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Abstract. After the improvement by Courtois and Meier of the alge-
braic attacks on stream ciphers and the introduction of the related notion
of algebraic immunity, several constructions of infinite classes of Boolean
functions with optimum algebraic immunity have been proposed. All of
them gave functions whose algebraic degrees are high enough for resisting
the Berlekamp-Massey attack and the recent Rønjom-Helleseth attack,
but whose nonlinearities either achieve the worst possible value (given by
Lobanov’s bound) or are slightly superior to it. Hence, these functions
do not allow resistance to fast correlation attacks. Moreover, they do
not behave well with respect to fast algebraic attacks. In this paper, we
study an infinite class of functions which achieve an optimum algebraic
immunity. We prove that they have an optimum algebraic degree and a
much better nonlinearity than all the previously obtained infinite classes
of functions. We check that, at least for small values of the number of
variables, the functions of this class have in fact a very good nonlinearity
and also a good behavior against fast algebraic attacks.

Keywords: Algebraic attack, Boolean function, Stream cipher.

1 Introduction

Before this century, the Boolean functions used in the combiner and filter models
of stream ciphers (see description e.g. in [9]) had mainly to be balanced, to have
a high algebraic degree, a high nonlinearity and, in the case of the combiner
model, a high correlation immunity (in the case of the filter model, a correlation
immunity of order 1 is commonly considered as sufficient; in most cases, it is
easily achieved without losing the other properties, by replacing the function by
a linearly equivalent one). These properties could be satisfied by functions of
about 10 variables. But the algebraic attacks introduced by Courtois and Meier
[15] (or more properly speaking improved by them, since the idea of algebraic
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attacks comes already from Shannon), which have allowed cryptanalysing several
stream ciphers [1,12,13,15,25] have led to more constraints on the functions, and
obliged to increase the number of variables up to at least 13 variables and in
practice much more (maybe 20). The property needed for resisting the standard
algebraic attack of Courtois and Meier [15] is a high algebraic immunity [33]: for
a given Boolean function f on n variables, any nonzero Boolean function g such
that f ∗g = 0 or (1+f)∗g = 0 should have high algebraic degree, where ∗ is the
multiplication of functions inherited from multiplication in F2, the finite field
with two elements. The best possible algebraic immunity of n-variable functions
is �n

2 � [15]. It has been proved in [19] that, for all a < 1, when n tends to infinity,

AI(f) is almost surely greater than n
2 −

√
n
2 ln

(
n

a ln 2

)
. Hence, random functions

behave well with respect to the algebraic immunity (but this does not mean that
functions with good algebraic immunity are easy to construct).

Having a high algebraic immunity is not sufficient for resisting the fast alge-
braic attacks introduced by Courtois in [13]: if one can find g of low degree and
h �= 0 of reasonable degree such that f ∗g = h, then a fast algebraic attack (FAA)
is feasible. No result is known on the behavior of random functions against FAA.

Even a high resistance to fast algebraic attacks is not sufficient, since alge-
braic attacks on the augmented function [23] can be efficient when fast algebraic
attacks are not. The resistance to these attacks is not properly speaking a prop-
erty of the function used in a cipher and studying the resistance of the cipher to
them obliges to consider all possible update functions (of the linear part of the
pseudo-random generator).

It is a difficult challenge to find functions achieving all of the necessary crite-
ria and the research of such functions has taken a significant delay with respect
to cryptanalyses. The research of Boolean functions that can resist algebraic
attacks, the Berlekamp-Massey attack and the fast correlation attacks has not
given fully satisfactory results: we know that functions achieving optimal or
suboptimal algebraic immunity and in the same time balancedness, high alge-
braic degree and high nonlinearity must exist thanks to the results of [19,37].
Such functions have been found with sufficient numbers of variables thanks to
Algorithm 1 of [2] (others can be found by using the algorithm of [20]). But
the functions given in [2] belong to classes which have not, potentially, a good
asymptotic algebraic immunity (see [35]), and there remains to see whether these
functions behave well against fast algebraic attacks. No infinite class of functions
with good algebraic immunity and good nonlinearity has been exhibited so far.

