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Abstract. Infinite-state automata are a new invention: they are autrireat
have an infinite number of states represented by words,iticars defined us-
ing rewriting, and with sets of initial and final states. lit#astate automata have
gained recent interest due to a remarkable result by Moradrdirling, which
shows that automata with transitions defined using ratiomatiting precisely
capture context-sensitive (NWLSPACE) languages. In this paper, we show that
infinite automata defined using a form of multi-stack rewgtprecisely defines
double exponential time (more precisely, 2KE, the class of problems solvable
in 227" time). The salient aspect of this characterization is thatautomata
have no ostensible limits on time nor space, and neithectitire of containment
with respect to 2ETME is obvious. In this sense, the result captures the complex-
ity class qualitatively, by restricting the power of rewrg.

1 Introduction

The theory of infinite-state automata is a new area of rekg@exe [21] for a recent
survey). Infinite-state automata (not to be confused firtke state automata on infinite
wordg are automata witinfinitely many states that can reéidite words and accept or
reject them, in much the same way as finite-state automatkiiwlowrder to represent
infinite-state automata using finite means, the statesrasitions, and the initial and
final state sets are represensganbolically

The infinite-state automata we study in this paper are defiryedsingwordsto
represent the states of the automaton. Let us fix a finite bgitiaas the input alphabet
for the infinite-state automata. The set of states of an tefisiate automaton ovérare
words over a finite alphabét (which does not need to be related’fan any way). The
initial and final sets of states of this automaton are defirsdoigiword-languages over
11 accepted by finitely presented devices (e.qg. finite-statmaata overT). Transitions
between states are defined usiagriting rules that rewrite words to other words: for
eacha € X, we have a rewrite rule that rewrites words overA stateu € I7* leads
to stateu’ € IT* ona € X iff the rewrite rule fora can rewriteu to «’. There is a
variety of choices for the power of rewriting, but in any cdle rewriting rules are
presented finitely (e.g. using finite transducers). Thelagg accepted by an infinite-
state automaton is defined in the natural way: a word X* is accepted if there is a
path fromsomeinitial state tosomefinal state tracingv in the automaton.

* The first and third authors were partially supported by thé&JRligrants ex-60% 2006 and
2007 Universita degli Studi di Salerno.



Infinite-state automata are naturally motivatedarmal verification where, intu-
itively, a stateof the model can be represented using a word, and the systeoligion
can be described using rewriting rules. Classic exampldade boolean abstraction
of recursive programs [2] (where a system is described usistate and a stack en-
coded into words, and the rewriting correspondgrefix rewriting andregular model-
checking where parameterized finite-state systems are represeiittedinite words
and transitions defined usisgnchronous rational rewritingg].

Infinite-state automata are radically different compotatinodels than Turing ma-
chines especially when computational complexity issuesaathand. The notion that
rewriting words (or terms) can be a basis for defining comipilita goes back to the
works of Axel Thue [22] (Thue systems) and Emil Post [17] (Rasg systems). For-
mal languages defined using grammars (the Chomsky hiefgaodylso in the spirit of
rewriting, with semi-Thue systems corresponding to umietetd grammars and hence
Turing machines. While Turing machines can be viewed asitewsystems (rewriting
one configuration to another), the study of computationaiglexity is often based on
time and space constraints on the Turing machine model, andai counterparts to
complexity classes in terms of rewrite systems don'’t cutyesxist.

Given a wordw € X*, note that infinite automata have possiblyiafinite number
of paths onw. Hence, deciding whethes is accepted by the infinite-state automaton
is in no way trivial. However, if rewriting rules can be simatgd by Turing machines
(which will usually be the case), the language accepted éyrfnite-state automaton
is recursively enumerable.

Recently, Morvan and Stirling showed the following remduleaesult: infinite state
automata where states are finite words, initial and final @etdefined using regular
languages, and transitions are defined usatignal relations accept precisely the class
of context-sensitive languag@sondeterministic linear-space languages) ([15]; se® als
[5]). Rational relations are relation® C I7* x IT* that can be effected by finite-state
automata(u,u’) € R iff the automaton can read on an input tape and write’ on
the output tape, where the two tape heads are only allowedte night (but can move
independent of each other).

Note that the only constraint placed in the above resultéspibwer of rewriting
(rational relations) and there is no ostensible limit oncgpar time. In other words, the
constraint on rewriting is gualitative constraintvith no apparent restriction on com-
plexity. Indeed, even establishing the upper bound (theeedgection), namely that
these automata define languages that are accepted bytioeaded Turing machines
is non-trivial. A naivesimulationof the infinite-state automaton will not work as the
words that represent states on the run can be unboundegitydaen for a fixed word
w. Notice that we dmotallow e-transitions in infinite automata, as allowing that would
make infinite automata with even regular rewriting acceptdtass of all recursively
enumerable languages.

Our main contribution in this paper is an infinite automatbaracterization for the
class 2ETME, the class of languages accepted by Turing machines iretipiezp(O(n)))3,
using a qualitative constraint on rewriting, which is a riestéd form of multi-stack
pushdown rewriting.

3 eap(z) denote”.



A simple generalization of regular rewritingpsishdown rewritingwhere we allow
the rewriting automata the use of a work stack which can b fegentermediate stor-
age when rewriting a word to another. For example the reldtie, ww”)|w € II*}
(wherew” denotes the reverse af) is not regular but can be effected by a pushdown
rewrite system. However, defining infinite automata withpgbever of pushdown rewrit-
ing quickly leads taundecidabilityof the membership problem, and these automata can
accept non-recursive languages.

We hence place a restriction on pushdown rewriting. We delnttzatt the rewriting
device takes its input in a read-only tape and writes it to @ewonly tape, and has
access to some stacks, but it can switch onlyoandednumber of times the source
from which it is reading symbols (i.e., the input tape andgtexks). In other words,
the pushdown rewriting can be split inkophases, where in each phase, it either reads
from the input tape and does not pop any stack, or pops fronopesstack but doesn’t
read from the input tape. This restriction puts the probléohecking membership just
within the boundary of decidability, and results in an auddom model that defines a
class of recursive languages.

We show that infinite automata restricted to bounded-phasbgown rewriting
precisely defines the class 2BE.

The upper bound, showing the membership problem for any istfictite automa-
ton is decidable in 2EIME, is established by reducing it to tleenptinesproblem for
finite-phased multi-stack visibly pushdown automathich we have shown recently
to be decidable [12]. Note that (non-deterministic) Turmgchines that directly and
naively simulate the infinite automaton could take unbodnsieace and time. Visi-
bly pushdown automata [1] are pushdown automata where the symbols deter-
mine the operation on the stack, and multi-stack visiblyhgiasvn automata generalize
them to multiple stacks [12]. Intuitively, thaccepting runghat are followed by an
n-stack pushdown rewriting system when it transforms a word ' can be seen
as a multi-stack (¢ + 2)-stack)visibly pushdown automaton. Hence the problem of
membership ofw for an infinite automaton reduces to theptiness problerof the
language of accepting runs over Moreover, if each rewriting step in the infinite au-
tomaton is bounded phase, then the number of phases in thiestack automata is
O(Jwl). In [12], we show that thé-phase reachability for multi-stack automata is solv-
able in timeezp(exp(O(poly(k)))) using (monadic second-order) logic interpretations
on finite trees. We sharpen the above result in this paper tarobep(exp(O(k)))
time decision procedure for emptiness by implementing tweaial subprocedures that
correspond to capturing the linear ordering and the suocestation from the tree
directly using nondeterministic tree automata and two-aitgrnating tree automata,
respectively.

