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Since December 2019, the global Coronavirus Disease 2019 
(COVID-19) pandemic caused by SARS-CoV-2 has resulted in 
298 million infections and 5.4 million deaths. The expansion 

of the COVID-19 pandemic and its accompanying morbidity, mor-
tality and destabilizing socioeconomic effects have made the devel-
opment and distribution of SARS-CoV-2 therapeutics and vaccines 
an urgent global health priority1. Although the rapid deployment 
of countermeasures, including mAbs and multiple highly effective 
vaccines, has provided hope for curtailing disease and ending the 
pandemic, this has been jeopardized by the emergence of more 
transmissible variants with mutations in the spike protein that also 
could evade protective immune responses.

Indeed, over the past year, several variant strains have emerged, 
including B.1.1.7 (Alpha), B.1.351 (Beta), B.1.1.28 (also called P.1, 
Gamma) and B.1.617.2 (Delta), among others, each having vary-
ing numbers of substitutions in the N-terminal domain (NTD) 
and the receptor-binding domain (RBD) of the SARS-CoV-2 spike. 
Cell-based assays with pseudoviruses or authentic SARS-CoV-2 
strains suggest that neutralization by many Emergency Use 
Authorization (EUA) mAbs might be diminished against some 
of these variants, especially those containing mutations at posi-
tions L452, K477 and E484 (refs. 2–6). Notwithstanding this, in vivo 
studies in animals showed that, when most EUA mAbs were used 

in combination, they retained efficacy against different vari-
ants7. The recent emergence of B.1.1.529, the Omicron variant8,9, 
which has a larger number of mutations (>30 substitutions, dele-
tions or insertions) in the spike protein, has raised concerns that 
this variant will escape from protection conferred by vaccines and  
therapeutic mAbs.

Results
We obtained an infectious clinical isolate of B.1.1.529 from a 
symptomatic individual in the United States (hCoV-19/USA/
WI-WSLH-221686/2021). We propagated the virus once in 
Vero cells expressing human transmembrane protease serine 2 
(TMPRSS2) to prevent the emergence of adventitious mutations at 
or near the furin cleavage site in the spike protein10. Our B.1.1.529 
isolate encodes the following mutations in the spike protein (A67V, 
Δ69−70, T95I, G142D, Δ143-145, Δ211, L212I, insertion 214EPE, 
G339D, S371L, S373P, S375F, K417N, N440K, G446S, S477N, 
T478K, E484A, Q493R, G496S, Q498R, N501Y, Y505H, T547K, 
D614G, H655Y, N679K, P681H, N764K, D796Y, N856K, Q954H, 
N969K and L981F; Fig.  1a,b and GISAID: EPI_ISL_7263803), 
which is similar to strains identified in Africa11. Our isolate, how-
ever, lacks an R346K mutation, which is present in a minority (~8%) 
of reported strains.
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Fig. 1 | Neutralizing mAb epitopes on B.1.1.529. a, b, SARS-CoV-2 spike trimer (PDB: 7C2L and PDB: 6W41). One spike protomer is highlighted, showing 
the NTD in orange, RBD in green, RBM in magenta and S2 portion of the molecule in blue (a). Close-up view of the RBD with the RBM outlined in magenta 
(b). Amino acids that are changed in B.1.1.529 compared to WA1/2020 are indicated in light green (a, b), with the exception of N679K and P681H, which 
were not modeled in the structures used. c–k, SARS-CoV-2 RBD bound by EUA mAbs COV2-2196 (c, PDB: 7L7D); COV2-2130 (d, PDB: 7L7E); S309  
(e, PDB: 6WPS); REGN10987 (f, PDB: 6XDG); REGN10933 (g, PDB: 6XDG); LY-CoV555 (h, PDB: 7KMG); LY-CoV016 (i, PDB: 7C01); CT-P59 (j PDB: 
7CM4); and SARS2-38 (k, PDB: 7MKM). Residues mutated in the B.1.1.529 RBD and contained in these mAbsʼ respective epitopes are shaded red, 
whereas those outside the epitope are shaded green. l, Multiple sequence alignment showing the epitope footprints of each EUA mAb on the SARS-CoV-2 
RBD highlighted in cyan. B.1.1.529 RBD is shown in the top row, with sequence changes relative to the wild-type RBD highlighted red. A green diamond 
indicates the location of the N-linked glycan at residue 343. Stars below the alignment indicate hACE2 contact residues on the SARS-CoV-2 RBD40.
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Given the number of substitutions in the B.1.1.529 spike protein, 
including eight amino acid changes (K417N, G446S, S477N, Q493R, 
G496S, Q498R, N501Y and Y505H) in the ACE2 receptor-binding 
motif (RBM), we first evaluated possible effects on the structurally 
defined binding epitopes12,13 of mAbs corresponding to those with 
EUA approval or in advanced clinical development (S309 (par-
ent of VIR-7831 (sotrovimab)), RBD group III)14,15; COV2-2196 
(RBD group I) and COV2-2130 (RBD group III) (parent mAbs 
of AZD8895 and AZD1061, respectively)16; REGN10933 (RBD  
group I) and REGN10987 (RBD group III)17; LY-CoV555 (RBD group I)  
and LY-CoV016 (RBD group I)18,19; and CT-P59 (Celltrion, RBD 
group I)20, along with an additional broadly neutralizing mAb 
(SARS2-38 (RBD group II)) that we recently described21. We mapped 
the B.1.1.529 spike mutations onto the antibody-bound SARS-CoV-2 
spike or RBD structures published in the RCSB Protein Data Bank 
(PDB) (Fig.  1c–k). Although every antibody analyzed had struc-
turally defined recognition sites that were altered in the B.1.1.529 
spike, the differences varied among mAbs, with some showing 