There are, up to now, two main infinite classes of Boolean functions achieving
optimum algebraic immunity. The first one contains functions in even numbers n
of variables and is obtained by an iterative construction. The constructed func-
tions have been further studied in [10], where it is shown that their algebraic
degrees are close to n but their nonlinearity is 2n−1 −

(
n−1

n
2

)
, which is insuf-

ficient. Moreover, they are not balanced (but it is possible to build balanced
functions from these ones) and are weak against fast algebraic attacks [2,18].
The second class contains symmetric functions (whose values depend only on the
Hamming weight of the input vectors) [3,18] or functions whose values depend
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on the Hamming weight of the input vectors except for a few inputs [7]. The non-
linearities of these functions are often not exceeding 2n−1−

(
n−1
�n

2 �
)

and when they
do, they are not much greater than this number, see [11]. They are still weaker
against fast algebraic attacks [2]. The functions constructed in [28,29] seem to
have worse nonlinearity than those of [7]. Apart from these infinite classes, some
power functions with sub-optimal algebraic immunity, in at most 20 variables,
have been exhibited in [2, Table 1]. The behavior of these functions against fast
algebraic attacks has not been investigated so far.

In the present paper, we show that an infinite class of balanced functions
with optimal algebraic immunity, which has been considered in [22] for showing
the tightness of bounds on the algebraic immunity of vectorial functions, has
potentially a good nonlinearity. We give a very simple proof of the optimal
algebraic immunity of these functions. We show that they have also optimal
algebraic degree and we prove a lower bound on their nonlinearities which is
much larger than the best nonlinearities of the infinite classes of functions with
optimal algebraic immunity found so far. However, this bound is not enough for
saying these functions have good nonlinearities. We compute for small values
of n the exact values of the nonlinearity, which are very good and much bigger
than the lower bound, and we also check for these values of n that the functions
behave well against fast algebraic attacks. This is the first time a function (and
moreover a whole infinite class of functions) seems able to satisfy all of the main
criteria for being used as a filtering function in a stream cipher.

The rest of the paper is organized as follows. In Section 2, we recall the
necessary background. In Section 3, we give a simple proof that the functions
of the class have optimal algebraic immunity. In Section 4, we calculate the
univariate representation of the functions and deduce their algebraic degree. We
prove a lower bound on their nonlinearity. We give also the exact values of the
nonlinearity for small values of n. In Section 5, we give the results of computer
investigations suggesting a good immunity of the functions against fast algebraic
attacks.

2 Preliminaries

Let F
n
2 be the n-dimensional vector space over F2, and Bn the set of n-variable

(Boolean) functions from F
n
2 to F2. The basic representation of a Boolean func-

tion f(x1, · · · , xn) is by the output column of its truth table, i.e., a binary string
of length 2n,

[f(0, 0, · · · , 0), f(1, 0, · · · , 0), f(0, 1, · · · , 0), f(1, 1, · · · , 0), · · · , f(1, 1, · · · , 1)].

The Hamming weight wt(f) of a Boolean function f ∈ Bn is the weight of
this string, that is, the size of the support Supp(f) = {x ∈ F

n
2 | f(x) = 1} of the

function. The Hamming distance dH(f, g) between two Boolean functions f and
g is the Hamming weight of their difference f + g (by abuse of notation, we use
+ to denote the addition on F2, i.e., the XOR). We say that a Boolean function
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f is balanced if its truth table contains an equal number of 1’s and 0’s, that is,
if its Hamming weight equals 2n−1.

Any Boolean function has a unique representation as a multivariate polyno-
mial over F2, called the algebraic normal form (ANF), of the special form:

f(x1, · · · , xn) =
∑

I⊆{1,2,··· ,n}
aI

∏
i∈I

xi.

The algebraic degree, deg(f), is the global degree of this polynomial, that is,
the number of variables in the highest order term with non zero coefficient. A
Boolean function is affine if it has degree at most 1. The set of all affine functions
is denoted by An.

We shall need another representation of Boolean functions, by univariate poly-
nomials over the field F2n . We identify the field F2n and the vector space F

n
2 : this

field being an n-dimensional F2-vector space, we can choose a basis (β1, · · · , βn)
and identify every element x =

∑n
i=1 xiβi ∈ F2n with the n-tuple of its coor-

dinates (x1, · · · , xn) ∈ F
n
2 . Every function f : F2n → F2n (and in particular

every Boolean function f : F2n → F2) can then be uniquely represented as a
polynomial

