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An Infinite Dimensional Distributed tracking objectivegsimilar to that of rigid ongwhile stabilizing

. the transient vibrations in the arm. Several control methods have
Base ContrO”er fOI‘ Regulatlon been developed for flexible arms: optimal confrb)2]; finite el-
of Flexible Robot Arms ement approacfB,4]; model reference adaptive contfél]; adap-

tive non-linear boundary contrb]; and several other techniques
including variable structure contr@VSC) methods[7-9]. Most
Nader Jalili of these methods concentrate on model-based controllers design.
Associate Mem. ASME Some of these cor)trqller.S, howevgr, may not be easy to .|mplement
. due to the uncertainties in the design model, large variations of the
ASS'St_ant Professor, . loads, ignored high frequency dynamics and high order of the
Robotics and Mechatronics Laboratory, Department of gesigned controllers. In view of these methods, VSC is particu-

Mechanical Engineering, Clemson University, larly attractive due to its simplicity of implementation and robust-
Clemson, SC 29634-0921 ness to parameter uncertainties. Successful applications of this
e-mail: jalili@clemson.edu method in practical systems are numerd[0—12 are just a

' AR few).

Generally, a flexible robot is governed by partial differential
) ) ) equations(PDE) as a system of distributed-parameter and there-
An exponentially stable variable structure controller is presenteghre possesses infinite number of dimensions. Due to the complex-
for regulation of the angular displacement of a one-link flexiblgy of these equations and in order to facilitate the application of
robot arm, while simultaneously stabilizing vibration transient inonirol strategies, discretization techniques are typically used to

the arm. By properly selecting the sliding hyperplane, the goverggnsiryct a finite-dimensional reduced model. Based on the result-

ing equations which form a nonhomogenous boundary Va|lilﬁg approximate modelassumed mode modéAMM ) or finite

problem are converted to homogenous ones, and hence, analyisment method FEM), for instance several controller design
cally solvable. The controller is then designed based on the origy;

y SL VAl - e T AS proaches are then appligti5], and[13].
nal infinite dimensional distributed system which, in turn, removeg-rhe problem associated with these model-based controllers is
some disadvantages associated with the truncated-model-b

e = O8%€ truncation procedure used in the approximation. Due to ig-
control_lers. Utilizing only the arm _base angulal_' position a_nd UBored high frequency dynamig¢gelated to control spillovejsand
Qefle.ctllon measurements, an on-line perturbatlon estimation o order of the designed controlleelated to increased number
tine is introduced to overcome the measurement imperfections lexible modes utilized in the modelsevere limitations occur

ever-present unmodeled dynamics. Depending on the Compos'ﬁlr?ﬁ'mplementation of these controllers. To overcome these short-
of the controller, some favorable features appear such as eliming;

. h o2 = Ils, alternative approaches based on infinite dimensional distrib-
tion of control spillovers, controller convergence at finite time PP

suppression of residual oscillations and simplicity of the contr tevcja(II)Dgc)i ‘fﬁ:?ég'gﬁﬁEt}?e?é):ﬂscggﬂgrgzgms\'/vgzverg egged
implementation. Numerical simulations along with experiment ped. 9y prop

results are provided to demonstrate and validate the effectiven %Scontrol vibration of _flexple arnis), W.h'le an exponentlally_
of the proposed controller[DOI: 10.1115/1.14086(8 stable VSC controller is utilized for flexible robot systems with
’ T ' translational basg14].
A common difficulty appears in all these IDD-base controller

design, which is the complexity of the control implementation.
1 Introduction For instance, the control strategy developeflli] requires mea-
Wements of displacement, velocity and acceleration of the arm
Ipras well as the shear force at the root end of the link. Although
he VSC controller is inherently insensitive to parameter varia-
jons, feasible measurements are required for a successful imple-
dﬂentation of the controller. This is the reason why experimental
tasks. The use of lightweight flexible links, however, has led to Y"ification of these algorithms is progressing with a much slower
challenging problem in end-point trajectory control. Due to thBace than th"? t.heoretlcal compartment. For more complex flexible
flexibility distributed along the robot arms, an improved Contro?ysterr]nq?ultl-lmk.arrlns, f:)r instancethese approaches become
scheme is required to track the desired trajectory while simult4€'Y hard in practical implementation. .
neously suppressing the vibrational transients in the arm. It is, therefore, highly desirable to seek a simple and yet prac-

This control problem has attracted significant attention in tHi@! téchnique for control of flexible arms. To this end, an im-
literature. A flexible manipulator control must achieve the motioRroved IDD-base controller is proposed to eliminate the disadvan-
tages associated with the traditional truncated-model-base

Contributed by the Dynamic Systems and Control Division 6ETAMERICAN controllers.. Itis specifically mtgnded to furthe:r rel_ax the measure-
SOCIETY OF MECHANICAL ENGINEERS Manuscript Received by the Dynamics MeNt requirements for the flexible arm and simplify the controller
Systems and Control Division March 27, 2000. Associate Editor: C. Rahn. design. Only the tip deflection and angular position of the flexible

In recent years, the demands for high-speed performance, |
energy consumption and low cost have been motivating the use
lightweight robot manipulators in industrial applications. Th
rigid structure of current industrial manipulators has made co
pliance impossible and limited the robotics use in automati
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o 4 pz(x,t)+EI1Z"(x,t)=0 (9)

X with the corresponding boundary conditions
— P
z(0H)=0, (10)
X' Z'(0)=6(1), 11)
Z'(L,t)=0, (12)
2'(L,)=0 (13)

Clearly, the arm vibration equatig®) is a homogenous PDE but

the boundary condition€Ll0—13 are nonhomogenous. Therefore,
the closed-form solution is very tedious to obtain, if not impos-
sible. Using the application of VSC, these equations and their
Sec. 4-4 associated boundary conditions can be converted to a homogenous
boundary value problem, as discussed next.

Y Yy

Fig. 1 Flexible arm in the horizontal plane with its kinematics
of deformation

3 Variable Structure Controller

arm are required to develop the new controller proposed here. Therhe control objective is to track the arm angular displacement
remaining measurements, the ever-present unmodeled dynanfigg an initial angle,64= 6(0), to zero position,8(t—=)=0,

and other parameter uncertainties are all combined to a sing|iile minimizing the flexible arm oscillations. To achieve the
term and estimated through an on-line perturbation estimati@Bntrol insensitivity against modeling uncertainties, the nonlinear
proces415,16. This additional perturbation estimation will com-control routine of Sliding Mode Control with an additional Per-

promise the robustness and trajectory tracking accuracy. turbation Estimation(SMCPB compartment is adopted here
) ) [15,16. The method of SMCPE presented[ib5] has many at-
2 Mathematical Modeling tractive features, but is suffers from the disadvantages associated

We consider regu|ati0n of the angu|ar disp|acement of a On@ﬂth the truncated-model-base controllers. On the other hand, the

link flexible arm. As shown in Fig. 1, one end of the arm is freéDD-base controller design, proposed|i], has practical limi-
and the other end is rigidly attached to a vertical gear shatft, drivéions due to its measurement requirements in addition to the
by a DC motor. Thus, the effect of gravity is neglected. Uniforn§omplex control law. We propose a new scheme to overcome
cross section is considered for the arm, and we make the Euléiese shortfalls.

