
An Infinite Automaton Characterization of Double
Exponential Time⋆

Salvatore La Torre1, P. Madhusudan2, and Gennaro Parlato1,2

1 Università di Salerno, Italy
2 University of Illinois, Urbana-Champaign, USA

Abstract. Infinite-state automata are a new invention: they are automata that
have an infinite number of states represented by words, transitions defined us-
ing rewriting, and with sets of initial and final states. Infinite-state automata have
gained recent interest due to a remarkable result by Morvan and Stirling, which
shows that automata with transitions defined using rationalrewriting precisely
capture context-sensitive (NLINSPACE) languages. In this paper, we show that
infinite automata defined using a form of multi-stack rewriting precisely defines
double exponential time (more precisely, 2ETIME, the class of problems solvable

in 22
O(n)

time). The salient aspect of this characterization is that the automata
have no ostensible limits on time nor space, and neither direction of containment
with respect to 2ETIME is obvious. In this sense, the result captures the complex-
ity class qualitatively, by restricting the power of rewriting.

1 Introduction

The theory of infinite-state automata is a new area of research (see [21] for a recent
survey). Infinite-state automata (not to be confused withfinite state automata on infinite
words) are automata withinfinitelymany states that can readfinitewords and accept or
reject them, in much the same way as finite-state automata would. In order to represent
infinite-state automata using finite means, the states, the transitions, and the initial and
final state sets are representedsymbolically.

The infinite-state automata we study in this paper are definedby usingwords to
represent the states of the automaton. Let us fix a finite alphabetΣ as the input alphabet
for the infinite-state automata. The set of states of an infinite-state automaton overΣ are
words over a finite alphabetΠ (which does not need to be related toΣ in any way). The
initial and final sets of states of this automaton are defined using word-languages over
Π accepted by finitely presented devices (e.g. finite-state automata overΠ). Transitions
between states are defined usingrewriting rules that rewrite words to other words: for
eacha ∈ Σ, we have a rewrite rule that rewrites words overΠ . A stateu ∈ Π∗ leads
to stateu′ ∈ Π∗ on a ∈ Σ iff the rewrite rule fora can rewriteu to u′. There is a
variety of choices for the power of rewriting, but in any casethe rewriting rules are
presented finitely (e.g. using finite transducers). The language accepted by an infinite-
state automaton is defined in the natural way: a wordw ∈ Σ∗ is accepted if there is a
path fromsomeinitial state tosomefinal state tracingw in the automaton.
⋆ The first and third authors were partially supported by the MIUR grants ex-60% 2006 and

2007 Università degli Studi di Salerno.

Infinite-state automata are naturally motivated informal verification, where, intu-
itively, a stateof the model can be represented using a word, and the system’sevolution
can be described using rewriting rules. Classic examples include boolean abstraction
of recursive programs [2] (where a system is described usinga state and a stack en-
coded into words, and the rewriting corresponds toprefix rewriting) andregular model-
checking, where parameterized finite-state systems are representedwith finite words
and transitions defined usingsynchronous rational rewriting[3].

Infinite-state automata are radically different computation models than Turing ma-
chines especially when computational complexity issues are at hand. The notion that
rewriting words (or terms) can be a basis for defining computability goes back to the
works of Axel Thue [22] (Thue systems) and Emil Post [17] (Post’s tag systems). For-
mal languages defined using grammars (the Chomsky hierarchy) are also in the spirit of
rewriting, with semi-Thue systems corresponding to unrestricted grammars and hence
Turing machines. While Turing machines can be viewed as rewrite systems (rewriting
one configuration to another), the study of computational complexity is often based on
time and space constraints on the Turing machine model, and natural counterparts to
complexity classes in terms of rewrite systems don’t currently exist.

Given a wordw ∈ Σ∗, note that infinite automata have possibly aninfinitenumber
of paths onw. Hence, deciding whetherw is accepted by the infinite-state automaton
is in no way trivial. However, if rewriting rules can be simulated by Turing machines
(which will usually be the case), the language accepted by the infinite-state automaton
is recursively enumerable.

Recently, Morvan and Stirling showed the following remarkable result: infinite state
automata where states are finite words, initial and final setsare defined using regular
languages, and transitions are defined usingrational relations, accept precisely the class
of context-sensitive languages(nondeterministic linear-space languages) ([15]; see also
[5]). Rational relations are relationsR ⊆ Π∗ × Π∗ that can be effected by finite-state
automata:(u, u′) ∈ R iff the automaton can readu on an input tape and writeu′ on
the output tape, where the two tape heads are only allowed to move right (but can move
independent of each other).

Note that the only constraint placed in the above result is the power of rewriting
(rational relations) and there is no ostensible limit on space or time. In other words, the
constraint on rewriting is aqualitative constraintwith no apparent restriction on com-
plexity. Indeed, even establishing the upper bound (the easier direction), namely that
these automata define languages that are accepted by linear-bounded Turing machines
is non-trivial. A naivesimulationof the infinite-state automaton will not work as the
words that represent states on the run can be unboundedly large even for a fixed word
w. Notice that we donotallow ǫ-transitions in infinite automata, as allowing that would
make infinite automata with even regular rewriting accept the class of all recursively
enumerable languages.

Our main contribution in this paper is an infinite automaton characterization for the
class 2ETIME, the class of languages accepted by Turing machines in timeexp(exp(O(n)))3,
using a qualitative constraint on rewriting, which is a restricted form of multi-stack
pushdown rewriting.

3
exp(x) denotes2x.

A simple generalization of regular rewriting ispushdown rewriting, where we allow
the rewriting automata the use of a work stack which can be used for intermediate stor-
age when rewriting a word to another. For example the relation {(w, wwr)|w ∈ Π∗}
(wherewr denotes the reverse ofw) is not regular but can be effected by a pushdown
rewrite system. However, defining infinite automata with thepower of pushdown rewrit-
ing quickly leads toundecidabilityof the membership problem, and these automata can
accept non-recursive languages.

We hence place a restriction on pushdown rewriting. We demand that the rewriting
device takes its input in a read-only tape and writes it to a write-only tape, and has
access to some stacks, but it can switch only aboundednumber of times the source
from which it is reading symbols (i.e., the input tape and thestacks). In other words,
the pushdown rewriting can be split intok phases, where in each phase, it either reads
from the input tape and does not pop any stack, or pops from just one stack but doesn’t
read from the input tape. This restriction puts the problem of checking membership just
within the boundary of decidability, and results in an automaton model that defines a
class of recursive languages.

We show that infinite automata restricted to bounded-phase pushdown rewriting
precisely defines the class 2ETIME.

The upper bound, showing the membership problem for any suchinfinite automa-
ton is decidable in 2ETIME, is established by reducing it to theemptinessproblem for
finite-phased multi-stack visibly pushdown automata, which we have shown recently
to be decidable [12]. Note that (non-deterministic) Turingmachines that directly and
naively simulate the infinite automaton could take unbounded space and time. Visi-
bly pushdown automata [1] are pushdown automata where the input symbols deter-
mine the operation on the stack, and multi-stack visibly pushdown automata generalize
them to multiple stacks [12]. Intuitively, theaccepting runsthat are followed by an
n-stack pushdown rewriting system when it transforms a wordu to u′ can be seen
as a multi-stack ((n + 2)-stack)visibly pushdown automaton. Hence the problem of
membership ofw for an infinite automaton reduces to theemptiness problemof the
language of accepting runs overw. Moreover, if each rewriting step in the infinite au-
tomaton is bounded phase, then the number of phases in the multi-stack automata is
O(|w|). In [12], we show that thek-phase reachability for multi-stack automata is solv-
able in timeexp(exp(O(poly(k)))) using (monadic second-order) logic interpretations
on finite trees. We sharpen the above result in this paper to obtain exp(exp(O(k)))
time decision procedure for emptiness by implementing two crucial subprocedures that
correspond to capturing the linear ordering and the successor relation from the tree
directly using nondeterministic tree automata and two-wayalternating tree automata,
respectively.

