5.6. Example 2: Noisy 512 × 512 image (left) and results of our calculations with r = 2,
γ = 10−3, and α = 0.08 (right).

Table 5.2
Example 2: For each iteration k we show the nonlinear residual ‖resk‖, the number #CGk of

PCG-iterations, the number #|phk |2 > α of components of phk that violate the dual constraint, the
step size βk and qk, which is defined in (5.1).

k ‖resk‖ #CGk #|phk |2 > α βk qk
1 7.84e+1 2 0 1 0.412
2 4.12e+1 2 1425 1 0.391
3 2.01e+1 2 17284 1 0.361
4 1.31e+1 3 38990 1 0.315
5 9.48e 0 3 50246 1 0.265
6 7.10e 0 3 40267 1 0.249
7 3.68e 0 2 18641 1 0.272
8 1.37e 0 2 5346 1 0.239
9 3.81e–1 2 878 1 0.143

10 6.12e–2 3 73 1 0.086
11 3.44e–3 2 6 1 0.009
12 1.42e–5 2 0 1 0.000

We observe a decrease of qk (except for iteration 7) which implies a locally super-
linear convergence of the iterates (compare with Theorem 3.6). Again, the algorithm
makes use of iterates that heavily violate the inequality constraints imposed on the
dual variable.

Numerical experiments show that a robust and fast convergence of the method
is essentially based on the replacement of the system matrix Hk by H+

k . In fact, due
to our approximation technique based on (C), a positive definite matrix is obtained
which guarantees that δu is a descent direction reducing the objective function of (Pγ).
Indeed, our line search always accepts step size βk = 1 for achieving a sufficient
decrease.

5.2. Qualitative study of the dual regularization. The image restoration
model (PBV ) tends to produce piecewise constant, i.e., “blocky” images. This may
be useful in some applications. However, for images containing affine regions with
noise, the result will be an adverse “staircase” effect. To prevent the method from
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Fig. 5.7. Upper row: Original one-dimensional image (left), noisy image (middle), and result
of our calculations with γ = 10−10 (right). Lower row: results obtained with γ = 0.1 (left), γ = 0.2
(middle), and γ = 0.5 (right).

this oversharpening while preserving sharp edges, recently several strategies have been
proposed and tested (see, e.g., [3, 7, 16]). In our approach, the parameter γ allows to
control the BV model and the blocky structure in the image reconstruction. The reg-
ularization attached to γ induces a switch between a Gaussian-like regularization for
small gradients and TV regularization for large gradients. To illustrate this influence
of γ, a one-dimensional analogue to our algorithm was implemented. In Figure 5.7 the
results for a one-dimensional image are shown, which were obtained by our algorithm
with α = 10−2 and for various values of γ. The result for γ = 0.5 has exactly four
active points at the solution. This implies that only at the four discontinuities of the
original image TV regularization is applied, whereas all other regions are treated with
a Gaussian regularization.

5.2.1. Example 3. Finally, we discuss the influence of γ on the two-dimensional
noisy magnetic resonance (MR) image shown in Figure 5.8 (upper left). Its resolu-
tion is 256 × 256 pixels. A certain noise level in MR images is unavoidable due to
background interference or other disturbances. Filters are used either to enhance
the image quality without altering any image details or to prepare the image for a
qualitative analysis, such as the segmentation of structures.

In [20] Gauss-TV denoising was shown to give good results for medical images.
For this reason, we choose r = 2, the parameters µ = 0 and α = 0.06 and investigate
the influence of the parameter γ on the reconstructed image. The result for γ = 10−5

(see Figure 5.8, upper row, right) is obtained after 16 iterations. The reconstructions
for γ = 5 ·10−3 and γ = 5 ·10−2 are obtained after 8 and 7 iterations of our algorithm,
respectively. The corresponding results are shown in the lower row of Figure 5.8.
Details of Figure 5.8 are shown in Figure 5.9. We observe that the reconstruction
obtained with γ = 10−5 is close to a piecewise constant image. This effect can be
reduced by using larger γ values, e.g., γ = 5 · 10−3. However, depending on the noise
level, if γ becomes too large, some of the noisy patterns may remain; see the result for
γ = 5 · 10−2. In conclusion, this shows that the parameter γ can be useful in avoiding
oversharpening of images while preserving sharp edges.
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Fig. 5.8. Example 3: Noisy magnetic resonance image (upper row, left, white box indicates the
detail shown in Figure 5.9) and results of our calculations with r = 2, µ = 0, α = 0.06 and with
γ = 10−5 (upper row, right), γ = 5 · 10−3 (lower row, left), and γ = 5 · 10−2 (lower row, right).

Fig. 5.9. Example 3: Details of the images shown in Figure 5.8. Detail of the original image
(right), reconstruction with γ = 5 · 10−3 (middle), and with γ = 10−5 (right).