∑2n−1
j=0 ajx

j where aj ∈ F2n . Indeed, the mapping which maps every
such polynomial to the corresponding function from F2n to itself is F2n -linear,
injective (since a non-zero polynomial of degree at most 2n−1 over a field cannot
have more than 2n −1 zeroes in this field) and therefore surjective since the F2n -
vector spaces of these polynomials and of the functions from F2n to itself have
the same dimension 2n. The function is Boolean if and only if the functions f(x)
and (f(x))2 are represented by the same polynomial, that is, if a0, a2n−1 ∈ F2
and, for every i = 1, · · · , 2n − 2, we have a2j = (aj)2, where 2j is taken mod
2n − 1. Then the algebraic degree of the function equals the maximum 2-weight
w2(j) of j such that aj �= 0, where the 2-weight of j equals the number of 1’s
in its binary expansion. We briefly recall why, since the algebraic degree is an
important parameter and we will need this when studying the functions. Writing
j =

∑n−1
s=0 js2s, we have the equalities:

f(x) =
2n−1∑
j=0

aj

(
n∑

i=1

xiβi

)j

=
2n−1∑
j=0

aj

(
n∑

i=1

xiβi

)∑ n−1
s=0 js2s

=
2n−1∑
j=0

aj

n−1∏
s=0

(
n∑

i=1

xiβ
2s

i

)js

;

expanding these products, simplifying and decomposing again over the basis
(β1, . . . , βn) gives the ANF of F ; this proves that the algebraic degree is upper
bounded by the number max{w2(j); aj �= 0}, and it cannot be strictly smaller,
because the number of those functions from F2n to itself of algebraic degrees at
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most d equals the number of those univariate polynomials
∑2n−1

j=0 ajx
j , aj ∈

F2n , such that max
j=0,...,2n−1/ aj �=0

w2(j) ≤ d.

In this representation, the elements of An are all the functions tr(ax), a ∈ F2n ,
where tr is the trace function: tr(x) = x + x2 + x22

+ · · · + x2n−1
.

Any Boolean function should have high algebraic degree to allow the cryp-
tosystem resisting the Berlekamp-Massey attack [21].

Boolean functions used in cryptographic systems must have high nonlinearity
to withstand fast correlation attacks (see e.g. [6,34]). The nonlinearity of an n-
variable function f is its distance to the set of all n-variable affine functions, i.e.,

nl(f) = min
g∈An

(dH(f, g)).

This parameter can be expressed by means of the Walsh transform. Let x =
(x1, · · · , xn) and λ = (λ1, · · · , λn) both belong to F

n
2 and λ ·x be the usual inner

product in F
n
2 : λ · x = λ1x1 + · · ·+ λnxn ∈ F2, or any other inner product in F

n
2 .

Let f(x) be a Boolean function in n variables. The Walsh transform (depending
on the choice of the inner product) of f(x) is the integer valued function over
F

n
2 defined as

Wf (λ) =
∑
x∈F

n
2

(−1)f(x)+λ·x.

If we identify the vector space F
n
2 with the field F2n , then we can take for inner

product: λ · x = tr(λx).
A Boolean function f is balanced if and only if Wf (0) = 0. The nonlinearity

of f can also be given by

nl(f) = 2n−1 − 1
2

max
λ∈F

n
2

|Wf (λ)|.

For every n-variable function f we have nl(f) ≤ 2n−1 − 2n/2−1.
Algebraic attacks have been introduced recently (see [15]). They recover the

secret key, or at least the initialization of the cipher, by solving a system of
multivariate algebraic equations. The idea that the key bits can be characterized
as the solutions of such a system comes from C. Shannon [39]. In practice, for
cryptosystems which are robust against the usual attacks, this system is too
complex to be solved (its equations being highly nonlinear). In the case of stream
ciphers, we can get a very overdefined system (i.e. a system with a number of
linearly independent equations much greater than the number of unknowns).
In the combiner or the filter model, with a linear part of size N and with an
n-variable Boolean function f as combining or filtering function, there exists
a linear permutation L : F

N
2 	→ F

N
2 and a linear mapping L′ : F

N
2 	→ F

n
2 such

that, denoting by u1, · · · , uN the initialisation and by (si)i≥0 the pseudo-random
sequence output by the generator, we have, for every i ≥ 0:

si = f(L′ ◦ Li(u1, · · · , uN )).

The number of equations can then be much larger than the number of unknowns.
This makes less complex the resolution of the system by using Groebner basis,
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and even allows linearizing the system (i.e. obtaining a system of linear equations
by replacing every monomial of degree greater than 1 by a new unknown); the
resulting linear system has however too many unkwnowns and cannot be solved.
Courtois and Meier have had a simple but very efficient idea. Assume that there
exist functions g �= 0 and h of low degrees (say, of degrees at most d) such that
f ∗ g = h. We have then, for every i ≥ 0:

si g(L′ ◦ Li(u1, · · · , uN)) = h(L′ ◦ Li(u1, · · · , uN )).