Turning to the lower bound, we establish that all 2HE languages are accepted
by infinite automata defined using bounded-phase pushdomnitirey. We show that
for every alternating ESACE Turing machine (i.e. working in spa@’(™), which is
equivalentto 2ETME [9]), there is an infinite automaton with bounded-phaseitevgr
accepting the same language.

Related Work: A recent result by Rispal [18] shows that infinite automata de
fined usingsynchronous rational relationsvhich are strictly less powerful than ratio-



nal relations, also define exactly the class of contextisemtanguages (see also [5]).
Meyer [14] has characterized the classiEE (the class of languages accepted by Tur-
ing machines in timexxp(O(n))) with infinite automata defined via automatic term
transducers.

Bounded-phase visibly multi-stack pushdown automata baes introduced and
studied by us in [12]. These automata capture a robust cfassntext-sensitive lan-
guages that is closed under all the boolean operations andietédable decision prob-
lems. Also, they turned out to be useful to show decidabiisults for concurrent
systems communicating via unbounded FIFO queues [13].

Capturing complexity classes using logics on graphs inri@se complexity the-
ory [10], which was spurred by Fagin’s seminal result captuNpP using3S 0O, also has
the feature that the characterizations capture complelasses without any apparent
restriction of time or space.

Finally, there’s a multitude of work on characterizing théinite graphs that cor-
respond to restricted classes of machines (pushdown sy$iéi}; prefix-recognizable
graphs [7], higher-order pushdown automata [4], linearrtated automata [6], and the
entire Chomsky hierarchy [8]).

2 Multi-stack pushdown rewriting

A multi-stack pushdown transducer is a transducer from wtwavords that has access
to one or more pushdown stacks.

For any setX, let X. denoteX U {e}, and letX* denote the set of finite words over
X. Also, for anyi, j € N, let|[s, j] denote the sefi,i + 1,...,j}.

Fix finite alphabetd’ andI". An n-stack pushdown transducer ovéris a tuple
T = (Q,q0,0,I', F') where@ is a finite set of stategy, € @ is the initial state/” is
the stack alphabet, anfd C @ is the set of final states. The transition relation is
(Q@xQx I x I x[0,n] x I'.xI),with the restriction thatifq, ¢, a,b,4,v,7') € 4,
theny =+ = ¢iff i = 0.

A transition of the form(q,¢’, a,b,4,v,v), with a,b € II. and~,~" € I, intu-
itively means that the pushdown transducer, when in gtatigh v on the top of its’th
stack (provided > 0) can reads from the input tape, writé onto the output tape,
replacey with +/ onto thei’'th stack, and transition to staté. Wheni = 0,y =+' = ¢
and hence no stack is touched when changing state thougthsyipibols can be read.

Note thaty = ¢ and+’ # e corresponds to a push transition,# ¢ andy = ¢
corresponds to a pop transition. Without loss of generdétyus assume that in every
transition,y = e ory’ = ¢ holds, and ifa # ¢ theny = ¢ (i.e., when reading a symbol
from the input tape, none of the stacks can be popped).

A configuration of the pushdown transducgris a tuple (wiqws, {s;}" 1, w’)
wherew,ws,w’ € IT*, ¢ € Q ands; € I'* for eachi € [1,n]. Such a configu-
ration means that the input head is positioned just afteon the input tape that has
wiwe Written on it,q is the current states; is the current content of th&h stack, and
w’ is the output written thus far onto the output tape (with teadpositioned at the
end ofw’).



Transitions between configurations are defined by movésmfollows:

( ? l7 7b'r ‘7 ? ,)
LBl (wlaq/w%{sé}?:lvw/b)v

(w1gaws, {s;}i_1,w')
where(q,q',a,b,j,7,7") € 4, if j # 0thens; = 5y ands’; = 57/, ands; = s; for
eachi # j.

Let us define the configuration graph of the transddcas the graph whose vertices
are the configurations and whose edges are the transitiawgdie configurations as
defined above.

A multi-stack pushdown transduc&rrewritesw to w’, if there is a path in the con-
figuration graph from configuratidigow, {€}?_,, €) to configuration{wgy, {s; }}_,, w’),
with gy € F.

Pushdown rewriting is powerful, and the problem of decidivigetherw can be
rewritten tow’ even in two steps by even a one-stack transducer is undéeifkae
Appendix for a proof):

Lemma 1. The problem of checking if a word can be rewritten to a word’ in two
steps by a 1-stack pushdown transducer is undecidable.

We want a tractable notion of transducers in order to defifigiia automata that accept
recursive languages. We hence introduce a bounded verspuslodown transducers.

We say that a pushdown transducekiphase(k € N), if, when transforming any
wi t0 wy, it switches at mosk times between reading the input and popping either
one of the stacks, and between popping different stackse fbomally, a transition of
the form(q, ¢, a,b,4,v,7’) is anot-pop transitionf it's not a transition that pops any
stack, i.e. ifyY # e ori = 0. Let NotPop denote the set of not-pop transitions. Let
Pop, (i # 0) denote the set of all transitions except those that read the input tape
or pop from a stacly different fromsi, i.e. Pop, is the set of transitions of the form
(q,¢',a,b,5,7,7") wherea = e and if j # i theny = e.

A k-phase transducer is one which on any tgn—5 ¢; —% ¢y... —5 ¢; the
sequencen;ms ... m; can be split aswws . .. w, where for everyh € [1, k], wy, €
NotPop™ UJ!, (Pop}).

A bounded-phase pushdown transducer is a pushdown traarsdhbich isk-phase
for somek € N.

Infinite automata defined by multi-stack pushdown transduces

We define nowinfinite-stateautomata over an alphah®gt The states in this automaton
will correspond to words over an alphabi@t the set of states one can transition to
from a state on a lettetin X’ will be defined using a multi-stack pushdown transducer
corresponding ta, and initial and final state sets will be identified using Hlegsets of
words overl].

Fix a finite alphabett. An infinite-state pushdown transducer automaton (PTA)
overX is a tupled = (I1,{7;}4cx, Init, Final), wherelI is a finite alphabet, for
eachd € Y, 7, is a pushdown transducer ovAr, and Init and Final are finite-state
automata (NFAS) ovefl.



APTA A = (I, {74} e s, Init, Final) defines an infinite grapty = (V, E) de-
fined as follows:

- Thde set of vertice¥ is the set of words ovell
— v — v’ iff the pushdown transducéf; can rewritev to v'.

A bounded-phase PTA (BPTA) is a PTA in which every transdigef bounded-
phase.