Turning to the lower bound, we establish that all 2ETIME languages are accepted
by infinite automata defined using bounded-phase pushdown rewriting. We show that
for every alternating ESPACE Turing machine (i.e. working in space2O(n), which is
equivalent to 2ETIME [9]), there is an infinite automaton with bounded-phase rewriting
accepting the same language.

Related Work: A recent result by Rispal [18] shows that infinite automata de-
fined usingsynchronous rational relations, which are strictly less powerful than ratio-

nal relations, also define exactly the class of context-sensitive languages (see also [5]).
Meyer [14] has characterized the class ETIME (the class of languages accepted by Tur-
ing machines in timeexp(O(n))) with infinite automata defined via automatic term
transducers.

Bounded-phase visibly multi-stack pushdown automata havebeen introduced and
studied by us in [12]. These automata capture a robust class of context-sensitive lan-
guages that is closed under all the boolean operations and has decidable decision prob-
lems. Also, they turned out to be useful to show decidabilityresults for concurrent
systems communicating via unbounded FIFO queues [13].

Capturing complexity classes using logics on graphs in descriptive complexity the-
ory [10], which was spurred by Fagin’s seminal result capturing NP using∃SO, also has
the feature that the characterizations capture complexityclasses without any apparent
restriction of time or space.

Finally, there’s a multitude of work on characterizing the infinite graphs that cor-
respond to restricted classes of machines (pushdown systems [16], prefix-recognizable
graphs [7], higher-order pushdown automata [4], linear-bounded automata [6], and the
entire Chomsky hierarchy [8]).

2 Multi-stack pushdown rewriting

A multi-stack pushdown transducer is a transducer from words to words that has access
to one or more pushdown stacks.

For any setX , letXǫ denoteX ∪{ǫ}, and letX∗ denote the set of finite words over
X . Also, for anyi, j ∈ N, let [i, j] denote the set{i, i + 1, . . . , j}.

Fix finite alphabetsΠ andΓ . An n-stack pushdown transducer overΠ is a tuple
T = (Q, q0, δ, Γ, F) whereQ is a finite set of states,q0 ∈ Q is the initial state,Γ is
the stack alphabet, andF ⊆ Q is the set of final states. The transition relation isδ ⊆
(Q×Q×Πǫ×Πǫ× [0, n]×Γǫ×Γǫ), with the restriction that if(q, q′, a, b, i, γ, γ′) ∈ δ,
thenγ = γ′ = ǫ iff i = 0.

A transition of the form(q, q′, a, b, i, γ, γ′), with a, b ∈ Πǫ andγ, γ′ ∈ Γǫ, intu-
itively means that the pushdown transducer, when in stateq with γ on the top of itsi’th
stack (providedi > 0) can reada from the input tape, writeb onto the output tape,
replaceγ with γ′ onto thei’th stack, and transition to stateq′. Wheni = 0, γ = γ′ = ǫ
and hence no stack is touched when changing state though input symbols can be read.

Note thatγ = ǫ andγ′ 6= ǫ corresponds to a push transition,γ 6= ǫ andγ = ǫ
corresponds to a pop transition. Without loss of generality, let us assume that in every
transition,γ = ǫ or γ′ = ǫ holds, and ifa 6= ǫ thenγ = ǫ (i.e., when reading a symbol
from the input tape, none of the stacks can be popped).

A configuration of the pushdown transducerT is a tuple(w1qw2, {si}n
i=1, w

′)
wherew1, w2, w

′ ∈ Π∗, q ∈ Q andsi ∈ Γ ∗ for eachi ∈ [1, n]. Such a configu-
ration means that the input head is positioned just afterw1 on the input tape that has
w1w2 written on it,q is the current state,si is the current content of thei’th stack, and
w′ is the output written thus far onto the output tape (with the head positioned at the
end ofw′).

Transitions between configurations are defined by moves inδ as follows:

(w1qaw2, {si}
n
i=1, w

′)
(q,q′,a,b,j,γ,γ′)
−−−−−−−−−−→ (w1aq′w2, {s

′

i}
n
i=1, w

′b),

where(q, q′, a, b, j, γ, γ′) ∈ δ, if j 6= 0 thensj = ŝγ ands′j = ŝγ′, ands′i = si for
eachi 6= j.

Let us define the configuration graph of the transducerT as the graph whose vertices
are the configurations and whose edges are the transitions between configurations as
defined above.

A multi-stack pushdown transducerT rewritesw to w′, if there is a path in the con-
figuration graph from configuration(q0w, {ǫ}n

i=1, ǫ) to configuration(wqf , {si}n
i=1, w

′),
with qf ∈ F .

Pushdown rewriting is powerful, and the problem of decidingwhetherw can be
rewritten tow′ even in two steps by even a one-stack transducer is undecidable (see
Appendix for a proof):

Lemma 1. The problem of checking if a wordw can be rewritten to a wordw′ in two
steps by a 1-stack pushdown transducer is undecidable.

We want a tractable notion of transducers in order to define infinite automata that accept
recursive languages. We hence introduce a bounded version of pushdown transducers.

We say that a pushdown transducer isk-phase(k ∈ N), if, when transforming any
w1 to w2, it switches at mostk times between reading the input and popping either
one of the stacks, and between popping different stacks. More formally, a transition of
the form(q, q′, a, b, i, γ, γ′) is anot-pop transitionif it’s not a transition that pops any
stack, i.e. ifγ′ 6= ǫ or i = 0. Let NotPop denote the set of not-pop transitions. Let
Popi (i 6= 0) denote the set of all transitions except those that read from the input tape
or pop from a stackj different from i, i.e. Popi is the set of transitions of the form
(q, q′, a, b, j, γ, γ′) wherea = ǫ and if j 6= i thenγ = ǫ.

A k-phase transducer is one which on any runc0
m1−−→ c1

m2−−→ c2 . . .
mi−−→ ci the

sequencem1m2 . . . mi can be split asw1w2 . . . wk where for everyh ∈ [1, k], wh ∈
NotPop∗ ∪

⋃n
i=1(Pop∗

i).
A bounded-phase pushdown transducer is a pushdown transducer which isk-phase

for somek ∈ N.

Infinite automata defined by multi-stack pushdown transducers

We define nowinfinite-stateautomata over an alphabetΣ. The states in this automaton
will correspond to words over an alphabetΠ , the set of states one can transition to
from a state on a letterd in Σ will be defined using a multi-stack pushdown transducer
corresponding tod, and initial and final state sets will be identified using regular sets of
words overΠ .

Fix a finite alphabetΣ. An infinite-state pushdown transducer automaton (PTA)
over Σ is a tupleA = (Π, {Td}d∈Σ, Init ,Final), whereΠ is a finite alphabet, for
eachd ∈ Σ, Td is a pushdown transducer overΠ , andInit andFinal are finite-state
automata (NFAs) overΠ .

A PTA A = (Π, {Td}d∈Σ, Init ,Final) defines an infinite graphG = (V, E) de-
fined as follows:

– The set of verticesV is the set of words overΠ
– v

d
−→ v′ iff the pushdown transducerTd can rewritev to v′.

A bounded-phase PTA (BPTA) is a PTA in which every transduceris of bounded-
phase.

A run of the PTAA on a word overd1 . . . dn ∈ Σ∗ is a sequencev0, v1, . . . vn,

wherev0 is accepted by the automatonInit , and for eachi ∈ [1, n], vi−1
di−→ vi is in

G. Such a run is accepting if the final vertex is accepted byFinal , i.e.vn ∈ L(Final).
A word w is accepted by a PTAA if there is some accepting run ofA on w. The

language accepted byA, denotedL(A) is the set of all words it accepts.
In the rest of the paper we often writeexp(x) for 2x. Let 2ETIME(Σ) denote the

class of all languages overΣ that can be accepted by Turing machines working in time
exp(exp(O(n))).

We can now state our main theorem:

Theorem 1. A languageL overΣ is accepted by a bounded-phasePTA iffL ∈2ETIME(Σ).

3 The Upper Bound

In this section, we show that bounded-phase pushdown transducer automata define a
class of languages contained in 2ETIME.