This equation in u1, · · · , uN has degree at most d, since L and L′ are linear,
and the system of equations obtained after linearization can then be solved by
Gaussian elimination. Low degree relations have been shown to exist for several
well known constructions of stream ciphers, which were immune to all previously
known attacks.

It has been shown [15,33] that the existence of such relations is equivalent to
that of non-zero functions g of low degrees such that f ∗ g = 0 or (f +1) ∗ g = 0.
This led to the following definition.

Definition 1. For f ∈ Bn, we define AN(f) = {g ∈ Bn | f ∗ g = 0}. Any
function g ∈ AN(f) is called an annihilator of f . The algebraic immunity (AI)
of f is the minimum degree of all the nonzero annihilators of f and of all those
of f + 1. We denote it by AI(f).

Note that AI(f) ≤ deg(f), since f ∗ (1 + f) = 0. Note also that the algebraic
immunity, as well as the nonlinearity and the degree, is affine invariant (i.e. is
invariant under composition by an affine automorphism). As shown in [15], we
have AI(f) ≤ �n

2 �.
The complexity of the standard algebraic attack on the combiner model or

the filter model using a nonlinear function f equals roughly O(D3) in time and
O(D) in data, where D =

∑AI(f)
i=0

(
N
i

)
, where N is the size of the linear part of

the pseudo-random generator.
If a function has optimal algebraic immunity

⌈
n
2

⌉
with n odd, then it is bal-

anced (see e.g. [10]). Whatever is n, a high value of AI(f) automatically implies
that the nonlinearity is not very low: M. Lobanov has obtained in [31] the fol-
lowing tight lower bound:

nl(f) ≥ 2
AI(f)−2∑

i=0

(
n − 1

i

)
.

However, this bound does not assure that the nonlinearity is high enough:

• For n even and AI(f) = n
2 , it gives nl(f) ≥ 2n−1 − 2

(
n−1

n/2−1

)
= 2n−1 −

(
n

n/2

)

which is much smaller than the best possible nonlinearity 2n−1 − 2n/2−1 and,
more problematically, much smaller than the asymptotic almost sure nonlinearity
of Boolean functions, which is, when n tends to ∞, located in the neighbourhood
of 2n−1 − 2n/2−1

√
2n ln 2 (see [37]); the nonlinearity reached by the known func-

tions with optimal AI is equal to (or is close to) that of the majority function
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which maps an input vector x ∈ F
n
2 to 1 if its weight is not smaller (resp. is strictly

greater) than n/2 and 0 otherwise (the two versions are affinely equivalent) and
of the iterative construction recalled in [10] : 2n−1 −

(
n−1
n/2

)
= 2n−1 − 1

2

(
n

n/2

)
; it

is a little better than what gives Lobanov’s bound but it is insufficient. Some
functions exhibited in [11,28,29] have better nonlinearities but the increasement
is not quite significant.
• For n odd and AI(f) = n+1

2 , Lobanov’s bound gives nl(f) ≥ 2n−1−
(

n−1
(n−1)/2

)
�

2n−1− 1
2

(
n

(n−1)/2

)
which is a little better than in the n even case, but still far from

the average nonlinearity of Boolean functions; the nonlinearity of the majority
function matches this bound; here again, some functions exhibited in [11,28,29]
have better nonlinearities but the increasement is not sufficient.

A high algebraic immunity is a necessary but not sufficient condition for ro-
bustness against all kinds of algebraic attacks. Indeed, if one can find g of low
degree and h �= 0 of reasonable degree such that f ∗ g = h, then a fast algebraic
attack is feasible, see [13,1,24] (note however that fast algebraic attacks need
more data than standard ones). This has been exploited in [14] to present an
attack on SFINKS [4] and we can say that with this attack, which comes in
addition to the standard algebraic attack, Courtois has made very difficult the
work of the designer. Since f ∗ g = h implies f ∗ h = f ∗ f ∗ g = f ∗ g = h,
we see that h is then an annihilator of f + 1 and if h �= 0, then its degree is at
least equal to the algebraic immunity of f . So summarizing, we shall say that
the function behaves well with respect to fast algebraic attacks if there exists k
(which can be small with respect to n, but not too small) such that, for every
nonzero function g of algebraic degree at most k, the function h = f ∗ g has
algebraic degree significantly greater than �n

2 �. It has been shown in [13] that
when e + d ≥ n, there must exist g of degree at most e and h of degree at most
d such that f ∗ g = h. Hence, an n-variable function f can be considered as
optimal with respect to fast algebraic attacks if there do not exist two functions
g �= 0 and h such that f ∗ g = h and deg(g) + deg(h) < n with deg(g) < n/2.
The question of the existence of such functions was completely open until the
present paper.