Bernoulli assumptions. The control torqagacting on the output 31 congroller Design.  Initiating from the idea of IDD-base
shaft, is normal to the plane of motion. Viscous frictions and thghirolier, we propose a new controller design approach in which
ever-present unmodeled dynamics of the motor compartment ai¢ on-jine perturbation estimation mechanism is integrated with
to be compensated via a perturbation estimation process, as g% controller to relax the measurement requirements. As utilized
plained later in the text. Cm 14], for the tip vibration suppression, it is further required that

_ Since the dynamic system considered here has been utilizeqyd g|iging surface enable the transformation of nonhomogenous
literature quite often, we present only the resulting partial diffe 5oundary conditiong10-13 to homogenous ones. To simulta-
ential equationPDE) of the system and refer the interested reacﬁ

; y=r . jeously satisfy vibration suppression and robustness require-
ers to[17,18 for detailed derivations. The system is governed b}ﬁents, the sliding hyperplane is selected as a combination of

; L tracking (regulation error and arm flexible vibration as
1.6(t)+ y(x,t)dx= 1
P[XB(D)+(x )]+ Ely"'(x,t)=0 @) wheres>0 is a control parameter and
with the corresponding boundary conditions w=0(t)+ ﬁz(L t) (15)
LAk
y(0.1)=0, ©)

with the scala being selected later. Whewn= 0, controller(14)
y'(0t)=0, (4)  reduces to sliding variable for rigid-link manipulat¢fs,19. The
” _ motivation for such a sliding variable is to provide a suitable
y'(L.)=0, ®) boundary condition for solving the beam equati® as will be
y"(L,t)=0 (6) discussed next.

) ) o ) Theorem 3.1 For the system described by (1) and (9), if the
wherep is the arm liner mass density,is the arm lengthE is the  \ariable structure controller is given by

Young’s modulus of elasticity, is the cross-sectional moment of

inertia, |, is the equivalent mass moment of inertia at the root end _ Iy
of the arm, and,=1,+pL%3 is the total inertia. Equatiofil) 7= st 1+ u
represents the motion of the arm base, whig describes the

—ksgns)—Ps— %'y(L,t)

vibration of the arm. O
Using global variable —o(ltp) o Ty(l“t)) (16)
Z(X,t)=x6(1) +y(x,t) (7) wherey,, is an estimate of the beam flexibility effect
the differential equations and boundary conditions can be ex- L
pressed in the global coordinates as y=p . xy(x,t)dx, a7
L
|h'(;(t)+pf Xz(x,t)dx=r (8) kand P are positive scalark= (14 u)|g— theel/ 11, —1.2<pu
0 <-0.45u#—-1and
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1 s>0

sgn(s) =
IS=1 1 s<o
then the system's motion will first reach the sliding moeedsin ~ Substituting (28) into boundary condition(11), transforms the
a finite time, and consequently converge to the equilibrium poglonhomogenous boundary value problé®s-13 into a homog-
tion w(x,t)=0 exponentially with a time-constafio enous one. Specifically, the boundary conditi@d) is recast in

Proof Selecting Lyapunov function candidate=1,s%/2, its the homogenous form of

time derivative is given by

(18) o) =— LY (28)

"o =—X
V=1,s5 (19) Z'(0)=—zLb (29)

From Eq.(7), (14), and(15), we have which fulfills our objective. By properly selecting varialje it is
shown, next, that the arm can be stopped at the final position.

S=V+ o= (1+ u) 0+ %'S/(L,t)—ﬂr o+ %'Z(L,t)} (20)

3.2 Solution to Homogenous Boundary Value Problem.

Substituting(20) into (19) and utilizing(7) yields In the derivation of the controller, we shall assume that the system
) ) “ ) u can be variable-separated, i.B(x,t) can be represented by
V=g It(1+,u)0+ltry(L,t)+Il(r(1+,u,)9+ltoty(L,t)} 2(.8) = S(X)Q(1) (30)
(21) where ¢(x) is the transverse modal shape of the flexible arm and
Noting (1), Eq. (21) becomes Q(t) is the corresponding generalized coordinate. Note that the

derivation of the controller does not require any modal reduction,

o TP . i.e., the controller, theoretically, can handle the original infinite-
V_S[ (14 p) T fo Xyix,ydx dimensional systerfiL4].
Substituting Eq(30) into (9) yields
+It€y(L,t)+Ilo(1+M)€+Il(r%'y(L,t)] 22) SEQ a
bstituti I i ield - N
Substituting controlle(16) into (22) yields Consequently, we obtain two ordinary differential equatipt®
V:S{(1+M)(¢est_ l//)—|tkSgl'(S)_|tPS} (23) Q(t)+KQ(t)=O (32)
Invoking conditionk=(1+ u)|#— esi/1, EQ.(23) reduces to
. " — p
V=—1kls| (24) " ()= gy Ke(x) (33)
As shown in[20], inequality (24) implies that the system will with the boundary conditions
reach the sliding mode=0 in a finite time, which is smaller than
|s(t=0)|/k, and then remain in the sliding mode. Therefore, from #(0)=0, (34)
(14), the system’s motion, after reaching the sliding mode, will
slide alongs=0 towardw=0 exponentially with a time constant ' (0)=— L H(L), (35)
equal to 14 L
It should be noted that conditioR=(1+ u)|y— hesl/1; is #"(L)=0 (36)
based on the assumption thét— i.s] < 71/es; Wheren is experi- ’
mentally determined21]. In order to assure robustnessis se- ¢"(L)=0 (37)

lected as . . .
To solve this boundary value problem, we consider three possible

k= 5(1+ ) hesi/ 11 (25) options forK.