Let us fix a BPTAA = (Π, {Td}d∈Σ, Init ,Final). The proof thatL(A) is con-
tained in 2ETIME is structured as follows:

(a) First, we show that the problem of checking if a wordw is accepted by a BPTA
can be reduced to theemptinessproblem fork-phase multi-stack visibly pushdown
automata (defined below) of state-spaceO(|w|) and such thatk = O(|w|).

(b) In [12], we have shown that the emptiness problem fork-phase multi-stack push-
down automata with state-spaceQ can be decided in timeexp(|Q|·exp(O(poly(k)))).
Applying this would give a 2EXPTIME procedure and not a 2ETIME procedure for
our problem (2EXPTIME is the class of problems that can be solved by a Turing
machine usingexp(exp(O(poly(n)))) time). Consequently, we sharpen the result
above, and show that emptiness can be indeed decided in timeexp(|Q|·exp(O(k))),
which establishes our theorem.

Bounded phase multi-stack pushdown automata

Multi-stack visibly pushdown automata (MVPA) are automata with a finite number
of stacks, where the input letter determines which stack theautomaton touches and
whether it pushes or pops from that stack. We refer to actionsthat push onto a stack as
calls and actions that pop a stack as returns.

An n-stack call-return alphabet is a tuplẽΣn = 〈{(Σi
c, Σ

i
r)}i∈[1,n], Σint〉 of pair-

wise disjoint finite alphabets. For anyi ∈ [1, n], Σi
c is a finite set ofcalls of the stacki,

Σi
r is a finite set ofreturns of stacki, andΣint is a finite set ofinternal actions. Let Σ̃

denote the union of all the alphabets iñΣn.
An n-stack visibly pushdown automatonM = (Q, QI , Γ, δ, QF) (whereQ is a

finite set of states,QI ⊆ Q andQF ⊆ Q are initial and final sets of states,Γ is the
stack alphabet andδ is the transition relation) over such an alphabet can push onthei’th
stack exactly one symbol when it reads a call of thei’th call alphabet, and pop exactly
one symbol from thei’th stack when it reads a return of thei’th return alphabet. Also,
it cannot touch any stack when reading an internal letter. The semantics of MVPAs is
defined in the obvious way, and we refer the reader to [12] for details.

A k-phase MVPA (k-MVPA) is intuitively an MVPA which works in (at most)k
phases, where in each phase it can push ontoanystack, but pop at most from one stack.
Formally, given a wordw ∈ Σ̃∗, we denote withRet(w) the set of all returns inw. A
word w is aphaseif Ret(w) ⊆ Σi

r, for somei ∈ [1, n], and we say thatw is aphase
of stacki. A word w ∈ Σ̃+, is ak-phase word ifk is the minimal number such thatw
can be factorized asw = w1w2 . . . wk, wherewh is a phase for eachh ∈ [1, k]. Let
Phases(Σ̃n, k) denote the set of allk-phase words over̃Σn.

For anyk, a k-phase multi-stack visibly pushdown automaton(k-MVPA) A over
Σ̃n is an MVPA M parameterized with a numberk; the language accepted byA is
L(A) = L(M) ∩ Phases(Σ̃n, k).

Reduction tok-MVPA emptiness

Consider a BPTAA = (Π, {Td}d∈Σ, Init ,Final). Recall that given a wordw =
d1 . . . dm ∈ Σ∗, the automatonA acceptsw iff there is a sequence of wordsu0, . . . , um

such thatu0 ∈ L(Init), um ∈ L(Final), and for eachi ∈ [1, m], ui−1 can be rewritten
to ui by the transducerTdi

.
Suppose that the transducers ofA have at mostn stacks. We consider the (n + 2)-

stack call-return alphabet̃Σn+2 = 〈{(Σi
c, Σ

i
r)}i∈[1,n+2], {int}〉where eachΣi

c = {ci}
andΣi

r = {ri}. I.e., we have exactly one call and one return for each stack,and exactly
one internal letter.

Assume that an (n + 2)-stack MVPA starts withur
i−1 on stack1. Using stacks

2, . . . , n + 1 as the intermediate stacks, it can generateui on stackn + 2 by simu-
lating the transducerTdi

(the word it reads is dictated by the actions performed on the
stack). Then, it can replace stack1’s content with the reverse of stack (n + 2)’s content
to getur

i on the stack1, and empty stacks2, . . . , n + 1 . Since the pushdown rewrite
system is bounded phase, it follows that the above rewritingtakes only a bounded num-
ber of phases. Simulating the rewrites for the entire wordw (i.e. u0 → u1 → . . . um),
and checking the initial words and final words belong toInit andFinal , respectively,
takes at mostO(m) phases. Moreover, we can build this MVPA to haveO(m) states
(for a fixed BPTAA). We hence have:

Lemma 2. The problem of checking whetherw is accepted by a fixed PTA is polynomial-
time reducible to the emptiness problem of anO(|w|)-phaseMVPA with O(|w|) states.

Solvingk-MVPA emptiness

In [12], the decidability of emptiness ofk-MVPA proceeds by first defining a map from
words overΣ̃ to trees, calledstack trees, by showing that the set of stack trees that
correspond to words forms aregular set of trees, and reducingk-MVPA emptiness to
emptiness of tree automata working on the corresponding stack trees.

The map from words to trees rearranges the positions of the word into a binary
tree by encoding a matching return of a call as its right child. This mapping hence
easily captures the matching relation between calls and returns, but loses sight of the
linear order inw. Recovering the linear order is technically hard, and is captured using
monadic second-order logic (MSO) on trees.

Fix a k-phase wordw of lengthm. We say that a factorizationw1, . . . , wk of w is
tight if: (1) the first symbol ofwh is a return for everyh ∈ [2, k], (2) if k > 1 then
Ret(w1) 6= ∅, and (3)wh andwh+1 are phases of different stacks for everyh ∈ [1, k−
1]. It is easy to see that, for everyk-phase wordw there is a unique tight factorization,
and thus we can uniquely assign a phase number to each letter occurrence withinw
as follows: forw = w′dw′′, d ∈ Σ̃, the phase ofd is h iff w1, . . . , wk is the tight
factorization ofw andd is within wh.

A stack treeis defined as follows:

Definition 1. Letw be ak-phase word over̃Σn with |w| = m, andw1, . . . , wk be the
tight factorization ofw. The word-to-tree map ofw, wt(w), which is a(Σ̃ × [1, k])-
labeled tree(V, λ), and the bijectionpos : V → [1, m] are inductively defined (on|w|)
as follows:

– If m=1, thenV ={root}, λ(root)=(w, 1), andpos(root)=1.
– Otherwise, letw = w′d, d ∈ Σ̃, andwt(w′) = (V ′, λ′). Then:

• V = V ′ ∪ {v} with v 6∈ V ′.
• λ(v) = (d, k) andλ(v′) = λ′(v′), for everyv′ ∈ V ′.
• If there is aj < m such thatd is a return and thej’th letter ofw is its matching

call (of the same stack), thenv is the right-child ofpos−1(j).
Otherwisev is the left-child ofpos−1(m − 1).

• pos(v) = m.

The treewt(w) is called thestack treeof w. Ak-stack tree is the stack tree of ak-phase
word.

The proof that the set of stack trees that correspond to wordsaccepted by ak-MVPA

forms a regular set of trees requires showing that: (a) the set of all stack trees is regular
and (b) given a stack tree, checking whether ak-MVPA has an accepting run over the
corresponding word can be done by a tree automaton.

Part (a) involves the definition of a linear order≺′ on tree nodes which corresponds
the linear order≺ on the word from the stack tree, and [12] shows that given a tree
automaton of sizer accepting the≺′ relation (formally, accepting trees with two nodes
markedx and y such thatx ≺′ y), we can build an automaton of size exponential
in r to accept all stack trees. It is further shown in [12] that the≺′ relation can be
captured by an automaton of sizer = exp(poly(k)). In order to get aexp(exp(O(k)))

automaton for accepting stack trees, we show now that the≺′ relation can be defined
using automata of sizer = exp(O(k)) (Lemma 4 below).