A run of the PTAA on a word overd; ...d, € X* is a sequencey, vy, ... vn,
wherev, is accepted by the automatdnit, and for each € [1,n], v;—1 LN v; IS in
G. Such arun is accepting if the final vertex is accepted’twl, i.e.v,, € L(Final).

A word w is accepted by a PTAL if there is some accepting run of onw. The
language accepted by, denotedC(A) is the set of all words it accepts.

In the rest of the paper we often writep(z) for 2. Let 2ETiIME (X') denote the
class of all languages oveér that can be accepted by Turing machines working in time
cxp(ezp(O(n))).

We can now state our main theorem:

Theorem 1. Alanguagel overX is accepted by a bounded-phase PTAIf2ETIME (X).

3 The Upper Bound

In this section, we show that bounded-phase pushdown aes@utomata define a
class of languages contained in 2IE.

Let us fix a BPTAA = (I1,{74}4cx, Init, Final). The proof thatl(.A) is con-
tained in 2ETME is structured as follows:

(a) First, we show that the problem of checking if a wards accepted by a BPTA
can be reduced to tremptinesproblem fork-phase multi-stack visibly pushdown
automata (defined below) of state-spatigw|) and such that = O(|w|).

(b) In [12], we have shown that the emptiness problemif@hase multi-stack push-
down automata with state-spa@ecan be decided in timezp (|Q|- exp(O(poly (k)))).
Applying this would give a 2EPTIME procedure and not a 2EWE procedure for
our problem (2EPTIME is the class of problems that can be solved by a Turing
machine using:zp(exp(O(poly(n)))) time). Consequently, we sharpen the result
above, and show that emptiness can be indeed decided irtjmi&)|- exp (O(k))),
which establishes our theorem.

Bounded phase multi-stack pushdown automata

Multi-stack visibly pushdown automata (WtA) are automata with a finite number
of stacks, where the input letter determines which stackatitematon touches and
whether it pushes or pops from that stack. We refer to actimaispush onto a stack as
calls and actions that pop a stack as returns.

An n-stack call-return alphabet is a tupls, = ({(2%, 27) }icf1,n), Zine) Of pair-
wise disjoint finite alphabets. For amye [1,n], X is a finite set otalls of the stack,



XYt is a finite set ofeturns of stack, andY;,,; is a finite set ofnternal actions Let b
denote the union of all the alphabetsfﬂa.

An n-stack visibly pushdown automatarl = (Q,Qy, I, d,Qr) (Where@ is a
finite set of states); C Q andQr C @ are initial and final sets of states, is the
stack alphabet antlis the transition relation) over such an alphabet can pusheith
stack exactly one symbol when it reads a call of tiecall alphabet, and pop exactly
one symbol from the’th stack when it reads a return of ti¢h return alphabet. Also,
it cannot touch any stack when reading an internal lettee §émantics of MpAs is
defined in the obvious way, and we refer the reader to [12] ébaith.

A k-phase M/PA (k-MVPA) is intuitively an MvPA which works in (at mostk
phases, where in each phase it can push anystack, but pop at most from one stack.
Formally, given a wordv € X*, we denote withRet(w) the set of all returns i. A
word w is aphaseif Ret(w) C X%, for somei € [1,n], and we say thaw is aphase
of stacki. Awordw € X7, is ak-phase word ift is the minimal number such that
can be factorized a® = wyws ... wy, Wherewy, is a phase for each < [1,k]. Let
Phases(2,, k) denote the set of ali-phase words over,,.

_ For anyk, a k-phase multi-stack visibly pushdown automaféaVivpA) A over
Y, is an MvPA M parameterized with a numbér the language accepted by is
L(A) = L(M) N Phases(X,, k).

Reduction to k-MVvPA emptiness

Consider a BPTAA = (I1,{7i}4ex, Init, Final). Recall that given a wordh =
dy ...d, € X*, the automatoml acceptsv iff there is a sequence of words, . . . , u,,
such thatuy € L(Init), u,, € L(Final), and for eachi € [1,m], u;—1 can be rewritten
to u; by the transducef,,.

Suppose that the transducers4have at most. stacks. We consider the (- 2)-
stack call-return alphabét, » = ({(Z%, X2)}iep ntg)s {int}) where eactt! = {¢;}
andX! = {r;}. l.e., we have exactly one call and one return for each staukexactly
one internal letter.

Assume that anr{ + 2)-stack MvPA starts withu]_, on stackl. Using stacks
2,...,n + 1 as the intermediate stacks, it can geneigten stackn + 2 by simu-
lating the transducef,, (the word it reads is dictated by the actions performed on the
stack). Then, it can replace statk content with the reverse of stack { 2)’s content
to getu] on the stackl, and empty stack8,...,n + 1. Since the pushdown rewrite
system is bounded phase, it follows that the above rewritikgs only a bounded num-
ber of phases. Simulating the rewrites for the entire wor@e. ug — w1 — ... up),
and checking the initial words and final words belong#eét and Final, respectively,
takes at mosO(m) phases. Moreover, we can build thisviWa to haveO(m) states
(for a fixed BPTAA). We hence have:

Lemma 2. The problem of checking whetheiis accepted by a fixed PTA is polynomial-
time reducible to the emptiness problem offiw|)-phaseM vpPA with O(|w|) states.



Solving k-MVPA emptiness

In [12], the decidability of emptiness &FMVPA proceeds by first defining a map from
words over)' to trees, calledstack treesby showing that the set of stack trees that
correspond to words formsragular set of trees, and reducirigM vPA emptiness to
emptiness of tree automata working on the correspondiicg stees.

The map from words to trees rearranges the positions of thre vimbo a binary
tree by encoding a matching return of a call as its right childis mapping hence
easily captures the matching relation between calls andn®tbut loses sight of the
linear order inw. Recovering the linear order is technically hard, and iduag using
monadic second-order logic (MSO) on trees.

Fix a k-phase wordv of lengthm. We say that a factorizatiom, . . ., w; of w is
tight if: (1) the first symbol ofw, is a return for everyh € [2,k], (2) if £ > 1 then
Ret(w) # 0, and (3)wy, andwy, 1 are phases of different stacks for evérg [1,k —

1]. Itis easy to see that, for evekyphase wordv there is a unique tight factorization,
and thus we can uniquely assign a phase number to each letterrence withinw
as follows: forw = w'dw”, d € X, the phase ofl is h iff w1,...,w, is the tight
factorization ofw andd is within wy,.

A stack trees defined as follows:

Definition 1. Letw be ak-phase word ovel,, with |w| = m, andwy, ..., w; be the
tight factorization ofw. The word-to-tree map af, wt(w), which is a(X x [1, k])-
labeled tregV, ), and the bijectiorpos : V' — [1,m] are inductively defined (ojw|)
as follows:

— If m=1, thenV ={root}, A(root) = (w, 1), andpos(root) =1.
— Otherwise, letv = w'd, d € ¥, andwt(w') = (V', X). Then:
o V=V"U{v}witho &V’
e \(v) = (d,k) andA(v') = X ('), for everyo’ € V',
e Ifthereis aj < m suchthatlis a return and thg'th letter ofw is its matching
call (of the same stack), thenis the right-child ofpos~!(j).
Otherwisev is the left-child ofpos~!(m — 1).
e pos(v) = m.