The discontinuity in the controller due to the signum functiofr @€ I K=0- This yields the following expression fak(x)

can be smoothened by replacing it with the saturation function d(X)=C1x3+ Cx?+Cx+C, (38)
sle  |s|se To force ¢(x)=0, which will lead toz(x,t)=0, all the coeffi-
sats)= (26) cientsC; (i=1, ... ,4) musivanish. Utilizing this and Eq(34)—

sons) [s|>e (37), one can show that these conditions are satisfied if
in order to avoid control chatt¢®2]. However, if the forced os-
cillations of the s-dynamic display high frequencies, then the cor- n# =1 (39)

responding (saturation function control component manifest Case II: K<0. By lettingK = — w?, Eq. (33) is written as
equally high frequency dither, which is not desirable either. There-

fore, a “low pass filter” mode,P in controller (16), was intro- &)= — E 4¢(x) (40)
duced to subdue the effects of high frequency compondris oL
Once the system enters the sliding phase, the s-dynamics take the .
form of a low pass filter against/— i.] as (see Eq(23) where (8/L)*=pw?/El. Notinga=v2p/2L (a+0), the general
solution to Eq.(40) is of the form
1+
5+(P+kle)s= |—“|¢— Yes (27) #(x)=C,e*sin(ax) + C,e cogax) + Cze” **sin(ax)
t
+C,e” ¥ cogax) (41)

We have proven that the system’s motion convergew 00
exponentially. To prove the exponential stability of the closed- By substituting boundary condition§34—37% into equation
loop system, it will be sufficient to show that the flexible arn{41), a set of four homogenous linear algebraic equations in terms
stops at the final equilibrium positiar(x,t) =0 provided thatv  of coefficientsC; (i=1, ... ,4) isrendered. Using MAPLE soft-
=0 [14]. Sincew—0 ast—, based on14) same holds fow ware packagé23], the determinant of the coefficients matrix is
(i.e., #—0). Notice, from Eq.(15), w=0 implies that found to be
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cogal)sinh(aL)+sin(aL)coshal)
aL K

A= 16a6{

+cosﬁ(aL)+co§(aL)] (42)
In order to forceC;=0, we need to show thak #0. Using

MAPLE package, it can be shown that conditierl.2< u <35

will render A>0 regardless of the value al (notice,aL+#0 in

this case

Case Ill: K>0. Letting K= w?, the general solution t(33) can

be expressed in the form

@d(x)=C, cogBx/L)+C, cosi Bx/L)
+Cjsin(Bx/L)+C,sinh( Bx/L) (43)
Similarly, substituting boundary conditiori84—3% into Eq. (43)
and taking the determinant of the coefficients yields
2% ((sinB+sinhp)

A= 3

pu+coshBcosp+1 (44)

Utilizing MAPLE again, it can be shown that regardless of value

of u(u#0) in this case A+#0. Notice, in this casg8#0. The
values ofu>2.3 will renderA<0 and values ofu<—0.45 will
resultA>0.

Recalling all the three cases, one can seg iatisfies the
inequality

—1.2<u<-0.45 u#-—1 (45)
then A>0, and that results inp(x)=0 and ultimatelyz(x,t)

digital computer and the sampling speed is high enough to claim
this. Also, in the absence of measurement noie)= .,(t)
=[6(t)— 6(t— )1/ 6.

Therefore, an estimate of perturbatigris utilized as

Yes=T(t—6)— Itbcal(t) (47)

Alternatively, the bending moment of the beam at its base can be
obtained a$17,1§

L

Ely"(o,t)=—pf XZ(x,t)dx (48)

0
Then, the flexibility term used in perturbation expression can be
expressed as

L
1,//=pf xy(x,t)dx=—Ely"(0t)—p6(t)L3/3 (49)

0
which can be measured in practice by attaching a strain gauge at
the base of the flexible arm for’(0,t) and approximatingd(t)
with 0.4 (t) as described above.
Due to the additional robustizing feature, perturbation estima-
tion, the following approximations can be utilized at the control
stage implementatiofSection 6:

Y(L.)=Yca(L ) =[Yea(L,t) =¥(L,t=8)1/6,

=0. This is the same condition given in Theorem 3.1. Now, we

can conclude thav=0 implies that the flexible beam and conse-
quently arm angular displacement stop at the final equilibriu

positionz(x,t) =0 andé(t) =0. Consequently, because—0 ex-

ponentially in the sliding mode, the system motions also co

verges toz(x,t)=0 exponentially with time constant &/ This
completes the proofQED)

Remark 3.1: The range of given in Eq. (45) may not be a

complete solution. Analytically solving fer from (42) and (44) is
quite complicated. Consequently, Theorem 3.1 gives only a s
cient condition to stabilize the system.

4 Controller Implementation

0(1)= Oca() =[ Ocar(t) — Ocar(t— 8)1/5, (50)
where
Veal(L,O=[y(L,H)—y(L,t— 81/
Oeal()=[6(1)— 6(1— )1/ 5. (51)

i practice and in the presence of measurement noise, appropriate
filtering may be considered and combined with these approximate
Yerivatives. This technique is referred to as “switched deriva-
tives.” This backward differences is shown to be effective wien

is selected small enough and the controller is run on a fast DSP
[24,25. Also, y(L,t) can be obtained by attaching an accelerom-

uﬁ\ier at arm tip position. All the required signals are therefore

easurable by currently available sensor facilities and the control-
ler is thus realizable in practice. Although these signals may be
quite inaccurate, it should be pointed out that the signals, either by
measurements or estimation, need not to be known very accu-
rately since robust sliding control can be achievell i§ chosen

In the preceding section, it was shown that by properly seleghyge enough to cover the error existing in the measurement/signal

ing control variableu, the motion exponentially converges wo

=0 with a time-constant &, while the arm stops in a finite time.

estimation[10].

Although, the discontinuity nature of the controller introduces a
robustizing mechanism, we have further made the scheme insgn- Numerical Simulations

sitive to parametric variations and unmodeled dynamics by reduc-
ing the required measurements and hence easier control im
mentation. The remaining measurements and ever-presé%
modeling imperfection effects have all been estimated through
on-line estimation process. To realize the variable structure c

troller (16), we need to feedback the following quantitiggy(t),

o(t), J9(t), y(L,t), y(L,t), andy(L,t). As stated before, in order
to simplify the control implementation and reduce the measur
ment effort, the effect of all uncertainties including flexibility ef-

fect (f(L)x'y(x,t)dx) and the ever-present unmodeled dynamics
gathered into a single quantity named perturbatigras given by
(17).

Noting (1), the perturbation term can be expressed as

y=7=16() (46)
where requires the yet unknown control feedbackn order to

In order to show the effectiveness of the proposed controller, a

'?’e@tweight flexible arm is considerethsb in Fig. 1). For nu-

rical results, we considely= 0(0)= /2 for the initial arm
ase angle, with zero initial conditions for the rest of the state
variables.

The system parameters are listed in Table 1. Utilizing assumed
mode model, the arm vibration equatid®) is truncated to 3
fiodes and used in the simulations. It should be noted that the
controller law, Eq.(16), is based on the original infinite dimen-
Sional equation, and this truncation is utilized only for simulation
purposes.

We take the controller parameter= —0.66, which satisfies
inequality (45). The other control parameters are chosenPas
=7.0, k=5, e=0.01 ando=0.8. In practice,o is selected for
maximum tracking accuracy taking into account unmodeled dy-
namics and actuator hardware limitatid24]. Although such re-

resolve this dilemma of causality, the current value of contraitrictions do not exist in simulatior{ge., ideal actuator, high sam-

torqueris replaced by the most recent contr¢t — 8), wheredsis

pling frequency and perfect measuremgnthis selection ofo

the small time-step used for the loop closure. This replacementigas decided based on the actual experiment conditiess Sec-
justifiable in practice, since such algorithm is implemented ont@n 6).
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Table 1 System parameters for numerical simulations and ex-

perimental setup

surface(instead it is forced to stay ofs|<e) when saturation
function is used. The sliding variabkeis also depicted in Fig.
2(d).