The pseudo-random generator must also resist algebraic attacks on the
augmented function [23], that is, on the vectorial function F (x) whose coordi-
nate functions are f(x), f(L(x)), · · · , f(Lm−1(x)), where L is the (linear) up-
date function of the linear part of the generator. Algebraic attacks can be
more efficient when applied to the augmented function rather than to the func-
tion f itself. The efficiency of the attack depends not only on the function
f , but also on the update function (and naturally also on the choice of m),
since for two different update functions L and L′, the vectorial functions F (x)
and F ′(x) = (f(x), f(L′(x)), ..., f(L′m−1(x)) are not linearly equivalent (nei-
ther equivalent in the more general sense called CCZ-equivalence, that is, affine
equivalence of the graphs of the functions). Testing the behavior of a function
with respect to this attack is therefore a long term work (all possible update
functions have to be investigated).
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A new version of algebraic attack has been found recently by S. Rønjom and
T. Helleseth [38] and is very efficient. Its time complexity is roughly O(D), where
D =

∑deg(f)
i=0

(
N
i

)
, where N is the size of the linear part of the pseudo-random

generator. But it needs much more data than standard algebraic attacks: O(D)
also! When f has degree close to n and algebraic immunity close to n

2 , this is
the square of what is needed by standard algebraic attacks. However, this attack
obliges the designer to choose a function with very high degree.

The functions used in the combiner model must be additionally highly resilient
(that is, balanced and correlation immune of a high order; see definition e.g. in
[9]) to withstand correlation attacks. It seems quite difficult to achieve all of
the necessary criteria including this one, and for this reason, the filter generator
seems more appropriate.

3 The Infinite Class and Its Algebraic Immunity

We shall show that, for every n, the Boolean function on F2n whose support
equals {0}∪{αi; i = 0, · · · , 2n−1−2}, where α is a primitive element of F2n , has
optimal algebraic immunity. This function (or more precisely its complement)
makes thinking of the majority function but we shall see that it is in fact quite
different since it has much better nonlinearity and it behaves much better with
respect to fast algebraic attacks too.

Theorem 1. Let n be any integer such that n ≥ 2 and α a primitive element of
the field F2n .

Let f be the Boolean function on F2n whose support is {0, 1, α, · · · , α2n−1−2}.
Then f has optimal algebraic immunity �n/2�.

Proof
Let g be any Boolean function of algebraic degree at most �n/2�−1. Let g(x) =∑2n−1

i=0 gix
i be its univariate representation in the field F2n , where gi ∈ F2n is

null if the 2-weight w2(i) of i is at least �n/2� (which implies in particular that
g2n−1 = 0).

If g is an annihilator of f , then we have g(αi) = 0 for every i = 0, · · · , 2n−1−2,
that is, the vector (g0, · · · , g2n−2) belongs to the Reed-Solomon code over F2n of
zeroes 1, α, · · · , α2n−1−2 (the Reed-Solomon code of zeroes α�, · · · , α�+r equals
by definition the set of vectors (g0, · · · , g2n−2) of F

2n−1
2n such that these elements

are zeroes of the polynomial
∑2n−2

i=0 giX
i, see [32]; there exists an equivalent

definition where Reed-Solomon codes are given by evaluating polynomials at
points but we shall not need it).

According to the BCH bound, if g is non-zero, then the vector (g0, · · · , g2n−2)
has Hamming weight at least 2n−1. The general proof of this lower bound can
be found in [32] as well. For self-completeness, we briefly recall how it can be
simply proved in our framework. By definition, we have:
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⎛
⎜⎜⎜⎜⎜⎝

g(1)
g(α)
g(α2)

...
g(α2n−2)

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1
1 α α2 · · · α2n−2

1 α2 α4 · · · α2(2n−2)

...
...

... · · ·
...