larger numbers of changed residues (Fig.  1l: COV2-2196, n = 5;  
COV2-2130, n = 4; S309, n = 2; REGN10987, n = 4; REGN10933, 
n = 8; Ly-CoV555, n = 2; Ly-CoV016, n = 6; CT-P59, n = 8; and 
SARS2-38, n = 2).

To address the functional significance of the spike sequence 
variation in B.1.1.529 for antibody neutralization, we used a 
high-throughput focus reduction neutralization test (FRNT)22 with 
WA1/2020 D614G and B.1.1.529 in Vero-TMPRSS2 cells (Fig. 2). We 
tested individual mAbs and combinations of mAbs that target the 
RBD in Vero-TMPRSS2 cells, including S309 (Vir Biotechnology); 
COV2-2130/COV2-2196 (parent mAbs of AZD1061 and AZD8895, 
provided by Vanderbilt University Medical Center); REGN10933/
REGN10987 (synthesized based on casirivimab and imdevimab 
sequences from Regeneron); LY-CoV555/LY-CoV016 (synthe-
sized based on bamlanivimab and etesevimab sequences from Eli 
Lilly); CT-P59 (synthesized based on regdanvimab sequences from 
Celltrion); and SARS2-38. As expected, all individual mAbs or com-
binations of mAbs tested neutralized the WA1/2020 D614G isolate, 
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with half-maximal inhibitory concentration (EC50) values similar 
to published data6,20,23. However, when tested alone, REGN10933, 
REGN10987, LY-CoV555, LV-CoV016, CT-P59 and SARS2-38 com-
pletely lost neutralizing activity against B.1.1.529, with little inhibi-
tory capacity even at the highest (10,000 ng ml−1) concentration  

tested. COV2-2130 and COV2-2196 showed an intermediate 
~12-fold and 150-fold (P < 0.0001) loss in inhibitory activity, respec-
tively, against the B.1.1.529 strain. In comparison, S309 showed a 
less than two-fold (P > 0.5) reduction in neutralizing activity against 
B.1.1.529 (Fig. 2a–h). Analysis of mAb combinations currently in 
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replicates. Data (% relative infection) are normalized to a no-mAb control. g, Summary of EC50 values (ng ml−1) of neutralization of SARS-CoV-2 viruses 
(WA1/2020 D614G and B.1.1.529) performed in Vero-hACE2-TMPRSS2 cells. Data are the geometric mean of three experiments. Blue shading: light, 
EC50 > 5,000 ng ml−1; dark, EC50 > 10,000 ng ml−1. h, Comparison of EC50 values by mAbs against WA1/2020 D614G and B.1.1.529. i, j, Neutralization 
curves in Vero-hACE2-TMPRSS2 cells comparing WA1/2020 D614G and B.1.1.529 infection in the presence of AZD1061, AZD8895 and the combination 
AZD7442. h, j, Three experiments; ****P < 0.0001; two-way ANOVA with Sidak’s post test. Each symbol represents neutralization data from an individual 
experiment. Bars indicate mean values. The dotted line indicates the upper limit of dosing of the assay.
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clinical use showed that REGN10933/REGN10987 and LY-CoV555/
LV-CoV016 lost all neutralizing activity against B.1.1.529, whereas 
COV2-2130/COV2-2196 showed a ~12-fold (P < 0.0001) reduction 
in inhibitory activity from an EC50 of 12 ng ml−1 to 147 ng ml−1.