Part (b) requires traversing the stack tree according to thelinear order onw using a
two-way alternating automaton. We show below that there is a two-way alternating tree
automaton of size2O(k) that traverses the tree consecutively from one node to its suc-
cessor. More precisely, we show that given a tree where the first and last events of each
phase are marked, there is a 2-way alternating automaton that, when placed at a nodex
in the tree, will navigate to the successor ofx (reaching a final state) (Lemma 5 below).
It follows from [12] that using this automaton, we can check whether the word corre-
sponding to the stack tree is accepted by ak-MVPA using a nondeterministic automaton
of sizeexp(exp(O(k))). This primarily involves an exponential conversion of alternat-
ing tree automata to nondeterministic automata [19, 23], followed by other checks that
can be effected by nondeterministic automata of similar size.

We present the above two results in two technical lemmas below (see the Appendix
for more details of the proof).

Tree automata accepting stack trees

Here we prove that the≺′ relation can be captured by an automaton of sizeexp(O(k)).
To do that, we define a relation≺∗ for which it is direct to build a tree automata of size
exp(O(k)) that captures it, and then we show that≺∗ coincides with≺′.

For a(Σ̃ × [1, k])-labeled treeT = (V, λ), we define a mapphaseT : V → [1, k]

asphaseT (x) = h iff λ(x) = (a, h) for somea ∈ Σ̃.
Stack trees must first satisfy some simple conditions. A treeis well-formedif (i) the

phase numbers are monotonically increasing along any path in the tree, (ii) every right
child is a return, with a call of the same stack as its parent, and (iii) the phase of the root
is 1.

Let T be a well-formed tree,x be a node ofT , x′ be an ancestor ofx, andx1 . . . xℓ

be the path inT from x′ to x. Let I = {i1, i2, . . . , iℓ′−1} be the set of all indices
i ∈ [1, ℓ − 1] such thatphaseT (xi) 6= phaseT (xi+1). Assume thati1 < i2 < . . . <
iℓ′−1. We denote byPhasePathT (x′, x) the sequencep1, p2, . . . , pℓ′ such thatpj =
phaseT (xij

) for everyj ∈ [1, ℓ′ − 1], andpℓ′ = phaseT (xℓ).
In the following,<prefix is the linear order of nodes according to a preorder visit of

the tree, andTz denotes the largest subtree ofT which containsz and whose nodes are
labeled with the same phase number asz.

Definition 2. LetT = (V, λ) be a well-formed tree. For everyx, y ∈ V , x ≺∗ y if one
of the following holds:

parent(zx)

zx

xi1

xi2

xi
ℓ′−1

x

parent(zy)

zy

yi1

yi2

yi
ℓ′−1

y

1. phaseT (x) < phaseT (y);
2. Tx = Ty andx <prefix y;
3. There exists an ancestorzx of x and

an ancestorzy of y such that
– zx 6= zy,
– phaseT (parent(zx)) < phaseT (zx),
– phaseT (parent(zy)) < phaseT (zy),
– PhasePathT (zx, x)

= PhasePathT (zy, y)
= p1, . . . , pℓ′ (see figure on the right,
where similarly shaded regions belong
to the same phase)

and one of the following holds
(a) ℓ′ is odd andphaseT (parent(zy)) < phaseT (parent(zx)), or ℓ′ is even and

phaseT (parent(zx)) < phaseT (parent(zy)).
(b) Tparent(zx) = Tparent(zy), and eitherℓ′ is odd andparent(zy) <prefix parent(zx),

or ℓ′ is even andparent(zx) <prefix parent(zy) .

It is not hard to see that there is a non-deterministic automaton that guesses the
phase-pathp1, . . . , pℓ′ (since this sequence is always ordered in increasing order,we
can represent it as the set{p1, . . . , pℓ′}, and hence the number of guesses isO(2k)) and
checks whetherx ≺∗ y.

The following lemma states that≺∗ and≺′ indeed coincide (the definition of≺′

and a proof of the lemma are reported in the Appendix).

Lemma 3 (CHARACTERIZATION OF ≺′). LetT = (V, λ) be a(Σ̃ × [k])-labeled tree
that is well-formed. Then,x ≺∗ y if and only ifx ≺′ y for everyx, y ∈ V .

From the above argument and lemma, and the result shown in [12] we get:

Lemma 4. For any k, there is a nondeterministic tree automaton of sizeexp(O(k))
that accepts a well-formed tree with two nodes labeledx andy iff x ≺′ y.

Thus, we have the following theorem.

Theorem 2. For any k, there is a nondeterministic tree automaton of sizeexp(exp(O(k)))
which accepts the set of allk-stack trees.

Tree automata traversing stack trees

Given ak-stack treeT and two nodesx, y of T , we say thaty is thesuccessorof x if x
corresponds to a positionj of w andy to positionj + 1 of w, wherewt(w) = T .

In this section, we show that there is a two-way alternating tree automaton (see [19,
23] for a definition), withexp(O(k)) states, that when started at a nodex on ak-stack
treeT , navigates to the successor ofx. However, we assume that we are givenmarkers
that mark the first letter (marked withs) and last letter (marked withe) of each phase.

ProcedureSuccessor(x)
if EndPhase(x) then

return (NextPhase(phase
T
(x)));

elseif(y ← PrefixSucc(x) exists) then
return (y) ;

else{z ← ParentRoot(x);
z
′ ← Predecessor(z);

while (phase
T
(rightChild(z′))

6= phase
T
(x)) do

z
′ ← Predecessor(z′);

return (rightChild(z′)); }

ProcedurePredecessor(x)
if BeginPhase(x) then

return (PrevPhase(phase
T
(x)));

elseif(y ← PrefixPred(x) exists)
then return (y) ;

else{z ← ParentRoot(x);
z
′ ← Successor(z);

while (phase
T
(rightChild(z′))

6= phase
T
(x)) do

z
′ ← Successor(z′);

return (rightChild(z′)); }

Fig. 1.Successor and predecessor in stack trees.

We can build conjunctively another automaton that checks using exp(exp(O(k))) states
that these markers are correct.

Formally, letT = (V, λ) be a(Σ̃× [1, k]×{s , e,⊥})-labeled tree andT ′ = (V, λ′)

be the(Σ̃ × [1, k])-labeled tree whereλ′(x) = (a, i) if λ(x) = (a, i, d). We say thatT
is ak-stack tree with markers, if T ′ is ak-stack tree, and all the vertices corresponding
to positions ofwt−1(T ′) where a phase starts (resp., ends) are labeled inT with s (resp.
e). For two nodesx, y ∈ V , we say thaty is the successor ofx if y is the successor of
x in T ′.

Lemma 5. There exists a two-way alternating tree automaton, withexp(O(k)) states
that given ak-stack treeT , when started at a nodex of T , will navigate precisely to the
successor ofx (reaching a final state).

Proof. The 2-way alternating automaton is best describedalgorithmically.It will be
easy to see that this algorithm can be executed by a 2-way alternating automaton of
the required size. The algorithm is shown in Fig. 1. WithEndPhase(x) we denote a
predicate that holds true wheneverx is the last letter of a phase. WithNextPhase(i),
i < k, we denote the first letter of phasei+1. With PrefixSucc(x), we denote the next
letter in the preorder visit ofTx. With ParentRoot(x), we denote the parent of the root
of Tx. BeginPhase(x), PrevPhase(i) andPrefixPred(x) are defined analogously.

Intuitively, if x is the last letter of a phase, we navigate to the first letter ofthe
next phase (effected by the first clause). Otherwise, we check whether we can find the
successor locally, in the same subtreeTx; this corresponds to finding the next element
in the preorder visit ofTx and is delegated to the second clause. Ifx is the last letter of
Tx, then the successor is hard to find. Letz be the parent of the root ofTx andi be the
phase number ofx. Intuitively, the successor ofx is obtained by taking thelast node
beforez that has a matching return whose phase isi. We hence execute the function
Predecessor iteratively till we reach a node that has a right-child of phasei.

Implementing the above requires a 2-way alternating automaton to keep a list of
phase numbers. Again, the list can be maintained as a set (since the phase numbers
on the list are ordered), and we can engineer the automaton tohaveexp(O(k)) states.