The treewt(w) is called thestack treeof w. A k-stack tree is the stack tree okaphase
word.

The proof that the set of stack trees that correspond to vawrckspted by &-MvpA
forms a regular set of trees requires showing that: (a) thefsdl stack trees is regular
and (b) given a stack tree, checking whethér &l vPA has an accepting run over the
corresponding word can be done by a tree automaton.

Part (a) involves the definition of a linear ordefon tree nodes which corresponds
the linear order< on the word from the stack tree, and [12] shows that givene tre
automaton of size accepting the<’ relation (formally, accepting trees with two nodes
markedz andy such thatr <’ y), we can build an automaton of size exponential
in r to accept all stack trees. It is further shown in [12] that #lerelation can be
captured by an automaton of size= exzp(poly(k)). In order to get a&xp(exp(O(k)))



automaton for accepting stack trees, we show now thakthelation can be defined
using automata of size= ezp(O(k)) (Lemma 4 below).

Part (b) requires traversing the stack tree according ttirtear order onw using a
two-way alternating automatofVe show below that there is a two-way alternating tree
automaton of siz€°(¥) that traverses the tree consecutively from one node to its su
cessor. More precisely, we show that given a tree where #teafid last events of each
phase are marked, there is a 2-way alternating automatgmthan placed at a node
in the tree, will navigate to the successondfeaching a final state) (Lemma 5 below).
It follows from [12] that using this automaton, we can chedkether the word corre-
sponding to the stack tree is accepted layM vPA using a nondeterministic automaton
of sizeexp(exp(O(k))). This primarily involves an exponential conversion of edi-
ing tree automata to nondeterministic automata [19, 28pved by other checks that
can be effected by nondeterministic automata of simila.siz

We present the above two results in two technical lemmas\b@ee the Appendix
for more details of the proof).

Tree automata accepting stack trees

Here we prove that the’ relation can be captured by an automaton of sigg O (k)).
To do that, we define a relatior, for which it is direct to build a tree automata of size
exp(O(k)) that captures it, and then we show that coincides with<’.

Fora(X x [1,k)])-labeled treel” = (V, \), we define a maphase, : V — [1, k]
asphasep(x) = hiff A(xz) = (a, h) for somea € X,

Stack trees must first satisfy some simple conditions. Aigeell-formedif (i) the
phase numbers are monotonically increasing along any pdtieitree, (ii) every right
child is a return, with a call of the same stack as its paret (&) the phase of the root
is1.

LetT be a well-formed treey be a node of”, 2’ be an ancestor aof, andz; ...z,
be the path ifl" from 2/ to =. Let I = {iy,42,...,ip—1} be the set of all indices
i € [1,£ — 1] such thatphase(x;) # phaser(ziy1). Assume that; < is < ... <
ip—1. We denote byPhasePathr (', z) the sequences, ps, ..., pe such thatp, =
phaser(x;;) for everyj € [1,¢ — 1], andp, = phaser(zy).

In the following, <,.f. is the linear order of nodes according to a preorder visit of
the tree, and’, denotes the largest subtreelofvhich contains: and whose nodes are
labeled with the same phase numbetas

Definition 2. LetT = (V, \) be a well-formed tree. For every,y € V, x <, y if one
of the following holds:



1. phasep(z) < phaseq(y);
2. T, =T, andz <prefic U;
3. There exists an ancestey of z and a
an ancestoe, of y such that
- Zz ?A 2y
— phasep(parent(z;)) < phasep(zy),
— phasep(parent(z,)) < phasep(zy),
— PhasePathr(z;,x) : :
= PhasePathr(zy,y) i Tl Y1
=p1,...,pe (see figure on the right, ;
where similarly shaded regions belong
to the same phase)
and one of the following holds
(a) ¢ is odd andphase (parent(z,)) < phaser(parent(z;)), or £’ is even and
phase(parent(z,)) < phaser(parent(zy)).
(0) Tparent(z,) = Tparent(=,), and either” is odd andparent (z,,) <prefiz parent(zz),
or ¢' is even andbarent(z;) <prefiz parent(zy) .

parent(zg) parent(zqy)

It is not hard to see that there is a non-deterministic automthat guesses the
phase-pathyy, ..., ps (since this sequence is always ordered in increasing onaer,
can representit as the sty . . ., p }, and hence the number of guessed{&*)) and
checks whether <, y.

The following lemma states that, and <’ indeed coincide (the definition of’
and a proof of the lemma are reported in the Appendix).

Lemma 3 (CHARACTERIZATION OF <'). LetT = (V, ) be a(X x [k])-labeled tree
that is well-formed. Then; <. y if and only ifz <’ y for everyz,y € V.

From the above argument and lemma, and the result shownjimELget:

Lemma 4. For any k, there is a nondeterministic tree automaton of size(O(k))
that accepts a well-formed tree with two nodes labeledy iff z <’ y.

Thus, we have the following theorem.

Theorem 2. For any k, there is a nondeterministic tree automaton of sigé€exzp (O(k)))
which accepts the set of dltstack trees.

Tree automata traversing stack trees

Given ak-stack tre€l” and two nodes, y of 7', we say thay is thesuccessoof z if x
corresponds to a positighof w andy to positionj + 1 of w, wherewt(w) = T.

In this section, we show that there is a two-way alternatiag automaton (see [19,
23] for a definition), withezp(O(k)) states, that when started at a naden ak-stack
treeT', navigates to the successoriofHowever, we assume that we are givearkers
that mark the first letter (marked witt) and last letter (marked with) of each phase.



Procedure Successor(z) ProcedurePredecessor(x)
if EndPhase(z) then if BeginPhase(x) then
return (NextPhase(phase(x))); return (PrevPhase(phase,(x)));
elseif( y < PrefixSucc(z) exists) then elseif( y «— PrefixPred(z) exists)
return (y) ; then return (y) ;
else{z < ParentRoot(z); else{z < ParentRoot(z);
2" « Predecessor(z); 2" « Successor(z);
while (phase - (rightChild(z")) while (phase - (rightChild(z"))
# phaser(x)) do # phaser(x)) do
2" « Predecessor(z'); 2" « Successor(z');
return (rightChild(z")); } return (rightChild(2")); }

Fig. 1. Successor and predecessor in stack trees.

We can build conjunctively another automaton that checkguap (exp(O(k))) states
that these markers are correct.

Formally, letT = (V,\) be a(¥ x [1, k] x {s, e, L})-labeled tree and” = (V, \')
be the(X x [1, k])-labeled tree wherd'(z) = (a, i) if A(z) = (a,i,d). We say thaf"
is ak-stack tree with markersf 7" is ak-stack tree, and all the vertices corresponding
to positions ofwt ~!(T") where a phase starts (resp., ends) are label&diith s (resp.
e). For two nodes:, y € V, we say thay is the successor af if y is the successor of
zinT’.

Lemma 5. There exists a two-way alternating tree automaton, with(O(k)) states
that given ak-stack tre€l’, when started at a nodeof 7', will navigate precisely to the
successor aof (reaching a final state).