Properties Symbol Value Unit

P > To better demonstrate the feature of the controller, the system
Arm Young’s modulus E 207x10° N/m® responses are displayed whern=0 (Fig. 3). As discussedu
Arm thickness 5 0.0008 m =0 corresponds to the sliding variable for the rigid-link. The un-

) desirable oscillations at the arm tip are evidege Figs. @) and
Arm height h 0.02 m
3(c)).
Arm length L 0.45 m
Arm linear mass density P 0.06/L Kg/m
Arm base inertia (including 7, 0.002 Kg.m?® :
fixture, motor, camera and 6 Control Experlments
gearbox) In order to better demonstrate the effectiveness of the control-
Gearbox ratio N 14:1 - ler, an experimental setup is constructed and used to verifying the
) numerical results and concepts discussed in the preceding sec-

Light source mass - 0.05 Kg : : P f PN

- B tions. It is specifically intended to demonstrate the robustizing
Position sensor sensitivity 0.39 Viem feature of the controller in the presence of unmodeled dynamics in
Motor back EMF constant K, 0.0077 V/rad/sec the actuatoxfrictional torque in the motgr the arm payload and
Motor torque constant K, 0.0077 N.m/amp measurements |mperfect|ons.
Armature resistance Ry 26 Ohms 6.1 Experimental Setup. The experimental setup is shown
Armature inductance L 0.18 mHenry in Fig. 4. The arm is a slender beam made of stainless steel, with
Encoder resolution - 0.087 Deg/count the same dimensions used in the simulations. The experimental

setup parameters are listed in Table 1. One end of the arm is
clamped to a solid clamping fixture, which is driven by a high
quality DC servomotor. The motor drives a built-in gearbdk (
=14:1) whose output drives an anti-backlash gear. The anti-
backlash gear, which is equipped with a precision encoder, is uti-

The sampling rate for the simulations #s=0.0005 sec, while lized for measuring the arm base angle as well as to eliminate the
data are recorded at the rate of only 0.002 sec for plotting purpoécklash. For tip deflection, a light source is attached to the tip of
The system responses to the proposed control scheme are shtiwgnarm which is detected by a camera mounted on the rotating
in Fig. 2. The arm base angular position reaches the desired pdsise.
tion #=0 in about 4—5 s, which is in agreement with the approxi- The DC motor can be modeled as a standard armature circuit.
mate settling time oft;=4/c (Fig. 2(a)). As soon as system That is, the applied voltage to the DC motor is
reaches the sliding mode laylst < € (Fig. 2(d)), the tip vibrations
stop (Fig. 2(b)), which demonstrates the feasibility of the pro-
posed control technique. The control torque exhibits some residual
vibration as shown in Fig. (). This residual oscillation is ex- where R, is the armature resistanck, is the armature induc-
pected since the system motion is not forced to stayser® tance,i, is the armature currenk, is the back-EMF(electro-

v=Ryig+Ladi,/dt+Ky 0, (52)

100

=

6(2), deg (a) e HL,0), mm (b)
75 6
4
50 2
0.
25 2] 0.0250
0.0125
0 -6 -0.0125
3 -0.0250
6 7 8
-25 -10
0 t 2 3 4 5 6 7 8 0 1 2 .3 4 5 6 7 8
.02
7, Nom (C) 04l S rad/sec (d)
0.01
0.3
0.00 \/\/\/\MNMW 02
0.0003
0.1
-0.01 0.00015
o4 0.0 4
002 -0.00015
-0.0003 -0.1
6 7 8
0.03 0.2
0 1 2 3 4 5 6 7 8 ] 1 2 3 4 5 6 7 8
time, sec time, sec
Fig. 2 Analytical system responses to controller with inclusion of arm flex-
ibility, i.e., m=—0.66; (a) arm angular position, (b) arm tip deflection, (c) con-
trol torque, and (d) sliding variable s
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time, sec time, sec

Fig. 3 Analytical system responses to controller without inclusion of arm
flexibility, i.e., m=0; (a) arm angular position, (b) arm tip deflection, (c) control
torque, and (d) sliding variable s

motive-force constant, andy,,, is the motor shaft position. The and a state-of-the-art dSPACE® DS1103 PPC controller board
motor torque,r,,, from the motor shaft with the torque constanequipped with Motorola Power PC 604e at 333 MHz, 16 channels
K; can be written as ADC, 12 channels DAC as microprocessor.
The experimental system responses are shown in Figs. 5 and 6
Tm=Kiia (53) for similar cases discussed in the numerical simulation section.
Figure 5 represents the system responses when conttafer
The motor dynamics thus become utilizes the flexible armi.e., u=—0.66). As seen, the arm base
reaches the desired positidgkig. 5a)), while tip deflection is
leOm+ CpOm+ 7a=Tm=Kiia (54) simultaneously stoppe@Fig. 5b)). The good correspondence be-
tween analytical resultd=ig. 2) and experimental finding€ig. 5)
whereC, is the equivalent damping constant of the motor, anid noticeable from vibration suppression characteristics point of
le=1n+1_/N?is the equivalent inertia load including motor in-view. It should be noted that the controller is based on the original
ertia,l ,,, and gearbox, clamping frame and camera ineftia,r, governing equations, with arm base angular position and tip de-
is the available torque from the motor shaft for the arm. flection measurements only. The unmodeled dynamics such as
Utilizing the gearbox from the motor shaft to the output shafayload effec{due to the light source at tip, see Table Miscous
and ignoring the motor electric time constamt,(R,), one can friction (at the root end of the armare being compensated
relate the servomotor input voltage to the applied tortasting through the proposed on-line perturbation estimation routine.
on the arm as

T=

NK: ST 55

Ra v v Ra h ( )
wherel,=N?l, is the equivalent inertia of the arm base used in
the derivation of governing equatioisee Eq.(1)). By substitut-
ing this torque into the control law, the reference input volt¥ge
can be obtained for experiment.