Alternation is used to prove falsity of conditional clausesthat are not pursued in the
algorithm. ⊓⊔

From the above lemmas and the result from [12], we get:

Theorem 3. The emptiness problem fork-MVPAs of state-spaceQ is decidable in time
exp(|Q| · exp(O(k))).

Combining Lemma 2 and the above theorem we get:

Theorem 4. The membership problem for BPTAs is decidable in2ETIME.

4 The Lower Bound

In this section, we show that any language in 2ETIME is accepted by an infinite-state
bounded-phase pushdown transducer automata, thereby completing the proof that such
automata exactly characterize 2ETIME (Theorem 1).

We start giving a lemma which describes an interesting feature of the bounded-
phase multi-stack pushdown rewriting. It states that if we have an unbounded number
of pairs of bounded-length words, say bounded byN , then we can check whether every
pair (w, w′) is such that|w| = |w′| and for eachi the i’th symbol ofw andw′ belong
to some relation over symbols, using at most⌈log N⌉/c-steps of2c-phase multi-stack
pushdown rewriting. Consider a finite relationR ⊆ Π × Π , and two wordsw =
a1 . . . am andw′ = a′

1 . . . a′

m′ overΠ . We say that(w, w′) satisfiesR if and only if
m = m′ and(ai, a

′

i) ∈ R for i = 1, . . . , m. (The proof of the following lemma is given
in the Appendix.)

Lemma 6. Let Π be a finite alphabet,# be a symbol which is not inΠ , R ⊆ Π ×
Π , andw be any word of the formu1#v1#u2#v2# . . . #um#vm, with m > 0 and
ui, vi ∈ Π2cn

for i = 1, . . . , m with c, n > 0.
There exists a2c-phase2-stack pushdown transducerT that rewrites withinn steps
each such wordw to a symbol$ if and only if(ui, vi) satisfiesR for everyi = 1, . . . , m.

Proof sketch.The transducerT splits each pair(ui, vi) into2c pairs of words, and writes
them onto the output tape. This transducer can be implemented using two stacks and
2c-phases. (see Appendix for a detailed proof). Inn steps, the transducer hence reduces
the problem of checking whether every(ui, vi) satisfiesR to that of checking whether
a large number of pairs of letters belongs toR, which can be effected by a regular
automaton. ⊓⊔

A transducer, as stated in the above lemma, can be used to check for a Turing ma-
chine whether a configuration is a legal successor of anotherone. We apply this result as
a crucial step in proving the following theorem which statesthe claimed lower bound.

Theorem 5. For each languageL in 2ETIME(Σ), there is a bounded-phase pushdown
transducer automatonA such thatL = L(A).

Proof sketch.(See the Appendix for more details.) We reduce the membership problem
for alternating Turing machines working in2O(n) space to the membership problem for
BPTAs. The result then follows from [9].

We briefly sketch a BPTAA that accepts a wordsw if and only if w is accepted by
a2O(n) space Turing machineM. FirstA guesses a wordw and a runt of M encoding
them as a sequence of pairs of words(ui, vi) such that all the steps taken int, andw
along with the initial configuration, are all represented byat least one such pair. Then,
it checks if the guessed sequence indeed encodes an accepting run ofM onw.

In the first task we make use of a slight variation of a standardencoding of trees by
words where each pair of consecutive configurations ofM are written consecutively in
the word. The second task is by Lemma 6. We observe that it suffices to have single
initial and final states forA. ⊓⊔

5 Discussion

We have shown an infinite-automata characterization of the class 2ETIME. This result
was obtained independently of the work by Meyer showing thatterm-automatic infinite
automata capture the class ETIME [14]. These two results, along with the characteriza-
tion of NLINSPACE [15], are currently the only characterizations of complexity classes
using infinite automata.

The power of multi-stack rewriting. While infinite automata capture fairly complex
languages, there has been little study done on how simple infinite automata can be
designed to solve natural algorithmic problems. In this section, we investigate the power
of our rewriting. We give infinite automata that solve SAT andQBF (crucially using
Lemma 6), and explore connections to infinite automata basedon term rewriting. While
this of course follows from the lower bound shown in Section 4, the construction is
instructive.

We start observing some interesting features of bounded-phase multi-stack push-
down rewriting. We can generate words corresponding to treeencodings, or, in gen-
eral, belonging to a context free language. (Checking whether a word belongs to a
context free language while rewriting can be a problem though: for example, it is not
clear how to rewrite in1-step a wordw to a symbol1 iff w ∈ {anbn | n ≥ 0}.)
Also, in each rewriting we can duplicate a bounded number of times any portion of
the read word. This can be useful to start many threads of computation on the same
string thus speeding-up the total computation. Finally, words can be (evenly) split into
a bounded number of sub-words. By iterating such splitting,we can check simple rela-
tions between an unbounded number of words, each of exponential length, as shown in
Lemma 6.

SAT and QBF. Let us encode Boolean formulas in the standard way, by representing
each quantifier, connective, constant and bracket with different symbols, and variables
with unbounded length binary strings.

On the first step,A prepares the computation by rewriting its initial state with a
triple (w1, w2, w3) wherew1 is the encoding of a well-formed formula,w2 is a copy of

w1 along with a valuation for each variableoccurrence, andw3 is the list of variable
occurrences coupled with their valuation as annotated inw2. The wordw1 is guessed
nondeterministically using a stack to ensure it is well-formed, and is used byA to match
the input formula. The wordw2 is obtained by copyingw1 and nondeterministically
guessing on each variable occurrence a valuation (note thattwo occurrences of the
same variable may be assigned with different values along some runs). Wordw2 is used
to evaluate the formula in the guessed valuation. Wordw3 is extracted fromw2 and is
later used to generate all pairs(xb, x′b′) wherex, x′ are variable occurrences andb, b′

are respectively their assigned values. Such pairs are thenchecked to see if they define
a consistent valuation.

Observe now that evaluating the formula requires a number ofsteps of rewriting
bounded by its height. Also, the pairs of occurrences can be generated inn − 1 steps
of rewriting wheren is the number of variable occurrences in the formula: a sequence
x1 . . . xn is rewritten according to the recurrencepairs(x1 . . . xn) is (x1, x2) along
with pairs(x1x3 . . . xn) andpairs(x2x3 . . . xn). Finally, from Lemma 6 checking for
pair consistency can be done in the length of the variable representation. Therefore, all
tasks are accomplished by the timeA terminates its input and therefore it can correctly
accept or reject the input word.

This construction can be generalized to encode QBF. The maindifference is that
variables are assigned one at each step: when the corresponding quantifier is eliminated.
The elimination of universal quantifiers requires duplication of the formula, which can
be effected using a work stack.

Term-automatic rewriting. Another way to define infinite automata is to represent
states usingterms(or trees), and use term rewriting to define relations. In [14], term
automatic rewriting infinite automata are considered, and it is shown that they precisely
capture ETIME (the class of languages accepted by Turing machines in time2O(n)).

A binary relationR over terms isautomaticif it is definable via a tree automaton
which reads overlappings of the pair of terms, i.e., the terms are read synchronously on
the parts where the corresponding domains intersect (see [14]).

Intuitively, a stack allows us to faithfully represent terms using a well-bracketed
word. We now show how to directly translate a term-automaticinfinite automatonA to
a multi-stack rewriting infinite automatonB accepting the same language. Automaton
B on the first step nondeterministically guesses the entire run of A, i.e., a sequence of
termst1, . . . , tN whereN − 1 is the length of the word which will be read. Then, it
checks if it is indeed an accepting run by generating all the pairs of consecutive terms
in the sequence, and then checking them as in Lemma 6. To ensure that terms match
when paired, we need to guess terms which all have the same shape (with dummy labels
used to mark unused parts of the tree). Also, in order to have all tasks processed on time
(i.e., before the input to the automaton is completely read), the guessed terms must be
of size at most exponential inN . It is not hard to show by standard techniques that if a
term-automatic infinite automaton has an accepting run overa wordw, then it has also
an accepting run on it which visits terms of size at most exponential in the length ofw.
Hence the infinite automatonB accepts the same language asA.