Proof. The 2-way alternating automaton is best describkgbrithmically.It will be
easy to see that this algorithm can be executed by a 2-wayalfileg automaton of
the required size. The algorithm is shown in Fig. 1. WaihdPhase(z) we denote a
predicate that holds true whenevers the last letter of a phase. WittextPhase (),
i < k, we denote the first letter of phase 1. With PrefixSucc(x), we denote the next
letter in the preorder visit df .. With ParentRoot(z), we denote the parent of the root
of T,,. BeginPhase(x), PrevPhase(i) andPrefixPred(x) are defined analogously.
Intuitively, if = is the last letter of a phase, we navigate to the first lettathef
next phase (effected by the first clause). Otherwise, wekcivbether we can find the
successor locally, in the same subtiiee this corresponds to finding the next element
in the preorder visit of},, and is delegated to the second clause. ¥ the last letter of
T, then the successor is hard to find. kdie the parent of the root @f, andi be the
phase number af. Intuitively, the successor af is obtained by taking th&ast node
beforez that has a matching return whose phase M/e hence execute the function
Predecessor iteratively till we reach a node that has a right-child of pa
Implementing the above requires a 2-way alternating automi keep a list of
phase numbers. Again, the list can be maintained as a set(8ie phase numbers
on the list are ordered), and we can engineer the automatoaverzp(O(k)) states.



Alternation is used to prove falsity of conditional clauskat are not pursued in the
algorithm. a

From the above lemmas and the result from [12], we get:

Theorem 3. The emptiness problem féfM vPAs of state-spac€ is decidable in time
exp(|Q| - exp(O(k))).

Combining Lemma 2 and the above theorem we get:

Theorem 4. The membership problem for BPTAs is decidabl2ETIME.

4 The Lower Bound

In this section, we show that any language in 2 is accepted by an infinite-state
bounded-phase pushdown transducer automata, therebyatorgphe proof that such
automata exactly characterize 2iE (Theorem 1).

We start giving a lemma which describes an interesting featd the bounded-
phase multi-stack pushdown rewriting. It states that if \aeehan unbounded number
of pairs of bounded-length words, say bounded\aythen we can check whether every
pair (w, w') is such thatw| = |w’| and for each thei'th symbol of w andw’ belong
to some relation over symbols, using at mfsg; N'|/c-steps of2°-phase multi-stack
pushdown rewriting. Consider a finite relatidh C II x II, and two wordsw =
ai...am andw’ = d}...al,, overIl. We say tha{w, w’) satisfiesR if and only if
m =m’ and(a;,a}) € Rfori=1,...,m. (The proof of the following lemma is given
in the Appendix.)

Lemma 6. Let I7 be a finite alphabet# be a symbol which is not i/, R C II x
11, andw be any word of the forna, #v1 #usF#Hve# . . . #Um#HVm, Withm > 0 and

ui,v; € II*" fori=1,...,mwithe,n > 0.
There exists 2¢-phase2-stack pushdown transduc@r that rewrites withinn steps
each such wordb to a symbob if and only if (u;, v;) satisfiesk for everyi = 1,..., m.

Proof sketchThe transducef splits each paifu;, v;) into 2¢ pairs of words, and writes
them onto the output tape. This transducer can be implemersiag two stacks and
2¢-phases. (see Appendix for a detailed proof). Isteps, the transducer hence reduces
the problem of checking whether evehy;, v;) satisfiesR to that of checking whether
a large number of pairs of letters belongsRo which can be effected by a regular
automaton. O

A transducer, as stated in the above lemma, can be used th fdiecTuring ma-
chine whether a configuration is a legal successor of anotte\We apply this result as
a crucial step in proving the following theorem which stdtesclaimed lower bound.

Theorem 5. For each languagé in 2ETIME (X)), there is a bounded-phase pushdown
transducer automatosl such thatl = £(A).



Proof sketch(See the Appendix for more details.) We reduce the memhepsbblem
for alternating Turing machines working 29 (") space to the membership problem for
BPTAs. The result then follows from [9].

We briefly sketch a BPTAA that accepts a words if and only if w is accepted by
a29(") space Turing machin#1. First.4 guesses a wora and a rurt of M encoding
them as a sequence of pairs of wofds, v;) such that all the steps takendipandw
along with the initial configuration, are all representedabyeast one such pair. Then,
it checks if the guessed sequence indeed encodes an agagjotiof M onw.

In the first task we make use of a slight variation of a standabding of trees by
words where each pair of consecutive configuration&bére written consecutively in
the word. The second task is by Lemma 6. We observe that iceaffo have single
initial and final states fox. O

5 Discussion

We have shown an infinite-automata characterization of s ETME. This result
was obtained independently of the work by Meyer showingtifraih-automatic infinite
automata capture the class BIE [14]. These two results, along with the characteriza-
tion of NLINSPACE[15], are currently the only characterizations of compieglasses
using infinite automata.

The power of multi-stack rewriting. While infinite automata capture fairly complex
languages, there has been little study done on how simplaitenfautomata can be
designed to solve natural algorithmic problems. In thisisacwe investigate the power
of our rewriting. We give infinite automata that solve SAT a@@BF (crucially using
Lemma 6), and explore connections to infinite automata baséerm rewriting. While
this of course follows from the lower bound shown in Sectigrihé construction is
instructive.

We start observing some interesting features of boundedeghulti-stack push-
down rewriting. We can generate words corresponding toeremdings, or, in gen-
eral, belonging to a context free language. (Checking wdrethword belongs to a
context free language while rewriting can be a problem thofigr example, it is not
clear how to rewrite inl-step a wordw to a symboll iff w € {a"b™ | n > 0}.)
Also, in each rewriting we can duplicate a bounded numbemoég any portion of
the read word. This can be useful to start many threads of atatipn on the same
string thus speeding-up the total computation. Finally;dsacan be (evenly) split into
a bounded number of sub-words. By iterating such splittivgycan check simple rela-
tions between an unbounded number of words, each of expgahlemgth, as shown in
Lemma 6.

SAT and QBF. Let us encode Boolean formulas in the standard way, by reptieg
each quantifier, connective, constant and bracket witlemdifft symbols, and variables
with unbounded length binary strings.

On the first step,A prepares the computation by rewriting its initial statehwat
triple (w1, w2, w3) wherew; is the encoding of a well-formed formulay is a copy of



wy along with a valuation for each variabbecurrence andws is the list of variable
occurrences coupled with their valuation as annotatadinThe wordw; is guessed
nondeterministically using a stack to ensure it is welkfed, and is used hyt to match
the input formula. The wordy, is obtained by copyingv; and nondeterministically
guessing on each variable occurrence a valuation (notetwmabccurrences of the
same variable may be assigned with different values alomgsans). Wordw, is used
to evaluate the formula in the guessed valuation. Wosds extracted fromw, and is
later used to generate all pairsb, 2'b’) wherex, 2 are variable occurrences aha’
are respectively their assigned values. Such pairs arectiegked to see if they define
a consistent valuation.