6.2 Experimental Results on Regulation Control. As
stated before, only arm base angular position and tip deflection are
to be measured. The remaining required signals for the controller
(16) are determined as explained in Section 4. The control torque 5
is applied via a digital signal process@SP with sampling rate — DC servomotor
of 10 kHz, while data are recorded at the rate 500(fde plotting Clamping fixture
purpose only. The DSP runs the control routine in a single input- and Solid frame
single output mode as a free standing CPU. Most of the compu-
tations and hardware commands are done on the DSP card. For
this setup, a dedicated 500 MHz Pentium Il serves as the host PCFig. 4 The experimental device and setup configuration
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Fig. 5 Experimental system responses to controller with inclusion of arm
flexibility, i.e., pw=—0.66; (a) arm angular position, (b) arm tip deflection, and
(c) control voltage applied to DC servomotor

This, in turn, demonstrates the capability of the proposed controlSimilar responses are obtained when the controller is designed
scheme when considerable deviations between model and plaased on the rigid-link only, i.ex=0. The system responses are
are encountered. The only noticeable difference is fast decayidigplayed in Fig. 6. Similarly, the undesirable arm tip oscillations
response as shown in Figgbband Zc). This clearly indicates the are obvious. The overall agreement between simulatibigs. 2

high friction at the motor, which was not considered in the simwand 3 and that of experimer(Figs. 5 and §is one of the critical

lations (Figs. 2b) and 4c)). contributions if this work.
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Fig. 6 Experimental system responses to controller without inclusion of arm

flexibility, i.e., u=0; (a) arm angular position, (b) arm tip deflection, and (c)
control voltage applied to DC servomotor

718 / Vol. 123, DECEMBER 2001 Transactions of the ASME



7 nclusion [23] MAPLE, Waterloo Maple Inc, Ontario Canada © 2000.
Conclusions [24] Cannon, Jr., R. H., and Schmitz, E., 1984, “Initial Experiments on the end-
An exponentially stable variable structure controller has been point Control of a Flexible One-link Robot,” Int. J. Robot. Re3, No. 3, pp.

applied to regulation of the angular displacement of a lightweig - ﬁiﬂ% Rattan, K. S., and Brown, Jr., H., 1990, “Adaptive Control of a
one-link flexible robot arm. The governing equations with the cor=""" g, /c_jifnk Fiexible Manipulator,” IEEE Control Syst. MagL0, pp. 29—33.
responding boundary conditions have been derived, and the con-

troller was designed based on the original distributed system. An

additional on-line perturbation estimation has been introduced and

integrated with the control routine to overcome the effect of un, .

modeled dynamics and measurement imperfections. NumeriAI Note on the Computatlon of the
simulations along with experimental validations have been Pr=uler Parameters

vided to demonstrate the superior features of the controller. Uti-

lizing only the arm base angular position and tip deflection in the
experiment, it has been shown that the proposed technique is cgrs Johansson
pable of tracking arm while simultaneously suppressing transieﬂ
vibration at the arm.
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The present paper is concerned with the calculation of the Eulgith piecewise linearly varying magnitude but constant direction.
parameters frongl), assuming that the angular velocity is knowriThe case of an angular velocity with changing direction will be
with sufficient accuracy at one or several previous time instancéieated in Section 3.
from numerical solution of the rotational equations of motion or Due to the special structure 6f the matrix exponential ii4)
otherwise. A straightforward approach is to solve the differentigan be calculated from, c.f. Whitmore et g8
equation(1) for the Euler parameters numerically by some estab- T
lished method of high accuracy such as Runge-Kutta, typically eQTzlcos(_|w|
fourth order, or Adams-Bashforth, typically third order. In the 2
derivation of these methods it is assumed that the sought funct%n

+ gsin(%|m|) (5)

||

is several times continuously differentiable. However, in cas ere|w| = Vi -+ w + wy is the length of the vector from which

with impulsive forces, such as rigid body frictional impact, th&? 1S constructed, c.f. Eq1), and1 s the unit matrix. It is tempt-
; ; irljg to try to derive more accurate schemes by assumingQhat

Sjpiecewise linear function of time, or piecewise quadratic etc.
nfortunately, the closed-form solutidB) to (1) cannot be gen-
eralized in a straightforward manner, since

derivative of the Euler parameters and thus removing the basis
these methods. In, for example, Johansson and Klarhy&hgnd
Johanssoi3,4] problems of this type are studied.

The closed-form solution for the Euler parameters for a con- q(t):eft Qs t,) ©)
stant angular velocity has been used to calculate the Euler param- ° 0
eters, assuming a piecewise constant angular velocity, Whitmdsenot in general a solution td). It is a solution ta(1) if Q(t) has
et al.[5] although this does not seem to be common; some authdite® commutative property:
feel that this approach is not accurate enough, e.g., Stevens and t t
Lewis[6]. An obvious idea would be to calculate solutions assum- Q(t)f Q(s)ds= f Q(s)dsQ(t) (7)
ing higher order variations of the angular velocity. However, to to

while solutions are available for more general variations of theﬁe Lukeg8], where a slightly more general case is treated, and

angular velocity, these are unattractively complicated, see Mort§yers and Vadal{9]. This condition is fulfilled if the angular

et al.[7]. . ) ” LIS
. . velocity from which Q(t) is constructed has constant direction,
In the present paper, the case where a piecewise constant >“Section 3. It then holds that

sumption for the angular velocity is implemented in a Ieapfro&'

type algorithm is studied. Thus, the angular velocity is assumed to d 1 oeds 1 ore)ds

be available at the midpoints between the points where the Euler i) =Q(t)e'n - (8)

parameters are computed. Sections 2 and 3 are concerned with the

properties of this method when the angular velocities are smoothAccepting the(rather strongassumption of7) we note that(4)

i.e., between impacts, so that it can be assumed that the Ewilt also be exact for a piecewise linear variation @fsince the
parameters are smooth. It is seen that the approximation is bettéglpoint rule of integration

than might be expected from the piecewise constant assumption; T
if the angular velocity has constant direction the proposed method Q(t)dt=Qq- (T+O(T?))
corresponds to assuming a piecewise linear variation of its mag- -T2

nitude while in the case when the angular velocity does not haye

o S IS exact for a linear variation t), c.f. Dahlquist et al[10], so
constant direction, the proposed method will still work as a glc{hat (4) is then recovered fr?nsjg). This regult is givEen,] in a

bally second-order accurate computation method for the Euler pa- : .
rameters. This last point can be considered the main point of %ﬁgth%yr (tjr:zeéggzC(g‘nég);ts’tgxt%)i/reer;izp;(ih\éagfg}e. nl]t e'sbghslésd s&?n
present paper. Finally, in Seqtion 4, numerical examples are givgrthounts to approximating as piecewise linear and compute the
;VS;ES dtlgg d?;if)?lrt};&i?zig;ﬁlgf\%?géﬁ%;o other methods W}E%'sed forr_n sqlution to _this apprpximati_on. Cases V\_/herdaas
: constant direction and piecewise linear direction with jumps could
also be computed exact{yithin the limits of computer accuragy
in this way if the jumps are situated precisely at the points where

2 The Constant Angular Velocity Solution the Euler parameters are evaluated.

If Q is constant and the Euler parameters are known at sorge h .
time, sayt=tg, the solution to(1) can be written in closed form The Non-Commutative Case
as In this section the behavior of the algorithm based on @y.

_ _0(t-ty) will be studied for the case when the angular velocity is smooth
a(t)=e °'q(to) (3)  but otherwise general i.e., E7) is not satisfied. It will be seen

that a globally second-order accurate numerical scheme is ob-
Iqined for this case.