Appendix A. Proof of Theorem 2.2. Subtracting the weak form of (2.4a)
from the weak form of (2.3a) results in

∫

Ω
(ū− ūγ)v dx + µ

∫

Ω
∇(ū− ūγ)&∇v dx =

∫

Ω
($̄pγ − $̄p)&∇v dx(A.1)



PRIMAL-DUAL ALGORITHM FOR TV IMAGE RESTORATION 21

for all v ∈ H1
0 (Ω). Choosing v := ū− ūγ yields

∫

Ω
(ū− ūγ)2 dx + µ

∫

Ω
|∇(ū− ūγ)|22 dx =

∫

Ω
($̄pγ − $̄p)&∇(ū− ūγ) dx.(A.2)

Pointwise bounds for the term ($̄pγ − $̄p)&∇(ū − ūγ) are established as follows: First
we split Ω into disjoint sets according to the complementarity conditions (2.3b) and
(2.4b); namely, Ω = Aγ ∪ Iγ = A ∪I with

Aγ = {x ∈ Ω : |∇ūγ |r−1
r > γ},

A = {x ∈ Ω : |∇ū|r−1
r > 0},

Iγ = Ω \ Aγ ,

I = Ω \ A.
(A.3)

Then we bound ($̄pγ− $̄p)&∇(ū− ūγ) separately on the four sets Aγ ∩A, Aγ ∩I, Iγ ∩A,
and Iγ ∩ I. Subsequently, we frequently dismiss the argument (x) when referring to
function values at x. We start with Aγ∩A, where we use the facts that |$̄p|s = |$̄pγ |s = α

and that $̄pγ = α
(
|∇ūγ |r−1 ) (|∇ūγ |)

)
/|∇ūγ |r−1

r and $̄p = α
(
|∇ū|r−1 ) (|∇ū|)

)
/|∇ū|r−1

r :

($̄pγ − $̄p)&∇(ū− ūγ) ≤ |$̄pγ |s|∇ū|r −
α

|∇ūγ |r−1
r

|∇ūγ |rr −
α

|∇ū|r−1
r

|∇ū|rr + |$̄p|s|∇ūγ |r

= α|∇ū|r − α|∇ūγ |r − α|∇ū|r + α|∇ūγ |r = 0.(A.4)

Next we turn to the set Aγ ∩I, where we exploit the facts that ∇ū = 0 and |$̄pγ |s = α:

($̄pγ − $̄p)&∇(ū− ūγ) = ($̄p− $̄pγ)&∇ūγ

≤ |$̄p|s|∇ūγ |r −
α

|∇ūγ |r−1
r

|∇ūγ |rr

= |$̄p|s|∇ūγ |r − α|∇ūγ |r ≤ 0.(A.5)

On the set Iγ ∩A one uses |$̄pγ |s ≤ α and obtains similar to the above that

($̄pγ − $̄p)&∇(ū− ūγ) ≤ 0.(A.6)

Finally, we turn to the set Iγ ∩ I where we have ∇ū = 0, |∇ūγ |r−1
r ≤ γ, |$̄p|s ≤ α, and

|$̄pγ |s ≤ α. We obtain

($̄pγ − $̄p)&∇(ū− ūγ) = ($̄p− $̄pγ)&∇ūγ

≤ |$̄p− $̄pγ |s|∇ūγ |r
≤ 2αγ1/(r−1).(A.7)

Since (Aγ ∩A), (Aγ ∩ I), (Iγ ∩A), (Iγ ∩ I) provide a disjoint partitioning of Ω, the
estimates (A.4)–(A.7) yield, together with (A.2),

∫

Ω
(ū− ūγ)2 dx + µ

∫

Ω
|∇(ū− ūγ)|22 dx ≤

∫

Ω
2αγ1/(r−1) dx.(A.8)

Hence, we infer that ūγ → ū strongly in H1
0 (Ω) as γ → 0. From (A.1) we obtain the

weak convergence of $̄pγ → $̄p in grad H1
0 (Ω) ⊂ L2(Ω). This ends the proof.
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[17] T. Kärkkäinen and K. Majava, Nonmonotone and monotone active-set methods for image
restoration. I. Convergence analysis, J. Optim. Theory Appl., 106 (2000), pp. 61–80.
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[28] C. Schnörr, Unique reconstruction of piecewise-smooth images by minimizing strictly convex

nonquadratic functionals, J. Math. Imaging Vision, 4 (1994), pp. 189–198.
[29] D. Strong and T. Chan, Edge-preserving and scale-dependent properties of total variation

regularization, Inverse Problems, 19 (2003), pp. S165–S187.
[30] D. Sun and J. Han, Newton and quasi-Newton methods for a class of nonsmooth equations

and related problems, SIAM J. Optim., 7 (1997), pp. 463–480.



PRIMAL-DUAL ALGORITHM FOR TV IMAGE RESTORATION 23

[31] C. R. Vogel, Nonsmooth regularization, in Inverse Problems in Geophysical Applications
(Yosemite, CA, 1995), H. W. Engl, A. K. Louis, and W. Rundell, eds., SIAM, 1997, pp. 1–
11.

[32] C. R. Vogel, Computational Methods for Inverse Problems, Frontiers Appl. Math. 23, SIAM,
Philadelphia, 2002.

[33] C. R. Vogel and M. E. Oman, Iterative methods for total variation denoising, SIAM J. Sci.
Comput., 17 (1996), pp. 227–238.

[34] J. Y. Yuan, G. H. Golub, R. J. Plemmons, and W. A. G. Cećilio, Semi-conjugate direction
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