Observe now that evaluating the formula requires a numbstegfs of rewriting
bounded by its height. Also, the pairs of occurrences canebemted im — 1 steps
of rewriting wheren is the number of variable occurrences in the formula: a secpie
x1 ...z, IS rewritten according to the recurrengeirs(xy ...x,) is (x1,x2) along
with pairs(zixs ... x,) andpairs(zexs . . . x,). Finally, from Lemma 6 checking for
pair consistency can be done in the length of the variableesgmtation. Therefore, all
tasks are accomplished by the tidgerminates its input and therefore it can correctly
accept or reject the input word.

This construction can be generalized to encode QBF. The difierence is that
variables are assigned one at each step: when the corrésgop@ntifier is eliminated.
The elimination of universal quantifiers requires duplimaf the formula, which can
be effected using a work stack.

Term-automatic rewriting. Another way to define infinite automata is to represent
states usinderms(or trees), and use term rewriting to define relations. Iri,[lefm
automatic rewriting infinite automata are considered, arsdshown that they precisely
capture ETME (the class of languages accepted by Turing machines initfie ).

A binary relationR over terms isautomaticif it is definable via a tree automaton
which reads overlappings of the pair of terms, i.e., the seane read synchronously on
the parts where the corresponding domains intersect (é¢e [1

Intuitively, a stack allows us to faithfully represent texmsing a well-bracketed
word. We now show how to directly translate a term-automafinite automaton4 to
a multi-stack rewriting infinite automatdf accepting the same language. Automaton
B on the first step nondeterministically guesses the entimef, i.e., a sequence of
termsty,...,ty whereN — 1 is the length of the word which will be read. Then, it
checks if it is indeed an accepting run by generating all thiesppf consecutive terms
in the sequence, and then checking them as in Lemma 6. Toestimirterms match
when paired, we need to guess terms which all have the sape 8higth dummy labels
used to mark unused parts of the tree). Also, in order to hiateséts processed on time
(i.e., before the input to the automaton is completely rethd) guessed terms must be
of size at most exponential iN. It is not hard to show by standard techniques that if a
term-automatic infinite automaton has an accepting run avesrdw, then it has also
an accepting run on it which visits terms of size at most egpdial in the length ofo.
Hence the infinite automatdm accepts the same languages



Conclusions and future directions. We have defined (B)PTA with possible infinite ini-
tial and final states. Restricting the definition to singléahand final state does not alter
the class of recognized languages. In fact, for each (B)RFA (11, {7, }ac s, Init, Final),
we can easily construct a language equivalent (B)RITAvhich has only an initial and
a final state.

We observe that, since the construction in Theorem 5 sho@EGME hardness
uses transducers with only two stacks, the full power of BR&A be achieved with
just two stacks. If we allow transducers with only one staekaan show2?” lower
bound (we need to use Lemma 10 in the Appendix) but it is lefhowhether we can

capture all 2ETVE (i.e. time220(”)) using just one-stack transducers.

There are several choices for rewriting that can be studied.example, prefix
rewriting (where essentially the input word is treated asagks and an automaton
works on it to produce a new stack) precisely defines coriteetlanguages [21]. Reg-
ular and synchronized regular rewriting leads to autonfetdccept context-sensitive
languages [15, 18]. Reducing the power of rewriting to ora th weaker than syn-
chronous regular relations seems hard (for e.g., consitlgionsk C X* x X* where
the languagéw#w’ | (w,w’) € R} is regular; this leads to infinite automata that only
captureregular languages).

We believe that our results may open a new technique to fingiwgting classes
that capture complexity classes. Intuitively, a rewritmgchanisms for which checking
whether any word in a regular languagecan be rewritten im steps to a word in
a regular languagé’ can be solved in time (or spac€)n) may be a good way to
come up with conjectur rewriting schemes that define infiniléomata for the class
C(n)-time (or space).

Along this vein, consider bounded context-switching réwg where the input word
is rewritten to an output word using a finite number of statks,where there is only
a boundednumber of switches between the stacks (including the irgpa)t This is
weaker than the rewriting in this paper as the automatontialiawed to push onto all
stacks in one phase. The membership problem for boundeaesteswitching automata
can be seen to bemcomplete, and it will be interesting to see if this leads s
infinite automaton characterization oPN

The mostinteresting question would be to investigate if@mplexity-theoretic re-
sult can be proved in a radically different fashion usingnitéi automata. As mentioned
in [21], given that we have infinite automata for the clags showing that N=co-NL
using infinite automata seems an excellent idea to pursue.
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A Proof of Lemma 1

The problem of deciding whether can be rewritten ta’ even in two steps by even a
one-stack transducer is undecidable:

Lemma 1 The problem of checking if a word can be rewritten to a wordy’ in two
steps by a 1-stack pushdown transducer is undecidable.

Proof. We use a reduction from thigost's Correspondence ProblefRCP) which is
known to be undecidable [11]. Given two sequenceswbrdsuy, . . ., uy andvy, . .., v,
over Y, the PCP is to determine whether there exists a sequencdioé#i, . .., i,
such that;, ...u;, = v ... v, .

We define a first pushdown transducgrthat rewrites the empty word to any
string of the formu;, ... u;,, #v] ...v; where withw” we denote the reverse of a
word w. 77 simply guesses a sequence of indices and for each guesssd jindites
u; onto the output tape ang onto the stack. Then, it writeg onto the tape, and pops
the stack content onto the output tape. We define a secondpuatiransducers; that
rewrites a string of the form#w’ to § if and only if w’ = w".

Clearly, the considered PCP has a solution if and ondydén be rewritten t§ by
first applyingZ; and thertZ,. a

B Proof of Lemma 3

In this section we prove that the relatiedi defined in [12] (which is reported below)
and the relation<.. defined in Definition 2 are actually the same.

Definition 3 ([12]). LetT = (V, \) be a(¥ x [1, k])-labeled tree withphase () >
phaser(parent(x)), for everyz € V' \ {root}. For everyh € [1, k], we inductively
define the relations;,C V' x V and<;,)C V' x V, as follows:

— x <p, y iff phaser(z) = phaser(y) = h and either (1), = T, andz <,refiz ¥,
or (2) T, # Ty, h > 1 andparent(root(T),)) <in—1] parent(root(Ty)).
— x <y yiffeither (1) phaser (), phaser(y) < handz <p,_1 y, or (2) phaser(x) =
phaser(y) = h andx <j, y, or (3) phase(z) < h andphaser(y) = h.
We define the relatior’ as <.

For the sake of readability, we also report Definition 2 here.

Definition 2 LetT = (V, A\) be a well-formed tree. For evety,y € V, x <, y if one
of the following holds

1. phasep(x) < phaseq(y);

2. T, =T, andx <prefiz ¥;

3. There exists an ancestey of z and an ancestot,, of y such that
- Zz ?A Zy
— phaser(parent(z3)) < phasep(zg),
— phasep(parent(zy)) < phasep(zy),



— PhasePathr(z,, ) =
PhasePathy(zy,y) = D1, .-, Der,
and one of the following holds
(a) ¢ is odd andphase(parent(z,)) < phase(parent(zy)), or ¢’ is even and
phasep(parent(z,)) < phaser(parent(zy)).
(0) Tyarent(z.) = Tparent(=,), and either’ is odd ancparent (zy) <prefiz parent(z.),
or /' is even antparent(z;) <prefiz parent(zy) .