To develop a correction for the case wheXt) is allowed to
change direction as well as magnitudg(t) is written

An approximate method for time varyin@ is obtained by choos-
ing T as a time interval, short compared to the total time interv
of interest, and assuming th@{t) is constant at its value at the
midpoint of the interval. The Euler parameters at titweT/2 can

then be computed as Q(t)=Q"(t)+ Q' (1)

eTg_y, (4) whereQ'(t) satisfies(7) andQ*(t) does not. Such a decomposi-
tign can be constructed by selecting a constant direatiand
iting the angular velocity from whicl®(t) is constructed as

qQu2=

and the process is repeated to cover the desired time inter
giving a leapfrog type computational scheme based on approxi-
mating the angular velocity as piecewise constant. Since this(t)=(w-n)n+(w—(w-NN)=f(t)n+(w—f(t)n)= o'+ w".
scheme is based on the closed-form solution for a special case, the 9)
normalization condition(2) will be satisfied exactlywithin the If Q'(t) is taken to be the part o®(t) corresponding tow'

limits O.f computer accuragy Here and else_where in this_ paper a’:f(t)n it is a scalar function of time multiplied by a constant
subscript will denote the value of a quantity at a certain time SRatrix ‘which will satisfy(7)

thatq_4,=0q(—T/2) etc. Equation4) will be called the uncor-
rected 1-point formula. It will be seen below that this equation )
also gives the exact solution for a the case of an angular velocity g=Q(t)g=(Q"(t)+ Q*(t))q. (10)

Using this decompositior(1) can be written
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Next, the solution is assumed to be of the form the case when the orientation is described using the components
of the transformation matrix rather than the Euler parameters a

t
q(t) =€/ F9q(to) + g (1) (11) corresponding result is established by Omelj&8], using a dif-
with ferent line of thought for the derivations.
Keeping(16), Eq. (18) can be used with other numerical inte-
g*-(tg)=0. (12) gration rules, with the same level of approximation for the part

Q*(t) of Q(t) not fulfilling (7). For example, a corrected 3-point

Inserting(11) into (10) gives, using8), . . . o~ .
9(1 (10 g 98) formula based on a piecewise quadratic variatio@Q¢f) is

0" =Q e (to) + Qur (13) Qe 2420201 140 T+ (T
. . . . 12— N N -127T ¢
Settingty=—T/2 and using a central difference and averaging
discretization we have frorfi3): 4 Numerical Examples
U191 qt 1t i In this section the 1-point method is tested on some examples

0 I

=Q$ef*T’2Q(s)dSQ—l/z+QoT+”'(T2)- with discontinuous angular velocity. The results using fourth-
(14) order Runge-Kutta and third-order Adams-Bashfo(tiee e.g.

[10,6,11) are included for comparison; as expected these latter

Note that the fourth time derivative mf is required to exist in methods doesn’t work well since they cannot be expected to

T

this step, Vandergraftl1] _ handle the discontinuities well.
~ From (14), (11), and (12) we obtain the Euler parameters at Two different angular velocities are used. In both casgand
timet=T/2 as wy, are zero, whilew, varies as shown in Fig. 1. Physically the
1+ Q,T/2 case with an alternating piecewise constapimight be a bounc-
—e/ThRQ sy 4 9 Tote/ 2Rl (s)dsy ing so-called superball, see Vu-Quoc et[&#], while the increas-
A2 q-172 272 Qo q-172 . X i . ;
1+[ax|*T?/16 ing piecewise constanb, might correspond to a ball bouncing
T3 with friction on a surface whose speed is increasing. In both these
+0O(T3) (15) i
cases closed form solutions can be computed.
where the inverse The error to be studied is computed as
1+ QOT/2 error= |qnumeric_ qexacl/|qexac{-

(1-QoT/2) ==, _ _ _
1+ | ox|*T*/16 Obviously, for a numerical method to be accurate, this error
see Omelyai12], has been used. In E(L5) the first term to the should_be _smaII com_pared to 1. It can be noted tha_t, becaus_e of the

right is the exact solution if the angular velocity has constaformalization condition(2), |gexact = 1. If the numerical solution
direction, the second term is a correction if it has not and the thigdso fulfills this condition, which the 1-point formula does, the

term is the truncation error of the correction. error can never be larger than 2. The timesteps used below are
It is immediately observed that if we put 0.051 and 0.0051 seconds. These are selected to avoid putting the
discontinuities at an integral number of timesteps, in which case
n=ay/|e| (16)  the 1-point method under investigation would give a closed form
that is, if we decide to take the direction @fat timet=0 as the Solution to the examples and the only errors would be related to
direction on which the split ofo in (9) is based then computer accuracy. ) ) o
In Fig. 2 the results for a piecewise constant stepwise increas-
Qé =Q't=0)=0 (17) ing w, is shown for a timestep of 0.051 seconds. It is seen that the

1-point method gives reasonably small errors while the Runge-
Kutta and Adams-Bashforth methods manages to follow the solu-
_ /™2, Ql(s)ds (T3 tion for a while but then breaks off to unacceptable errors. The
Quz=€ 7% A2+ (T (18) Adams-Bashforth solution in fact becomes numerically unstable
The first term to the right of Eq18) provides us with a glo- after a while. Figure 3 shows the results using a smaller timestep
bally second-order accurate scheme for the Euler parameters ioitavoid this instability, but the observation that Runge-Kutta and
is used repeatedly to cover the time interval of inter@stthe Adams-Bashforth methods eventually breaks of to unacceptable
exact solution if it so happens th&"(t)=0). errors still holds true.
Next, we turn to the evaluation of the integral in E§8). By
the midpoint rule we have, c.f. Dahlquist et E10]:

T2
Q'(s)ds=Qp (T+O(T%)=Qo- (T+O(T%), (19)  1© ' ' ' ' '
-T2 R

and (15) becomes

where(17) has been used. 8 — P

Inserting(19) into (18) gives

: 3 _
Qup=€%0 T TNy ot (T?)

omega_z
B
.
.

3 N -
=eWTeQTg_y o+ (T?)=eXTq 1+ (T?) (20) - altomating piscewise constant
which will be called the corrected 1-point formula. Note that th. | increasing piecewise constant - ]
detailed form of the truncation erraf(T3) changes in the last
equality. The second equality holds because a constant matrix ¢ ol ‘ ‘ ‘
isfies the commutative property, c.f. LUkes.