Conclusions and future directions.We have defined (B)PTA with possible infinite ini-
tial and final states. Restricting the definition to single initial and final state does not alter
the class of recognized languages. In fact, for each (B)PTAA = (Π, {Td}d∈Σ, Init ,Final),
we can easily construct a language equivalent (B)PTAA′ which has only an initial and
a final state.

We observe that, since the construction in Theorem 5 showing2ETIME hardness
uses transducers with only two stacks, the full power of BPTAcan be achieved with
just two stacks. If we allow transducers with only one stack we can show22n

lower
bound (we need to use Lemma 10 in the Appendix) but it is left open whether we can
capture all 2ETIME (i.e. time22O(n)

) using just one-stack transducers.
There are several choices for rewriting that can be studied.For example, prefix

rewriting (where essentially the input word is treated as a stack, and an automaton
works on it to produce a new stack) precisely defines context-free languages [21]. Reg-
ular and synchronized regular rewriting leads to automata that accept context-sensitive
languages [15, 18]. Reducing the power of rewriting to one that is weaker than syn-
chronous regular relations seems hard (for e.g., consider relationsR ⊆ Σ∗×Σ∗ where
the language{w#w′ | (w, w′) ∈ R} is regular; this leads to infinite automata that only
captureregular languages).

We believe that our results may open a new technique to findingrewriting classes
that capture complexity classes. Intuitively, a rewritingmechanisms for which checking
whether any word in a regular languageL can be rewritten inn steps to a word in
a regular languageL′ can be solved in time (or space)C(n) may be a good way to
come up with conjectur rewriting schemes that define infiniteautomata for the class
C(n)-time (or space).

Along this vein, consider bounded context-switching rewriting where the input word
is rewritten to an output word using a finite number of stacks,but where there is only
a boundednumber of switches between the stacks (including the input tape). This is
weaker than the rewriting in this paper as the automaton is not allowed to push onto all
stacks in one phase. The membership problem for bounded-context-switching automata
can be seen to be NP-complete, and it will be interesting to see if this leads us to an
infinite automaton characterization of NP.

The most interesting question would be to investigate if anycomplexity-theoretic re-
sult can be proved in a radically different fashion using infinite automata. As mentioned
in [21], given that we have infinite automata for the class NL, showing that NL=CO-NL
using infinite automata seems an excellent idea to pursue.

References
1. R. Alur and P. Madhusudan. Visibly pushdown languages. InSTOC, pp. 202–211, 2004.
2. T. Ball and S. K. Rajamani. Bebop: A symbolic model checkerfor boolean programs. In

SPIN, vol. 1885 ofLNCS, pp. 113–130, 2000.
3. A. Bouajjani, P. Habermehl, and T. Vojnar. Abstract regular model checking. InCAV, vol.

3114 ofLNCS, pp. 372–386, 2004.
4. A. Carayol and Stefan Wöhrle. The Caucal hierarchy of infinite graphs in terms of logic and

higher-order pushdown automata. InFSTTCS, vol. 2914 ofLNCS, pp. 112–123, 2003.
5. A. Carayol and A. Meyer. Context-sensitive languages, rational graphs and determinism.

Logical Methods in Computer Science, 2(2), 2006.

6. A. Carayol and A. Meyer. Linearly bounded infinite graphs.Acta Inf., 43(4):265–292, 2006.
7. D. Caucal. On infinite transition graphs having a decidable monadic theory. InICALP, vol.

1099 ofLNCS, pp. 194–205, 1996.
8. D. Caucal and T. Knapik. A Chomsky-like hierarchy of infinite graphs. InMFCS, vol. 2420

of LNCS, pp. 177–187, 2002.
9. A. K. Chandra, D. Kozen, and L. J. Stockmeyer. Alternation. J. ACM, 28(1):114–133, 1981.

10. H.-D. Ebbinghaus and J. Flum.Finite Model Theory. Springer, 1995.
11. J. E. Hopcroft and J. D. Ullman.Introduction to Automata Theory, Languages, and Compu-

tation. Addison-Wesley, 1979.
12. S. La Torre, P. Madhusudan, and G. Parlato. A robust classof context-sensitive languages.

In LICS, pp. 161–170. IEEE Computer Society, 2007.
13. S. La Torre, P. Madhusudan, and G. Parlato. Context-bounded analysis of queue systems. In

TACAS, vol. 4963 ofLNCS, pp. 299–314, 2008.
14. A. Meyer. Traces of term-automatic graphs. InMFCS, vol. 4708 ofLNCS, pp. 489–500,

2007.
15. C. Morvan and C. Stirling. Rational graphs trace context-sensitive languages. InMFCS, vol.

2136 ofLNCS, pp. 548–559, 2001.
16. D. E. Muller and P. E. Schupp. The theory of ends, pushdownautomata, and second-order

logic. Theor. Comput. Sci., 37:51–75, 1985.
17. E. L. Post. Formal reductions of the general combinatorial decision problem.American

Journal of Mathematics, 65(2):197–215, 1943.
18. C. Rispal. The synchronized graphs trace the context-sensitive languages.Electr. Notes

Theor. Comput. Sci., 68(6), 2002.
19. G. Slutzki. Alternating Tree Automata.Theor. Comput. Sci., 41:305–318, 1985.
20. W. Thomas. Languages, automata, and logic.Handbook of formal languages, vol. 3, pp.

389–455, 1997.
21. W. Thomas. A short introduction to infinite automata. InDLT, vol. 2295 ofLNCS, pp.

130–144, 2001.
22. A. Thue. Probleme ber vernderungen von zeichenreihen nach gegebener regeln.Kra. Vi-

densk. Selsk. Skrifter. 1. Mat. Nat. Kl. : 10, 1914.
23. M. Vardi. Reasoning about The Past with Two-Way Automata. In ICALP, vol. 1443 of

LNCS, pp. 628–641, 1998.

A Proof of Lemma 1

The problem of deciding whetherw can be rewritten tow′ even in two steps by even a
one-stack transducer is undecidable:
Lemma 1 The problem of checking if a wordw can be rewritten to a wordw′ in two
steps by a 1-stack pushdown transducer is undecidable.

Proof. We use a reduction from thePost’s Correspondence Problem(PCP) which is
known to be undecidable [11]. Given two sequences ofh wordsu1, . . . , uh andv1, . . . , vh

overΣ, the PCP is to determine whether there exists a sequence of indicesi1, . . . , im
such thatui1 . . . uim

= vi1 . . . vim
.

We define a first pushdown transducerT1 that rewrites the empty wordε to any
string of the formui1 . . . uim

#vr
im

. . . vr
i1

where withwr we denote the reverse of a
word w. T1 simply guesses a sequence of indices and for each guessed index i, writes
ui onto the output tape andvi onto the stack. Then, it writes# onto the tape, and pops
the stack content onto the output tape. We define a second pushdown transducerT2 that
rewrites a string of the formw#w′ to $ if and only if w′ = wr.

Clearly, the considered PCP has a solution if and only ifε can be rewritten to$ by
first applyingT1 and thenT2. ⊓⊔

B Proof of Lemma 3

In this section we prove that the relation≺′ defined in [12] (which is reported below)
and the relation≺∗ defined in Definition 2 are actually the same.

Definition 3 ([12]). Let T = (V, λ) be a(Σ̃ × [1, k])-labeled tree withphaseT (x) ≥
phaseT (parent(x)), for everyx ∈ V \ {root}. For everyh ∈ [1, k], we inductively
define the relations<h⊆ V × V and<[h]⊆ V × V , as follows:

– x <h y iff phaseT (x) = phaseT (y) = h and either (1)Tx = Ty andx <prefix y,
or (2) Tx 6= Ty, h > 1 andparent(root(Ty)) <[h−1] parent(root(Tx)).

– x <[h] y iff either (1)phaseT (x), phaseT (y) < h andx <[h−1] y, or (2)phaseT (x) =
phaseT (y) = h andx <h y, or (3)phaseT (x) < h andphaseT (y) = h.