Before proving<’=<., we give a technical lemma. It says that whemn are two
nodes of a well-formed treE having the same phase but belonging to different subtrees,
i.e.T, # T,, then conditior8 of Definition 2 holds.

Lemma7. LetT = (V,\) be a well-formed > x [1, k])-labeled tree. Ifz,y € V,
phaser(x) = phaser(y), h = phaser(x), T, # T,, andz <, y then there exists an
ancestorz,, of x and an ancestog,, of y such that

- 2z 7é 2y

— phasep(parent(z;)) < phasep(zy),

— phasep(parent(z,)) < phasep(zy),

— PhasePathr(z,, ) =
PhasePathr(zy,y) = p1,...,De,

and one of the following holds

1. ¢'is odd andphase (parent(zy)) < phasep(parent(z;)), or ¢’ is even angbhase (parent(zz)) <
phasep(parent(zy)).

2. Tparent(z,) = Tparent(z,)» @nd either!’ is odd andparent (z,) <prefiz parent(zz),
or /' is even andarent () <prefiz parent(zy) .

Proof. The proof is by contradiction. Lef’ be the set of all pair$a,b) such that
a <[ b and the lemma does not hold. We consider a paiy) of C' that minimizes
depthp(x) + depthp(y), wheredepth, of a nodez of T' gives the depth of in T'.

From the hypotheses of the lemma and Definition 3, we haveithat<p, y
thenz <, y. SinceT, # T,, and hencer > 1, then parent(root(Ty)) <pp—1]
parent(root(Ty)). Let ¢ = parent(root(Ty)) andd = parent(root(T,)). We dis-
tinguish two cases depending on whetligandTy are the same tree or not.

If T, = T, thenc <p.en; d. Therefore, if we pickz, = root(T,) andz, =
root(T,), we have that, # z, (sincel, # T,), PhasePathr (2, x) = PhasePathr(zy,y) =
h with ¢/ = 1, and conditior2. of the lemma holds.

If T. # T, then we consider two subcasesplifase(c) is equal tophase(d) or
not. Consider first the case in whighase(c) # phaser(d). Sincexr <) y we must
have thaphase,(c) < phase(d). Thus, if we pickz, = root(T,) andz, = root(Ty),
we have that, # z, (sincel, # T,), PhasePathy(z;, x) = PhasePathr(z,,y) = h
with ¢/ = 1, and conditionl. of the lemma holds. The remaining case to consider
is when alsophase(c) and phase,(d) are equal. Sinc&, # Ty and depth,(c) +
depthy(d) < depthy(x)+ depth(y) we can apply the lemma: there exists an ancestor
z. of c and an ancesta; of d such that



- Zc 7é Zd»

— phasep(parent(z.)) < phaser(z.),

— phasep(parent(zq)) < phaser(zq),

— PhasePathr(z.,c) =
PhasePathy(zq4,d) = p1,...,pe,

and one of the following statements holds

1. ¢ isodd antbhase(parent(zq)) < phaser(parent(z.)), ort"is even anghase(parent(zq)) <
phasep(parent(z.)).

2. Tpare_nt(zc) = Tparent(=,), @nd either” is odd andparent (zq) <prefic parent(z.),
or ¢’ is even andharent(z.) <prefiz parent(zq) -

Notice thatz, is an ancestor af andz. is an ancestor of. Thus, we set, = z4
andz, = z.. Moreover,PhasePathr(zy,x) = PhasePathr(zy,y) = p1,...,perh
whose length i€’ + 1. Now, it is direct to see that one of the conditions betwgsor
2. of the lemma holds when we considerz,, y, andz,. ad

Now we first prove that ift <’ y holds then alsa: <. y holds.

Lemma 8. LetT = (V, \) be awell-formed X x [1, k])-labeled tree. For every, y €
V,ifx <" ythenz <, y.

Proof. If x <’ y thenz # y and one of the following cases holds:

1. phasey(z) < phaser(y);
2. T, =T, (thusphase(z) = phasep(y));
3. phasep(x) = phasep(y) andT, # T,.

Let phaser(y) = h. Itis easy to see thatif <" y thenxz <, y. The proof continues
by proving thatr <. y for each case outlined above.

If phaser(x) < phaser(y) then by Definition 2 we get immediately that<., y.

If T, = T, then, by definition ok} (see Definition 3)x <;, y and consequently
T <prefiz Y. Thereforeg <, y holds.

Finally, if phaser(x) = phaser(y) andT,, # T, and sincer <p,; y we can apply
Lemma 7 and then by Definition 2 we have thak.. y, which concludes the proof.O

Lemma 9. LetT = (V, \) be awell-formed X x [1, k])-labeled tree. For every, y €
V,if x <, ythenz <’ y.

Proof. From Definition 2, it is easy to see that, given any paig € V with = # v,
exactly one between <. y andy <. z holds.

The proof is by contradiction. Assume that there exigj such thatr <. y and
x A" y.Since<’is alinear ordering (see [12]), we must have that’ 2. Now applying
Lemma 8 we have that <. x. Therefore, bothy <. x andy <. x hold, but this is a
contradiction. O

From Lemma 8 and 9, we get the main result of the section:

Lemma 3 (CHARACTERIZATION OF <) LetT = (V, \) be a well-formed X x [1, k])-
labeled tree. Theny <’ y if and only ifz <. y for everyx,y € V.



C Emptiness ofk-MVPAS

In this section, we prove that for any class of words accepyeal:-M VvPA, the class of
trees corresponding to them forms a regular tree language.

Theorem 6. If L is a k-MvPL, thenwt(L) is regular. Moreover, ifA is a k-MVPA
acceptingL, then there is a tree automaton that accept$ ) with number of states
at most exponential in the size dfand double exponential in the number of phakes
(more preciselyezp(|A|20)) states).

Proof. We start giving an MSO sentengewhich guarantees thait~!(7') is a word
of L.

Leto = {01,...,9;} be the set oA transitions. We denote witha list of k vari-
ablessy, ..., s; and withe a list of k variablesey, . . ., ex. Then,p is of the form

Y7 ... 3Y;ds3e phaseBounds N simulation.

We use variablé’; to guess all tree nodes where transitgiis taken (along a run). We
use variables; ande; to guess the tree nodes corresponding to the beginning and th
end of phase, respectively.

Formulaphase Bounds is used to check that the guess on variables is correct and is
defined aj\le —3Jx.(less(x, s;)Nless(e;, x) ANSamePhase(x, s;) ), whereSamePhase(y, z)
holds true iffy andx agree on the phase number, dag(u, v) holds true iffu < v.

By Lemma 4, the< relation can be captured by a nondeterministic tree autmmaith
20(%) states. Therefore, we can construdteap (ezp(O(n)) size tree automaton for
checkingphaseBounds.