It is noted that the corrected 1-point formyf0) is the same as

the uncorrected 1-point formuld), apart from the”(T°) term. It 2 o » 4 p s 10
has thus been established that if the formula for piecewise cc time [s]

stantQ(t) is implemented as a leapfrog method it gives a globally

second order accurate solution for a general variatidQ(¢f. For Fig. 1 Variation of w, in the examples
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error

error

- Unfortunately, there are no simple closed-form solutions for

| higher order variation of the angular velocity, unless the direction

4 ’ is constant. This paper is therefore concerned with the implemen-

/ ' tation of the piecewise constant solution in a leapfrog type algo-

/ b i rithm. This method works well for discontinuous angular veloci-
ties, as indicated by the numerical examples, and provides a

08 [ / L
i second order accurate algorithm for cases with smooth but other-

| wise general variation of the angular velocity. The method is also

06 [ ;
exact for cases of constant angular velocity and constant direction

4+ ’; / 1-point method —— q . . . . . . .
0 / . fourth order Runge-Kutta angular velocity with linearly varying magnitude, which makes it
attractive for spinning objects such as flywheels. In conclusion,

/ ; third order Adams-Bashforth -----

0z the proposed method should be appropriate for problems with

! ’ large numbers of impacts, such as that studied in Johafid$on
problems with occasional impacts and periods of free flight with

a -

0 e ot T S W B S b T=2N e

0 20 40 60 80 100 . . . . . .
high angular velocity with constant direction, such as in Johans-

time [s] son [3]

. 2 Errors for increasing piecewise constant w,

0.1 oy . T
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1 A Switching Scheme for Mixed
PZT-BasedJet Thrusters Control of a

Large Flexible Structure
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Fig. 4 Errors for alternating piecewise constant w,
A. Ferrara, L. Magnani, and R. Scattolini
In Fig. 4 the results for alternating piecewise constaptare Djpartimento di Informatica e Sistemistica,
§hown_. This flgure s_hovv_s the maximum error occurring up to ."’"‘ﬁa Ferrata 1, 27100 Pavia, Italy
including a certain time instant rather than the error at each time. .~ L
Again it is seen that the Runge-Kutta and Adams-Bashforth metﬂima”' antonella.ferrara@unipv.it
ods tends to break away to large errors, although the advantage of
the 1-point method is not quite as pronounced as in the previous
example. Vibration suppression of a large space structure is achieved by
5 Discussion switching between different actuators in order to optimize control
] . ) ) . performance and to reduce energy consumption. The theoretical
In this paper the solution of the differential equation for thgroperties of the proposed control strategy are reported together
Euler parameters have been discussed. The closed form solu some experimental resultgDOI: 10.1115/1.1408609

for piecewise constant angular velocity is attractive for motion

\.Nlth d|§contlnuous angu'.ar vglouty, t.)Ut a m.ore accu.rate meth :Contributed by the Dynamic Systems and Control Division 8ETAMERICAN

is desirable if such motion is combined with long intervals ofociery oF MECHANICAL ENGINEERS Manuscript Received by the Dynamics
Systems and Control Division, September 20, 2000. Associate Editor: C. Rahn.

motion with smoothly varying angular velocity.
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1 Introduction Table 1 Natural frequencies and damping coefficients

On/off jet thrusters have often been used for vibration suppres- Mode w, [HZ] & Mode w, [HZ] &
sion in large flexible space structures, see é132] where em- — - -

e S : rigid rotation 0.2823  0.0032 1l bendin 5.4506  0.0103
pirical control switching strategies have been adopted3o#] el yangiation 02870 0.0085 IV bending 89540 00105
where the Variable Structure Contro/SC) technique has been | bending 1.0356 0.0077 V bending 13.0443 0.0100
applied. When a bang-bang control action is not sufficient, piezt-bending 2.9185 0.0094 VIbending 17.7674 0.0100

electric rods can be used as both structural and actuation elements;

see e.g.[5,6]. An interesting technological solution can include

both jet thrusters for the suppression of large vibrations and pi-

ezoelectric actuators for the damping of residual vibrations. This

con_figuration _has been considered here for th_e cc_)ntrol of the la priate size. Neglecting the nonlinearities mainly due to the

flexible experimental space structure shown in Fig. 1. actuators, the linear mathematical model of the structurses
The space structure is located at the Department of Aerospag

Engineering at the Politecnico di Milano and has been already .

considered if2,4,7). It is a modular truss with mass of 75 Kg, [ X(t)=Ax(t) +B,u,(t) +Bpup(t) B

length of 19 m, built with commercial PVC elements for a total of y(t)=CX(t)+ D u,(t) + Dpup(t)

54 cubic bays. The truss is suspended by three pairs of Stﬁﬂerex:[ ' "7 eRY320 y,eR®, upeR®, yeR® and

springs ensuring a satisfactory decoupling of rigid and elastic K R PP Y

bending modes. It has been designed so that the bending modesin [ 0 I 0 0

the horizontal and in the vertical plane are independent, althoughA= 02 _2:0}, BJ:[ —d'M } Bp:[ —d'M

closely spaced in frequency. Hence, the controller can be designed = al apz

and implemented in the horizontal plane only. 2
The truss is equipped with six pairs of on-off air jet thrusters, C=[-M»0? —2MDPEQ], D;=MDPD'M,;,

each one delivering a non-modulable force of about 2.1 N when

supplied with air at 3 bar. Thrust is generated with a delay of Dp=MPP'Mgp

about 12 ms after the transmission of the control command, apg(2) M, transformsk into the vector of sensor displacements and
the actuators do not operate properly at swﬂchmg frgquenugﬁaJ,MaP represent the influence of; ,up on the structure.

greater than 40 Hz. The structure includes also six active piezo+or simulation and control design purposes, it is advisable to
electric rods substituting symmetric passive PVC elements apggect high frequency modes. Hence, a model with 54 state vari-
providing a maximum traction force of 700 N and a maximumypjes suitable for preliminary simulation studies has been derived.
compression force of 3000 N, with input voltage raf@e, 100  Then this model has been further reduced to obtain a model with
V]. Standard amplifiers provide high bandwidth gain and bias thg; state variables, which has been used in the control synthesis
piezoelectric actuators at their midpoint. The rods also exhibit pase. The natural frequencies and the damping coefficients

hysteresis which has been considered in the simulation model, Behe corresponding eight modes are reported in Table 1.
which has not been included into the linear model used in the

preliminary control synthesis phase. The horizontal motion of the
truss is measured by six accelerometers, whose outputs are [3o- Switching Control Design

cessed by analog and digital filters, so that only the first eight .
natural modes in the horizontal plane can be considered in t glWo different VSC control laws, namely V§@nd VSG, for

control problem. These filters introduce a phase lag equivalent§ Jét thrusters and for the piezoelectric rods have been designed
a delay of about 60 ms at the sampling frequency of 200 Hz. assuming thqt one type of.actuatorlls inactive when the other one
is used, that is by alternatively setting=0 andu;=0. In both
2  Mathematical Model cases, adjacent and symmetric pairs of actuators have been con-
. o trolled jointly, so avoiding their simultaneous switching in oppo-
Let  be the vector of the amplitudes of the vibration mods, sjte directions. This introduces a functional dependence between
andup be the control variables associated with the jets and thge elements ofi, andup, so that only three control variables

piezoelectric actuators, respectiveyybe the vector of accelera- haye to be independently chosen in both cases and reduced input
tion measurements. Moreover, denote dythe matrix of the vectorst, e R® andUp e R® must be considered.

modal shape vectors, Y andE the matrices of natural frequen- According to[8], the sliding surfaces;(x)=0, op(x) =0 have
been computed by minimizing the cost function

s and damping coefficients and byhe identity matrix of ap-

J=%fmx’(t)Qx(t)dt 3)

0

The elements of the diagonal matric®s=Q; and Q=Qp have
been chosen by extensive simulation experiments. Then, the fol-
lowing control laws have been determined:

uy(t)=—Kjsign(a;(x))

\\,ij'x' VSC= | i t)=0 ,
vscp={m(t)=O @)
Up(t)=—Kpsign(op(x))

where the gain&; andKp depend on the maximum force deliv-
ered by the actuators.