We repeated experiments in Vero-hACE2-TMPRSS2 cells to 
account for effects of hACE2 expression, which can affect neutral-
ization by some anti-SARS-CoV-2 mAbs21,24. Moreover, modeling 
studies suggest that the mutations in the B.1.1.529 spike might 
enhance interactions with hACE2 (ref. 25). All individual mAbs or 
combinations of mAbs tested neutralized the WA1/2020 D614G iso-
late as expected. However, REGN10933, REGN10987, LY-CoV555, 
LV-CoV016, SARS2-38 and CT-P59 completely lost neutralizing 
activity against B.1.1.529, and the combinations of REGN10933/
REGN10987 or LY-CoV555/LV-CoV016 also lacked inhibitory 
capacity (Fig.  3a–h). In comparison, COV2-2130 and COV2-
2196 showed reduced activity (~12-fold and 16-fold, respectively, 
P < 0.0001) against B.1.1.529, as did the combination of COV2-2130/
COV2-2196 mAbs (~11-fold, P < 0.0001). The S309 mAb exhibited 
less potent neutralizing activity in Vero-hACE2-TMPRSS2 cells 
against WA1/2020 D614G virus with a flatter dose–response curve 
(Fig. 3d), as seen previously6,26, and showed a moderate (~six-fold, 
P < 0.0001) reduction in neutralizing activity against B.1.1.529. 
Thus, although the trends in mAb neutralization of B.1.1.529 gener-
ally were similar to Vero-TMPRSS2 cells, some minor differences in 
potency were noted in cells expressing hACE2.

Discussion
Our experiments show a marked loss of inhibitory activity by sev-
eral of the most highly neutralizing mAbs that are in advanced 
clinical development or have EUA approval. We evaluated antibod-
ies that correspond to monotherapy or combination therapy that 
have shown pre- and post-exposure success in clinical trials and in 
patients infected with historical SARS-CoV-2 isolates. Our results 
confirm in silico predictions of how amino acid changes in B.1.1.529 
RBD might negatively affect neutralizing antibody interactions18,27. 
Moreover, they agree with preliminary studies showing that several 
clinically used antibodies lose neutralizing activity against B.1.1.529 
spike-expressing recombinant lentiviral or vesicular stomatitis virus 
(VSV)-based pseudoviruses28–30. One difference is that our study 
with authentic B.1.1.529 showed only moderately reduced neutral-
ization by antibodies corresponding to the AstraZeneca combina-
tion (COV2-2196 and COV2-2130); in contrast, another group 
reported escape of these mAbs using a VSV pseudovirus displaying 
a B.1.1.529 spike protein in Huh7 hepatoma cells29. Additional stud-
ies are needed to determine whether this disparity in results is due 
to the cell type, the virus (authentic versus pseudotype) or prepara-
tion and combination of antibody. To begin to address this issue, 
we obtained AZD1061, AZD8895 and the combination AZD7442 
directly from the manufacturer and tested them for neutraliza-
tion of WA1/2020 D614G and B.1.1529 in Vero-hACE2-TMPRSS2 
cells. We observed relatively similar reductions in inhibitory  
activity compared to the preclinical COV2-2130 and COV2-2196 
mAbs with 49-, 92- and 33-fold lower EC50 values against B.1.1.529 
by AZD1061, AZD8895 and AZD7442, respectively (Fig. 3g,i–j).

Although the Regeneron (REGN10933 and REGN10987), Eli 
Lilly (LY-CoV555 and LV-CoV016) and Celltrion (CT-P59) anti-
bodies or combinations showed an almost complete loss of neutral-
izing activity against B.1.1.529, in our assays with Vero-TMPRSS2 
and Vero-hACE2-TMPRSS2 cells the mAbs corresponding to the 
AstraZeneca combination (COV-2196 and COV-2130) or Vir 
Biotechnology (S309) products retained substantial inhibitory 
activity. Although these data suggest that some mAbs in clinical use 
might retain benefit, validation experiments in vivo7 are needed to 
support this conclusion and inform clinical decisions.

Given the loss of inhibitory activity against B.1.1.529 of many 
highly neutralizing anti-RBD mAbs in our study, it appears 

likely that serum polyclonal antibody responses generated after  
vaccination or natural infection also might lose substantial inhibi-
tory activity against B.1.1.529, which could compromise protec-
tive immunity and explain a rise in symptomatic infections in 
vaccinated individuals31. Indeed, studies have reported approxi-
mately 25-fold to 40-fold reductions in serum neutralizing activity  
compared to historical D614G-containing strains from indi-
viduals immunized with the Pfizer BNT162b2 and AstraZeneca  
AZD1222 vaccines28,30,32,33.