1 α2n−2 α2(2n−2) · · · α(2n−2)(2n−2)

⎞
⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎝

g0
g1
g2
...

g2n−2

⎞
⎟⎟⎟⎟⎟⎠

which implies (since for every 0 ≤ i, j ≤ 2n − 2, the sum
∑2n−2

k=0 α(i−j)k equals 1
if i = j and 0 otherwise):

⎛
⎜⎜⎜⎜⎜⎝

g0
g1
g2
...

g2n−2

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1
1 α−1 α−2 · · · α−(2n−2)

1 α−2 α−4 · · · α−2(2n−2)

...
...

... · · ·
...

1 α−(2n−2) α−2(2n−2) · · · α−(2n−2)(2n−2)

⎞
⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎝

g(1)
g(α)
g(α2)

...
g(α2n−2)

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

1 1 · · · 1
α−(2n−1−1) α−2n−1 · · · α−(2n−2)

...
... · · ·

...
α−(2n−1−1)(2n−2) α−2n−1(2n−2) · · · α−(2n−2)(2n−2)

⎞
⎟⎟⎟⎠ ×

⎛
⎜⎜⎜⎝

g(α2n−1−1)
g(α2n−1

)
...

g(α2n−2)

⎞
⎟⎟⎟⎠

Suppose that at least 2n−1 of the gi’s are null. Then, g(α2n−1−1), · · · , g(α2n−2)
satisfy a homogeneous system of linear equations whose matrix is a 2n−1 × 2n−1

Vandermonde matrix and whose determinant is therefore non-null. This implies
that g(α2n−1−1), · · · , g(α2n−2) and therefore g must then be null, a contradiction.
Hence the vector (g0, · · · , g2n−2) has weight at least 2n−1.

Moreover, suppose that this vector has Hamming weight 2n−1 exactly. Then
g(x) =

∑
0≤i≤2n−2

w2(i)≤(n−1)/2

xi and n is odd (so that g(x) can have 2n−1 terms); but this

contradicts the fact that g(0) = 0. We deduce that the vector (g0, · · · , g2n−2) has
Hamming weight strictly greater than 2n−1, leading to a contradiction with the
fact that g has algebraic degree at most �n/2� − 1, since the number of integers
of 2-weight at most �n/2� − 1 is not strictly greater than 2n−1.

Let g be now a non-zero annihilator of f + 1. The vector (g0, · · · , g2n−2)
belongs then to the Reed-Solomon code over F2n of zeroes α2n−1−1, · · · , α2n−2.
According to the BCH bound (which can be proven similarly as above), this
vector has then Hamming weight strictly greater than 2n−1. We arrive to the
same contradiction. Hence, there does not exist a non-zero annihilator of f or
f + 1 of algebraic degree at most �n/2� − 1 and f has then (optimal) algebraic
immunity �n/2�. �

Remark
1. We have proved in fact that f admits no non-zero annihilator whose univariate
representation has at most 2n−1 non-zero coefficients.
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2. The same proof shows that, for every even n, denoting D =
∑n/2−1

i=0

(
n
i

)
=

2n−1 −
(
n−1
n/2

)
, if the support of f contains {0, αi, αi+1, · · · αi+D−2} and if the

support of f + 1 contains {αj , αi+1, · · · αj+D−1} for suitable parameters i, j,
then the function f also has optimal AI. Moreover, for every n and every
positive integer D, if Supp(f) ⊇ {0, αi, αi+1, · · ·αi+D−2} and Supp(f + 1) ⊇
{αj , αi+1, · · ·αj+D−1} for suitable parameters i, j, then the function f has AI
at least k such that D ≥

∑k−1
i=0

(
n
i

)
. Hence, we can build functions with sub-

optimal algebraic immunity. Sub-optimality is sometimes better than optimality
in cryptography, when it allows avoiding a too strong structure of the function.
Here, this allows constructing a balanced function of algebraic immunity �n

2 �−1
(for instance) and whose support is not made exclusively of consecutive powers
of a primitive element.
3. Note that the function of Theorem 1 is not a priori linearly equivalent to the
Boolean function whose support equals the set of the binary expansions of the in-
tegers in the range [0; 2n−1 − 1]. Indeed, for general i =

∑n−1
k=0 2ik , j =

∑n−1
k=0 2jk

there is no bilinear relationship between tr(αi+j) and i0j0 + · · ·+ in−1jn−1. This
means that the inner products in both frameworks are not linearly linked.