We define the relation≺′ as<[k].

For the sake of readability, we also report Definition 2 here.

Definition 2 Let T = (V, λ) be a well-formed tree. For everyx, y ∈ V , x ≺∗ y if one
of the following holds

1. phaseT (x) < phaseT (y);
2. Tx = Ty andx <prefix y;
3. There exists an ancestorzx of x and an ancestorzy of y such that

– zx 6= zy,
– phaseT (parent(zx)) < phaseT (zx),
– phaseT (parent(zy)) < phaseT (zy),

– PhasePathT (zx, x) =
PhasePathT (zy, y) = p1, . . . , pℓ′ ,

and one of the following holds
(a) ℓ′ is odd andphaseT (parent(zy)) < phaseT (parent(zx)), or ℓ′ is even and

phaseT (parent(zx)) < phaseT (parent(zy)).
(b) Tparent(zx) = Tparent(zy), and eitherℓ′ is odd andparent(zy) <prefix parent(zx),

or ℓ′ is even andparent(zx) <prefix parent(zy) .

Before proving≺′=≺∗, we give a technical lemma. It says that whenx, y are two
nodes of a well-formed treeT having the same phase but belonging to different subtrees,
i.e.Tx 6= Ty, then condition3 of Definition 2 holds.

Lemma 7. Let T = (V, λ) be a well-formed(Σ̃ × [1, k])-labeled tree. Ifx, y ∈ V ,
phaseT (x) = phaseT (y), h = phaseT (x), Tx 6= Ty, andx <[h] y then there exists an
ancestorzx of x and an ancestorzy of y such that

– zx 6= zy,
– phaseT (parent(zx)) < phaseT (zx),
– phaseT (parent(zy)) < phaseT (zy),
– PhasePathT (zx, x) =

PhasePathT (zy, y) = p1, . . . , pℓ′ ,

and one of the following holds

1. ℓ′ is odd andphaseT (parent(zy)) < phaseT (parent(zx)), or ℓ′ is even andphaseT (parent(zx)) <
phaseT (parent(zy)).

2. Tparent(zx) = Tparent(zy), and eitherℓ′ is odd andparent(zy) <prefix parent(zx),
or ℓ′ is even andparent(zx) <prefix parent(zy) .

Proof. The proof is by contradiction. LetC be the set of all pairs(a, b) such that
a <[h] b and the lemma does not hold. We consider a pair(x, y) of C that minimizes
depthT (x) + depthT (y), wheredepthT of a nodez of T gives the depth ofz in T .

From the hypotheses of the lemma and Definition 3, we have thatif x <[h] y
then x <h y. SinceTx 6= Ty, and henceh > 1, thenparent(root(Ty)) <[h−1]

parent(root(Tx)). Let c = parent(root(Ty)) and d = parent(root(Tx)). We dis-
tinguish two cases depending on whetherTc andTd are the same tree or not.

If Tc = Td then c <prefix d. Therefore, if we pickzx = root(Tx) and zy =
root(Ty), we have thatzx 6= zy (sinceTx 6= Ty),PhasePathT (zx, x) = PhasePathT (zy, y) =
h with ℓ′ = 1, and condition2. of the lemma holds.

If Tc 6= Td then we consider two subcases: ifphaseT (c) is equal tophaseT (d) or
not. Consider first the case in whichphaseT (c) 6= phaseT (d). Sincex <[k] y we must
have thatphaseT (c) < phaseT (d). Thus, if we pickzx = root(Tx) andzy = root(Ty),
we have thatzx 6= zy (sinceTx 6= Ty),PhasePathT (zx, x) = PhasePathT (zy, y) = h
with ℓ′ = 1, and condition1. of the lemma holds. The remaining case to consider
is when alsophaseT (c) andphaseT (d) are equal. SinceTc 6= Td anddepthT (c) +
depthT (d) < depthT (x)+depthT (y) we can apply the lemma: there exists an ancestor
zc of c and an ancestorzd of d such that

– zc 6= zd,
– phaseT (parent(zc)) < phaseT (zc),
– phaseT (parent(zd)) < phaseT (zd),
– PhasePathT (zc, c) =

PhasePathT (zd, d) = p1, . . . , pℓ′ ,

and one of the following statements holds

1. ℓ′ is odd andphaseT (parent(zd)) < phaseT (parent(zc)), orℓ′ is even andphaseT (parent(zd)) <
phaseT (parent(zc)).

2. Tparent(zc) = Tparent(zd), and eitherℓ′ is odd andparent(zd) <prefix parent(zc),
or ℓ′ is even andparent(zc) <prefix parent(zd) .

Notice thatzd is an ancestor ofx andzc is an ancestor ofx. Thus, we setzx = zd

andzy = zc. Moreover,PhasePathT (zx, x) = PhasePathT (zy, y) = p1, . . . , pℓ′h
whose length isℓ′ + 1. Now, it is direct to see that one of the conditions between1. or
2. of the lemma holds when we considerx, zx, y, andzy. ⊓⊔

Now we first prove that ifx ≺′ y holds then alsox ≺∗ y holds.

Lemma 8. LetT = (V, λ) be a well-formed(Σ̃× [1, k])-labeled tree. For everyx, y ∈
V , if x ≺′ y thenx ≺∗ y.

Proof. If x ≺′ y thenx 6= y and one of the following cases holds:

1. phaseT (x) < phaseT (y);
2. Tx = Ty (thusphaseT (x) = phaseT (y));
3. phaseT (x) = phaseT (y) andTx 6= Ty.

Let phaseT (y) = h. It is easy to see that ifx ≺′ y thenx <[h] y. The proof continues
by proving thatx ≺∗ y for each case outlined above.

If phaseT (x) < phaseT (y) then by Definition 2 we get immediately thatx ≺∗ y.
If Tx = Ty then, by definition of<[h] (see Definition 3),x <h y and consequently

x <prefix y. Therefore,x ≺∗ y holds.
Finally, if phaseT (x) = phaseT (y) andTx 6= Ty, and sincex <[h] y we can apply

Lemma 7 and then by Definition 2 we have thatx ≺∗ y, which concludes the proof.⊓⊔

Lemma 9. LetT = (V, λ) be a well-formed(Σ̃× [1, k])-labeled tree. For everyx, y ∈
V , if x ≺∗ y thenx ≺′ y.

Proof. From Definition 2, it is easy to see that, given any pairx, y ∈ V with x 6= y,
exactly one betweenx ≺∗ y andy ≺∗ x holds.

The proof is by contradiction. Assume that there existx, y such thatx ≺∗ y and
x 6≺′ y. Since≺′ is a linear ordering (see [12]), we must have thaty ≺′ x. Now applying
Lemma 8 we have thaty ≺∗ x. Therefore, bothy ≺∗ x andy ≺∗ x hold, but this is a
contradiction. ⊓⊔

From Lemma 8 and 9, we get the main result of the section:

Lemma 3 (CHARACTERIZATION OF≺′) LetT = (V, λ) be a well-formed(Σ̃× [1, k])-
labeled tree. Then,x ≺′ y if and only ifx ≺∗ y for everyx, y ∈ V .

C Emptiness ofk-MVPAs

In this section, we prove that for any class of words acceptedby ak-MVPA, the class of
trees corresponding to them forms a regular tree language.

Theorem 6. If L is a k-MVPL, thenwt(L) is regular. Moreover, ifA is a k-MVPA

acceptingL, then there is a tree automaton that acceptswt(L) with number of states
at most exponential in the size ofA and double exponential in the number of phasesk
(more precisely,exp(|A|2O(k)) states).

Proof. We start giving an MSO sentenceϕ which guarantees thatwt−1(T) is a word
of L.

Let δ = {δ1, . . . , δt} be the set ofA transitions. We denote with̄s a list of k vari-
abless1, . . . , sk and withē a list ofk variablese1, . . . , ek. Then,ϕ is of the form

∃Y1 . . . ∃Yt∃s̄∃ē phaseBounds ∧ simulation .
We use variableYi to guess all tree nodes where transitionδi is taken (along a run). We
use variablessi andei to guess the tree nodes corresponding to the beginning and the
end of phasei, respectively.