We note several limitations of our study. (1) Our experi-
ments focused on the effect of the extensive sequence changes in 
the B.1.1.529 spike protein on mAb neutralization in cell culture. 
Despite observing differences in neutralizing activity with certain 
mAbs, it remains to be determined how this finding translates 
into effects on clinical protection against B.1.1.529. (2) Although 
virus neutralization is a correlate of immune protection against 
SARS-CoV-2 (refs. 7,34,35), this measurement does not account for 
Fc effector functions if antibodies residually bind B.1.1.529 spike 
proteins on the virion or surface of infected cells. Fcγ receptor or 
complement protein engagement by spike-binding antibodies could 
confer substantial protection36–38. It should be noted that some  
antibodies have been engineered to have reduced Fc effector bind-
ing/function (e.g., the clinical antibodies AZD1061 and AZD8895). 
(3) We used the prevailing B.1.1.529 Omicron isolate that lacks an 
R346K mutation. Although only 8.3% of B.1.1.529 sequences in 
GISAID (accessed on 14 December 2021) have an R346K mutation, 
this substitution might further affect neutralization of some of the 
clinically used mAbs given that R346 is a contact residue for COV2-
2130, REGN10987 and S309 (Fig. 1l). At least for S309, the R346K 
mutation did not affect neutralization of pseduoviruses display-
ing B.1.1.529 spike proteins30. Nonetheless, studies with infectious 
B.1.1.529 isolates with R346K mutations might be warranted if the 
substitution becomes more prevalent. (4) Our data are derived from 
experiments with Vero-TMPRSS2 and Vero-hACE2-TMPRSS2 
cells. Although these cells standardly are used to measure anti-
body neutralization of SARS-CoV-2 strains, primary cells targeted 
by SARS-CoV-2 in vivo can express unique sets of attachment and 
entry factors39, which could affect receptor and entry blockade by 
specific antibodies. Indeed, previous studies have reported that 
the cell line used can affect the potency of antibody neutralization 
against different SARS-CoV-2 variants6.

In summary, our cell-culture-based analysis of neutralizing 
mAb activity against an authentic infectious B.1.1.529 Omicron 
SARS-CoV-2 isolate suggests that several, but not all, existing thera-
peutic antibodies will lose protective benefit. Thus, the continued 
identification and use of broadly and potently neutralizing mAbs 
that target the most highly conserved residues on the SARS-CoV-2 
spike likely is needed to prevent resistance against B.1.1.529 and 
future variants with highly mutated spike sequences.
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Methods
Cells. Vero-TMPRSS2 (ref. 41) and Vero-hACE2-TMPRSS2 (ref. 6) cells were 
cultured at 37 °C in DMEM supplemented with 10% FBS, 10 mM HEPES pH 
7.3 and 100 U ml−1 of penicillin–streptomycin. Vero-TMPRSS2 cells were 
supplemented with 5 μg ml−1 of blasticidin. Vero-hACE2-TMPRSS2 cells were 
supplemented with 10 µg ml−1 of puromycin. All cells routinely tested negative for 
mycoplasma using a PCR-based assay.

Viruses. The WA1/2020 recombinant strain with substitutions (D614G) 
was described previously42. The B.1.1.529 isolate (hCoV-19/USA/
WI-WSLH-221686/2021) was obtained from an individual in Wisconsin as a 
midturbinate nasal swab and passaged once on Vero-TMPRSS2 cells43. All viruses 
were subjected to next-generation sequencing (GISAID: EPI_ISL_7263803) to 
confirm the stability of substitutions. All virus experiments were performed in an 
approved Biosafety Level 3 facility.