4 Algebraic Degree and Nonlinearity of the Function

We shall see now that the algebraic degree of the function of Theorem 1 is
cryptographically quite satisfactory and that its nonlinearity is provably much
better than for the previously known functions with optimal algebraic immunity.
However, the lower bound we obtain gives a value which is not high enough for
saying that the function has good nonlinearity. Nevertheless, for the values of
n for which we could compute the exact value of the nonlinearity, it is quite
satisfactory too.

Theorem 2. The univariate representation of the function f of Theorem 1
equals

1 +
2n−2∑
i=1

αi

(1 + αi)1/2 xi (1)

where u1/2 = u2n−1
. Hence, f has algebraic degree n − 1 (which is optimal for a

balanced function).

Proof. Let f(x) =
∑2n−1

i=0 fi xi be the univariate representation of f . We have
f0 = f(0) = 1, f2n−1 = 0 (since f has even Hamming weight and therefore
algebraic degree at most n − 1) and for every i ∈ {1, · · · , 2n − 2}:

fi =
2n−2∑
j=0

f(αj)α−ij =
2n−1−2∑

j=0

α−ij =
1 + α−i(2n−1−1)

1 + α−i
=

(
1 + α−i(2n−2)

1 + α−2i

)1/2

=
(

1 + αi

1 + α−2i

)1/2

=
αi

(1 + αi)1/2 .
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This proves Relation (1). We can see that f2n−2 �= 0 and therefore f has alge-
braic degree n − 1. �

Remark. Computing the expression of Theorem 2 has high complexity. Actually,
the complexity of computing f(x) is comparable to computing the discrete log
since the latter can be obtained by computing n outputs to f (with a dichotomic
method).

Theorem 3. Let f be defined as in Theorem 1, then:

nl(f) ≥ 2n−1 +
2n/2+1

π
ln

(
π

4(2n − 1)

)
− 1 ≈ 2n−1 − 2 ln 2

π
n 2n/2.

Proof.

nl(f) = 2n−1 − 1
2

max
λ∈F

n
2

|Wf (λ)| (2)

= 2n−1 − 1
2

max
0�=λ∈F

n
2

|Wf (λ)| (since Wf (0) = 0)

= 2n−1 − max
λ∈F

∗
2n

∣∣∣∣∣∣
∑

x �∈supp(f)

(−1)tr(λx)

∣∣∣∣∣∣
(since (−1)f = 2 (f + 1) − 1 and

∑
x∈F

n
2

(−1)λ·x = 0)

= 2n−1 − max
λ∈F

∗
2n

|Sλ|

where

Sλ =
2n−2∑

i=2n−1−1

(−1)tr(λαi) (λ ∈ F
∗
2n) (3)

Let ζ = e
2π

√
−1

2n−1 be a primitive (2n − 1)-th root of 1 in the complex field C, χ be
the multiplicative character of F2n defined by χ(αj) = ζj (0 ≤ j ≤ 2n − 2) and
χ(0) = 0. We define the Gauss sum:

G(χμ) =
∑

x∈F
∗
2n

χμ(x)(−1)tr(x) (0 ≤ μ ≤ 2n − 2)

It is well-known (see [30]) that G(χ0) = −1 and |G(χμ)| = 2
n
2 for 1 ≤ μ ≤ 2n−2.

By Fourier transformation we have

(−1)tr(αj) =
1

2n − 1

2n−2∑
μ=0

G(χμ)χμ(αj) (0 ≤ j ≤ 2n − 2)
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Let λ = αl (0 ≤ l ≤ 2n − 2) and q = 2n. Then χμ(λαi) = ζ−μ(l+i) and by (3),

Sλ =
1

q − 1

q−2∑
μ=0

G(χμ)
q−2∑

i= q
2−1

χμ(λαi)

=
1

q − 1

q−2∑
μ=0

G(χμ)
q−2∑

i= q
2−1

ζ−μ(l+i)

=
1

q − 1

(
q−2∑
μ=1

G(χμ)ζ−μl ζ−μ( q
2−1) − 1

1 − ζ−μ
− q

2

)

Therefore, for λ ∈ F
∗
q ,

|Sλ| ≤ 1
q − 1

⎛
⎜⎜⎝

q−2∑
μ=1

|G(χμ)| ·

∣∣∣∣sin
πμ( q

2−1)
q−1

∣∣∣∣
sin πμ

q−1
+

q

2

⎞
⎟⎟⎠

≤ 1
q − 1

(
q−2∑
μ=1

|G(χμ)| · 1
sin πμ

q−1
+

q

2

)

=
1

q − 1

⎛
⎝2

√
q

q
2−1∑
μ=1

(
sin

πμ

q − 1

)−1

+
q

2

)

since sin(π−u) = sin(u). By convexity of the function 1
sin t , we have, for 0 ≤ θ < t

and t + θ ≤ π:

1
sin(t − θ)

+
1

sin(t + θ)
≥ 2

sin t
.