FormulaphaseBounds is used to check that the guess on variables is correct and is
defined as

∧k
i=1 ¬∃x.(less(x, si)∧less(ei, x)∧SamePhase(x, si)), whereSamePhase(y, z)

holds true iffy andx agree on the phase number, andless(u, v) holds true iffu ≺ v.
By Lemma 4, the≺ relation can be captured by a nondeterministic tree automaton with
2O(k) states. Therefore, we can construct a(exp(exp(O(n)) size tree automaton for
checkingphaseBounds .

Formulasimulation is used to check that the guessed run is correct. To accom-
plish this we need to traverse the tree from the root according to the successor rela-
tion (w.r.t.≺), and check whether the states match. By Lemma 5, we can implement
this with a 2-way alternating tree automaton with|Q| 2O(k) states, whereQ is the
set ofA states, which can be translated to a nondeterministic tree automaton of size
exp(|Q| · exp(O(k)). The rest of this formula does the usual checks and can be trans-
lated to a tree automaton withexp(exp(O(k)) states (see [20] for similar proofs).

Since the quantifiers outsidephaseBounds andsimulation are all existential, the
size of the total automaton forϕ is exp(|Q| · exp(O(k)). From Theorem 2, we have
that there is a nondeterministic tree automaton of sizeexp(exp(O(k))) which accepts
the set of allk-stack trees. Therefore, we can intersect the two automata and get a tree
automaton acceptingwt(L) of sizeexp(|A|2O(k)), which concludes the proof. ⊓⊔

We can now show the main result of this section, which followsfrom the above
theorem and the fact that tree automata emptiness is solvable in linear time.

Theorem 7. (EMPTINESS FORk-MVPLS) The emptiness problem fork-MVPLs is de-
cidable inexp(exp(O(k)) time.

D Proofs of Section 4

We start showing a result which differs from Lemma 6 for allowing transducers with2c

stacks. Then, we argue how this proof can be adapted to show Lemma 6. We end the
section proving Theorem 5.

Lemma 10. Let Π be a finite alphabet,# be a symbol which is not inΠ , R ⊆ Π ×
Π , andw be any word of the formu1#v1#u2#v2# . . . #um#vm, with m > 0 and
ui, vi ∈ Π2cn

for i = 1, . . . , m with c, n > 0.
There exists a2c-phase (2c − 1)-stack pushdown transducerT that rewrites within
n steps each such wordw to a symbol$ if and only if (ui, vi) satisfiesR for every
i = 1, . . . , m.

Proof. We first prove the lemma forc = 1.
The idea is to construct a2-phase1-stack transducerT that evenly splits the se-

quences between the stack and the output tape. In particular, T works in two main
modes. On inputs of the form stated in the lemma, if wordsui and vi have length
greater than2, thenT does the two following macro steps: (i) symbols ofΓ are rewrit-
ten alternatively onto the output tape and the stack, while# is rewritten both onto the
output tape and the stack; (ii) when the reading of the input sequence is completed,T
writes# on the output tape and moves all the symbols from the stack to the output tape.
Otherwise, i.e. ifui andvi have length1, thenT acts as before except for the writing
on the output tape: in the first mode it checks the relationR on the first symbols of
the pair of words(ui, vi), and pushes the second symbols onto the stack; then in the
second mode, while popping the symbols from the stack, it checks the relationR on the
remaining symbols and then writes$ onto the output tape if all the checked pairs fulfill
R.

The effect of eachT rewriting is to split into two halves the words of the pairs
encoded in the input. Also, such splitting does not break thelink between symbols at
the same position in the starting pairs of words(ui, vi). By repeatedly applying such
rewriting forn steps, we get$ if and only if the pairs(ui, vi) of the starting word satisfy
R for eachi = 1, . . . , m.

Forc > 1, we adapt the above idea, except that we use2c − 1 stacks, and split each
word into 2c sub-words in each rewrite step using2c phases. This reduces a word of
length2cn to length1 in n steps. ⊓⊔

To prove Lemma 6, we define a transducer which rewrites each pair (u, v) by split-
ting it into 2c pairs which preserve the symbol position relation betweenu andv, as
argued for showing Lemma 10. However, the way this splittingis achieved is different.
While reading the pair from the input, the symbols which are2c apart from each other
are written to the output, while the others are pushed onto one stack. Then, moving the
symbols from one stack to the other, the transducer iteratively extracts (moving them
onto the output) the symbols which are in turn2c − 1, 2c − 2, . . . , 1 apart form each
other. This transducer is fairly more complex than that given for showing Lemma 10.
In fact, it usesO(2c) states while the other uses onlyO(c) states. Thus, we have the
following lemma.

Lemma 6 LetΠ be a finite alphabet,# be a symbol which is not inΠ , R ⊆ Π×Π and
w be any word of the formu1#v1#u2#v2# . . . #um#vm, with m > 0 andui, vi ∈
Π2cn

for i = 1, . . . , m.
There exists a2c-phase2-stack pushdown transducerT that rewrites withinn steps
each such wordw to a symbol$ if and only if(ui, vi) satisfiesR for everyi = 1, . . . , m.

A transducer, as stated in the above lemmas, can be used to check for a Turing
machine whether a configuration is a legal successor of another one. We apply this
result as a crucial step in proving the following theorem which states the claimed lower
bound.
Theorem5 For each languageL in 2ETIME(Σ), there is a bounded-phase pushdown
transducer automatonA such thatL = L(A).

Proof. Recall that 2ETIME coincides with the class of all languages that can be ac-
cepted by alternating Turing machines working in space2O(n) [9]. Therefore, to show
the theorem is suffices to reduce the membership problem for alternating Turing ma-
chines working in2O(n) space to the membership problem for BPTAs.

We fix a wordw overΣ, and an alternating Turing machineM which uses2O(n)

space on each input of sizen. In the following, we briefly describe a BPTAA that
acceptsw if and only if w ∈ L(M).

The behavior ofA can be summarized into two main tasks: (i) first,A guesses a
wordw and a runt of M encoding them as a sequence of pairs of words(ui, vi) such
that all the steps taken int, andw along with the initial configuration, are all represented
by at least one such pair; (ii) then, it checks if the guessed sequence indeed encodes an
accepting run ofM onw.

We encode each configurationc such that a symbol in it encodes also the left and
the right neighbour symbols on the tape along with the transition taken to get toc
from its parent configuration in the run. That is, suppose that we take a transition
e to enter the configurationa1 . . . (q, ai) . . . ah in the considered run, we encode this
as(−, a1, a2, e)(a1, a2, a3, e) . . . (ai−1, (q, ai), ai+1, e) . . . (ah−1, ah,−, e). Note that
this way checking if a configurationc is thee-successor ofc′ reduces to checking if
(c, c′) satisfies an appropriate relation.

To implement the first task we use a slight variation of a standard encoding of bi-
nary trees by words. (Recall that a run of an alternating Turing machine is a tree of
configurations instead of a sequence of configurations as in standard Turing machines.
Also, without loss of generality we can assume such trees to be binary.) For a wordc
we denote withcr its reverse. We inductively define the encoding of a treet, denoted
〈t〉, as: (1) ift has a single node labeled with a wordc, 〈t〉 is # c # cr; (2) if t has root
labeled withc and only a subtreet0, 〈t〉 is # c 〈t0〉# cr; (3) if t has root labeled with
c, left subtreet0 and right subtreet1, 〈t〉 is # c 〈t0〉 〈t1〉# cr. The run ofM is guessed
generating such an encoding in the first step of anA run onw. To do this, a2-phase
1-stack pushdown rewriting suffices.

We chose such an encoding since two consecutive configurationsc1 andc2 of the
guessed run appear in the encoding either as...#c1#c2 or as...#cr

2#cr
1, and thus it is

possible to extract in one step all the pairs we need to perform the second task. We can
implement this task using2-phase1-stack pushdown rewriting.

Since we use a constant number of steps to perform the first task (just2 steps), and
we can do the second task using Lemma 10, we have the theorem. ⊓⊔