Formulasimulation is used to check that the guessed run is correct. To accom-
plish this we need to traverse the tree from the root accgrtiinthe successor rela-
tion (w.r.t. <), and check whether the states match. By Lemma 5, we can rinepie
this with a2-way alternating tree automaton wittp| 2°(*) states, where) is the
set of A states, which can be translated to a nondeterministic wiemaaton of size
exp(|Q| - exp(O(k)). The rest of this formula does the usual checks and can bg-tran
lated to a tree automaton witltp (ezp(O(k)) states (see [20] for similar proofs).

Since the quantifiers outsigé.ase Bounds and simulation are all existential, the
size of the total automaton fas is exzp(|Q| - exzp(O(k)). From Theorem 2, we have
that there is a nondeterministic tree automaton of siz€ exzp(O(k))) which accepts
the set of allk-stack trees. Therefore, we can intersect the two autonnatget a tree
automaton acceptingt (L) of size exp(|A|2°™*)), which concludes the proof. O

We can now show the main result of this section, which folldmsn the above
theorem and the fact that tree automata emptiness is seliratihear time.

Theorem 7. (EMPTINESS FORE-MVPLS) The emptiness problem farMvpPLs is de-
cidable inezp(exp(O(k)) time.

D Proofs of Section 4

We start showing a result which differs from Lemma 6 for allegvtransducers witg®
stacks. Then, we argue how this proof can be adapted to showniae6. We end the
section proving Theorem 5.



Lemma 10. Let IT be a finite alphabet}# be a symbol which is not iff, R C IT x

11, andw be any word of the forna, #v, #usFHvo# . . . #Um#HVm, Withm > 0 and
wi,v; € II*" fori=1,...,mwithe,n > 0.

There exists &¢-phase 2¢ — 1)-stack pushdown transducér that rewrites within
n steps each such word to a symbol$ if and only if (u;, v;) satisfiesR for every
1=1,...,m.

Proof. We first prove the lemma far = 1.

The idea is to construct 2phasel-stack transduce¥ that evenly splits the se-
quences between the stack and the output tape. In parti@ulaworks in two main
modes. On inputs of the form stated in the lemma, if worgsand v; have length
greater thar?, then7 does the two following macro steps: (i) symbolsioare rewrit-
ten alternatively onto the output tape and the stack, wiiiis rewritten both onto the
output tape and the stack; (ii) when the reading of the inpgtisnce is completed,
writes# on the output tape and moves all the symbols from the stadletoutput tape.
Otherwise, i.e. ifu; andv; have lengthl, then7 acts as before except for the writing
on the output tape: in the first mode it checks the relafiban the first symbols of
the pair of wordg(w;, v;), and pushes the second symbols onto the stack; then in the
second mode, while popping the symbols from the stack, itichthe relatiom? on the
remaining symbols and then writé®nto the output tape if all the checked pairs fulfill
R.

The effect of eacl” rewriting is to split into two halves the words of the pairs
encoded in the input. Also, such splitting does not breaKithebetween symbols at
the same position in the starting pairs of wo(ds, v;). By repeatedly applying such
rewriting forn steps, we get if and only if the pairgu;, v;) of the starting word satisfy
Rforeachi=1,...,m.

Forc > 1, we adapt the above idea, except that we2fse 1 stacks, and split each
word into 2¢ sub-words in each rewrite step usi2g phases. This reduces a word of
length2¢™ to lengthl in n steps. a

To prove Lemma 6, we define a transducer which rewrites edctipa) by split-
ting it into 2¢ pairs which preserve the symbol position relation betweemdv, as
argued for showing Lemma 10. However, the way this splittingchieved is different.
While reading the pair from the input, the symbols which 2rapart from each other
are written to the output, while the others are pushed ongosterck. Then, moving the
symbols from one stack to the other, the transducer italgtxtracts (moving them
onto the output) the symbols which are in t@h— 1,2¢ — 2,...,1 apart form each
other. This transducer is fairly more complex than that gif@ showing Lemma 10.
In fact, it usesO(2¢) states while the other uses orl}(c) states. Thus, we have the
following lemma.

Lemma6 Let I be afinite alphabet{ be a symbol whichis notiff, R C II x IT and
w be any word of the form, #v #us#Hve# . . . #um#vm, Withm > 0 andu;, v; €

7> fori=1,...,m.

There exists 2¢-phase2-stack pushdown transduc@r that rewrites withinn steps
each such wora to a symbob if and only if (u;, v;) satisfiesRk foreveryi = 1,...,m.



A transducer, as stated in the above lemmas, can be useddk fdrea Turing
machine whether a configuration is a legal successor of anatfie. We apply this
result as a crucial step in proving the following theoremahlstates the claimed lower
bound.

Theorem5 For each languagéd in 2ETIME(Y), there is a bounded-phase pushdown
transducer automatosl such thatl = £(A).

Proof. Recall that 2ETME coincides with the class of all languages that can be ac-
cepted by alternating Turing machines working in sp2¢€” [9]. Therefore, to show
the theorem is suffices to reduce the membership problemtimnating Turing ma-
chines working ir2°(™ space to the membership problem for BPTAs.

We fix a wordw over ¥, and an alternating Turing machide which use2© (")
space on each input of size In the following, we briefly describe a BPTAl that
acceptsy if and only if w € L(M).

The behavior of4 can be summarized into two main tasks: (i) fitdtguesses a
wordw and a run: of M encoding them as a sequence of pairs of w@rdsv;) such
that all the steps taken inandw along with the initial configuration, are all represented
by at least one such pair; (ii) then, it checks if the guessgdance indeed encodes an
accepting run o\ onw.

We encode each configuratiersuch that a symbol in it encodes also the left and
the right neighbour symbols on the tape along with the ttmmsiaken to get ta
from its parent configuration in the run. That is, supposé W@ take a transition
e to enter the configuratioa; . .. (¢, a;) . ..a; in the considered run, we encode this
as(—,a1,az,e)(ay,az,as,e)...(a;-1,(q,a;),ai41,€) ... (ap—1,an, —, €). Note that
this way checking if a configurationis the e-successor of’ reduces to checking if
(¢, ') satisfies an appropriate relation.

To implement the first task we use a slight variation of a séatdéncoding of bi-
nary trees by words. (Recall that a run of an alternatingrnurhachine is a tree of
configurations instead of a sequence of configurations asmaard Turing machines.
Also, without loss of generality we can assume such tree toifary.) For a word
we denote withe” its reverse. We inductively define the encoding of a tregenoted
(t), as: (1) ift has a single node labeled with a wardt) is # ¢ # ¢"; (2) if t has root
labeled withc and only a subtreg, (t) is # ¢ (to) # ¢"; (3) if ¢t has root labeled with
¢, left subtreg and right subtreey, (t) is # ¢ (to) (t1) # ¢". The run ofM is guessed
generating such an encoding in the first step of4arun onw. To do this, a2-phase
1-stack pushdown rewriting suffices.

We chose such an encoding since two consecutive confignsaticandc, of the
guessed run appear in the encoding either.gs: #c, or as...#ch#c}, and thus it is
possible to extract in one step all the pairs we need to perfoe second task. We can
implement this task usingrphasel -stack pushdown rewriting.

Since we use a constant number of steps to perform the fiks{jtest 2 steps), and
we can do the second task using Lemma 10, we have the theorem. a