Then we deduce
∫ t+ θ

2

t− θ
2

du

sin u
≥ θ

sin t

and taking θ = π
q−1 :

q
2−1∑
μ=1

(
sin

πμ

q − 1

)−1

≤ q − 1
π

q
2−1∑
μ=1

∫ πμ
q−1 + π

2(q−1)

πμ
q−1− π

2(q−1)

du

sin u

=
q − 1

π

∫ π
2

π
2(q−1)

du

sin u
.
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Set t(x) = tan(x/2). We have sin x = 2t(x)
1+t2(x) and therefore 1

sin x = t′(x)
t(x) . Hence

a primitive of 1/ sinx equals ln(| tan(x/2)|). This implies

2n−1 − maxSλ ≥ 2n−1 −
(

2n/2+1
[

1
π

ln(tan(x/2))
]π

2

π
2(2n−1)

+ 1

)

= 2n−1 +
2n/2+1

π
ln

(
tan

(
π

4(2n − 1)

))
− 1

≥ 2n−1 +
2n/2+1

π
ln

(
π

4(2n − 1)

)
− 1

(
since tanx ≥ x; ∀x ∈

[
0;

π

2

[)

≈ 2n−1 − 2 ln 2
π

n 2n/2.

�

Remarks
1. The lower bound given by Theorem 3 shows that the nonlinearity of our
function f is provably considerably better (at least asymptotically) than those
of the previously found functions. Moreover, we checked for small values of n
that the exact value of nl(f) is much better than what gives this lower bound
and better than the nonlinearity of random functions and that it seems quite
sufficient for resisting fast correlation attacks (for these small values of n, it
behaves as 2n−1 − 2n/2). We give in Table 1 below, for n ranging from 6 to 11,
the values of the nonlinearity of f compared with Lobanov’s lower bound (when
applied with optimal algebraic immunity), with the best nonlinearities of those
functions with optimal AI known before the present paper, with the lower bound
of Theorem 3, and with the upper bound 2n−1 − 2n/2−1.
2. We have seen that the computation of the value of f(x) has high complexity.
The power functions seen in [2, Table 1] may be better in practice for being used
with a high number of variables, if their behavior against fast algebraic attacks
can be proved good. Our construction might be useful with different designs,
using less variables. It would be nice to find other infinite classes with the same
qualities and which would be more easily computable.

Table 1. The values of the nonlinearity of f compared with Lobanov’s lower bound
and with the upper bound 2n−1 − 2n/2−1

n 6 7 8 9 10 11
Lobanov’s bound 12 44 58 186 260 772

Best nl of fcts with optimal AI known before 22 48 98 196 400 798
The bound of Theorem 3 10 28 70 163 366 798

The values of the nl of fct f of Theorem 1 24 54 112 232 478 980
The upper bound 2n−1 − 2n/2−1 28 58 120 244 496 1001
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5 Immunity against Fast Algebraic Attacks

Computer investigations made using [2, Algorithm 2] suggest the following prop-
erties of the class of functions of Theorem 1:

– No nonzero function g of degree at most e and no function h of degree at
most d exist such that f ∗ g = h, when (e, d) = (1, n − 2) for n odd and
(e, d) = (1, n − 3) for n even. This has been checked for n ≤ 12 and we
conjecture it for every n.

– For e > 1, pairs (g, h) of degrees (e, d) such that e + d < n − 1 were never
observed. Precisely, the non-existence of such pairs could be checked exhaus-
tively for n ≤ 9 and e < n/2, for n = 10 and e ≤ 3 and for n = 11 and e ≤ 2.
This suggests that this class of functions, even if not always optimal against
fast algebraic attacks, has a very good behavior.

The instance with n = 9 turns out to be optimal. To the best of our knowledge,
this is the first time where a function with optimal immunity against FAA’s can
be observed.

6 Conclusion

The functions of Theorem 1 seem to gather all the properties needed for allowing
the stream ciphers using them as filtering functions to resist all the main attacks
(the Berlekamp-Massey and Rønjom-Helleseth attacks, fast correlation attacks,
standard and fast algebraic attacks). They are the only functions of this kind
found so far.
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