Monoclonal antibody purification. The mAbs used in this study (COV2-
2196, COV2-2130, S309, REGN10933, REGN10987, LY-CoV555, LY-CoV016, 
CT-P59, SARS2-38, AZD1061, AZD8895 and AZD7442) have been described 
previously14,17,21,44–48. S309 is the parent of VIR-7831 (sotrovimab); the clinically 
used mAb is engineered for enhanced clinical developability, as reported 
previously23. COV2-2196 and COV2-2130 mAbs were produced after transient 
transfection using the Gibco ExpiCHO Expression System (Thermo Fisher 
Scientific) following the manufacturer’s protocol. Culture supernatants were 
purified using HiTrap MabSelect SuRe columns (Cytiva, formerly GE Healthcare 
Life Sciences) on an ÄKTA Pure chromatographer (GE Healthcare Life Sciences). 
Purified mAbs were buffer exchanged into PBS, concentrated using Amicon Ultra-
4 50-kDa centrifugal filter units (Millipore Sigma) and stored at −80 °C until use. 
Purified mAbs were tested for endotoxin levels (found to be less than 30 endotoxin 
units (EU) per milligram IgG). Endotoxin testing was performed using the 
PTS201F cartridge (Charles River Laboratories), with a sensitivity range from 10 
to 0.1 EU per milliliter, and an Endosafe Nexgen-MCS instrument (Charles River 
Laboratories). S309, REGN10933, REGN10987, LY-CoV016, LY-CoV555, CT-P59 
and SARS2-38 mAb proteins were produced in CHOEXPI or EXPI293F cells and 
affinity purified using HiTrap Protein A columns (GE Healthcare, HiTrap mAb 
select Xtra no. 28-4082-61). Purified mAbs were suspended into 20 mM histidine, 
8% sucrose pH 6.0 or PBS. The final products were sterilized by filtration through 
0.22-μm filters and stored at 4 °C.

FRNT. Serial dilutions of mAbs were incubated with 102 focus-forming units 
of SARS-CoV-2 (WA1/2020 D614G or B.1.1.529) for 1 h at 37 °C. Antibody–
virus complexes were added to Vero-TMPRSS2 or Vero-hACE2-TMPRSS2 
cell monolayers in 96-well plates and incubated at 37 °C for 1 h. Subsequently, 
cells were overlaid with 1% (wt/vol) methylcellulose in MEM. Plates were 
harvested at 30 h (WA1/2020 D614G on Vero-TMPRSS2 cells), 70 h (B.1.1.529 on 
Vero-TMPRSS2 cells) or 24 h (both viruses on Vero-hACE2-TMPRSS2 cells) later 
by removal of overlays and fixation with 4% paraformaldehyde in PBS for 20 min at 
room temperature. A longer time of incubation was required for B.1.1.529-infected 
Vero-TMPRSS2 cells because the foci were smaller at the time point and difficult to 
quantitate. Plates with WA1/2020 D614G were washed and sequentially incubated 
with an oligoclonal pool (1 μg ml−1 of each) of SARS2-2, SARS2-11, SARS2-16, 
SARS2-31, SARS2-38, SARS2-57 and SARS2-71 (ref. 49) anti-S antibodies. Plates 
with B.1.1.529 were additionally incubated with a pool of mAbs that cross-react 
with SARS-CoV-1 and bind a CR3022-competing epitope on the RBD21. All 
plates were subsequently stained with HRP-conjugated goat anti-mouse IgG 
(Sigma-Aldrich, A8924, 1:1,000) in PBS supplemented with 0.1% saponin and 
0.1% BSA. SARS-CoV-2-infected cell foci were visualized using KPL TrueBlue 
peroxidase substrate and quantitated on an ImmunoSpot microanalyzer (Cellular 
Technologies). Data (% relative infection) are normalized to a no-mAb control. 
Antibody dose–response curves were analyzed using non-linear regression analysis 
with a variable slope (GraphPad Software), and the EC50 was calculated.

Model of mAb-B.1.1.529 spike complexes. The spike model is a composite of data 
from PDB: 7C2L and PDB: 6W41. Models of mAb complexes were generated from 
their respective PDB files with the following accession codes: COV2-2196 (PDB: 
7L7D); COV2-2130 (PDB: 7L7E); S309 (PDB: 6WPS); REGN10987 (PDB: 6XDG); 
REGN10933 (PDB: 6XDG); LY-CoV555 (PDB: 7KMG); LY-CoV016 (PDB: 7C01); 
CT-P59 (PDB: 7CM4); and SARS2-38 (PDB: 7MKM). Epitope footprints used in 
the multiple sequence alignment were determined using PISA interfacial analysis 
on the various mAb:RBD complexes50. Structural figures were generated using 
UCSF ChimeraX51.

Reagent availability. All reagents described in this paper are available through 
material transfer agreements. AZD8895 and AZD1061 may be obtained from 
AstraZeneca for non-commercial internal research purposes under material 
transfer agreements upon reasonable request.

Statistical analysis. The number of independent experiments and technical 
replicates used are indicated in the relevant figure legends. A two-way ANOVA 

with Sidak’s post test was used for comparisons of antibody potency between 
WA1/2020 D614G and B.1.1.59.

Reporting Summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this article.

Data availability
All data supporting the findings of this study are available within the paper, in the 
Source Data and from the corresponding author upon reasonable request. There 
are no restrictions in obtaining access to primary data. Source data are provided 
with this paper.

Code availability
No code was used in the course of the data acquisition or analysis.
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