Concerning the control laws 4, the following assumption is in
order.

Assumption AlFor the control laws VSgand VSG there
exist closed setX; and Xp containing the origin as interior point
Fig. 1 The experimental device such that:

Journal of Dynamic Systems, Measurement, and Control DECEMBER 2001, Vol. 123 / 723



1 for any initial statex(0)e X; (x(0)e Xp) the state trajec- with x(t;) € o3(x) =0. Until time t,=t,+ 7 the state trajectory is
tory reacheso;(x)=0 (op(x)=0) in a finite time upper- on o;(x) and
bounded byt; (tp);

2 for any x(0)e XNy (x) =0 (x(0)e XpNap(x)=0) and Ix(to)|=ae x(ty)]| < yae *7x(0) +ae *h
anyt=0, there exist positive constardsandb such that At t=t,, the control law commutes to V$Cprovided that
Ix(t)|<aePY|x(0)| (5) X(t,) e Xp. Following the same arguments and assuming that

there aren commutations between VS@nd VSG, it is possible
Remark 1. The previous assumption is readily verified in tte verify that
context of VSC, sel@], where a proper control law design can n
?huearea:(np}gr?ez(t)ig} zsat;mﬁteytgﬁt reaching of the sliding surface and Hx(t2n+l)||s(yaE’b’)HVHX(O)H+;) (yae ")'h
The adopted switching control strategy consists of using the jets . _ ) ) . .
for damping both rigid and elastic modes when an “energy fun&rovided thatr>log(ay)/b, the right hand side Qf this inequality
tion” E(x)=x'P.x, P.=diaglQ2|} of the truss is beyond a pre-tends, fom—c, to o=h(1—yae ") ™. Denoting by\ yn(Pc)
scribed thresholdC, that is whenx e X.={x:E(x)>C}, while the minimum eigenvalue oP;, if C>C=@\n(P), then the
commuting to the piezoelectric rods for the elimination of residu&tate tends to a point omp(x) and insideXp, so that no other
elastic vibrations whek(x)<C. A priori, this strategy leads to a commutation occurs. Finally, observe that bettand C can be
switched system whose stability properties cannot be guaranteeaimputed from the problem data by means of the previous expres-
For this reason, it is advisable to define a “dwelling timeds the sions.l
time which must be elapsed from the last control switching before
a new switching can occur, s¢&Q]. 4
Theorem 1. Assume that: (i) Al holds; (i) XX, and XD X, . o ) o
Then there exist a computable constanta@d a computable The _SW|tch|ng c_ontr_ol law has been implemented in digital
dwelling timer such that for any G C and any7> 7 the switch- fc_)rm with a sampling interval of 5 ms. A staqdard_Kalman pre-
ing control strategy makes the origin an asymptotically stablg'c'[Or has been used, s¢8]. It predicts the first eight natural
equilibrium point with region of attraction X modes 15 steps onward@s ms so as to reduce the effect of the
Proof: Definet=max(; tp) and letr=t+7, where7=>0 is the phase lag due to the adopted anti-aliasing filters.
minimum time which mJu,sPt be spent an (x’):o or 7p(x) =0 ‘When using VSG, a dead band has been introduced on the
. A p liding surface to reduce chattering phenomena. The amplitudes of
even if the system state has moved outside the region where

. € & dead zones have been related to the allowed residual move-
corresponding control law should be used. Note that there eX'Stﬁ‘ngnt at the end of the control action, as discussddnThe use
positive constany such thaf/e*]<y,Vt<t, and a positive con- ’

of the local dead band is such that the sliding mode on the sliding
stanth such that surface is not ideal, and is usually called a “quasi-sliding mode,”

Implementation Issues

t _ t _ _ see[11]. As for the rods, their static characteristic is of linear-
J e*B K, dn=<h, j e*BpKpdy=<h, Vts<t saturated type, not suitable for an on-off control strategy. Then,
0 0 the VSG control law has been implemented by resorting to the

whereK ; andKp are two vectors with the dimensions kif and concept of “equivalent control,” se8], according to which the
Kp and whose elements have the same absolute value of the ¢opC action is obtained by passing the computed control variable
responding ones df., andKp with any combination of sign.  through a low-pass filter.

Now assume that(0) e X, andx(0) & o,(x) =0. Then VSGis Finally, in order to red_uce energy consumption, a ma>_<imum
used and. at a timQ$t_ acceptable amount of residual movement has been determined and

all the control actions have been switched off when the truss en-

[x(t)]=<v|x(0)||+h ergy is below a given threshold.
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Fig. 2 Tip speed with the switching controller (bold ) and with the jets only
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Fig. 4 Tip speed using (a) only PZT actuators, (b) only jets with a smaller deadzone

5 Simulation and Experimental Results starting from the same initial conditions and using only the rods
édaontrol law VSG) or the jets(control law VSG with smaller

An extensive preliminary simulation study has been perform d in all th i Th di
to tune the unknown design parameters. The bending modesdgfdzonesin all the operating range. The corresponding tran-

interest were excited separately or jointly so as to consider a laigJénts are reported in Figs(a} and 4b), which clearly show that
number of experimental cases. For brevity, only the results reféh€ rods are unable to provide an effective vibration suppression,
ring to the joint excitation of the four bending modemy While an excessive use of the jets causes an useless fuel consump-
—M4) at low frequencies are here reported. Specifically, the lod#®n without any performance improvement.

velocities at the end of the excitation phase W[eppl:O,12 m/s, In all the performed experiments on the real truss, the initial
vy, =0.12m/s,vy =0.03m/s,vy, =0.03 m/s. Figures (@) and conditions were set using an electromagnetic shaker connected_to
2(b) (which is a zoom of Fig. & compare the transient of the tip "€ enql of th(_e structure which brought_the_truss toa steady oscil-
speed with VSGonly to that achieved with the proposed switchlation via excitation of one or a comblnqtlon of. its natural fre-
ing strategy. The effect of the rods is evident in the second part@encies. Then, the shaker was automatically disconnected when
the response, when the jets are switched off and the control actf§g Predetermined initial condition was reached. In the results
provided by the rods damps the tip oscillations. The Corresporf@ported here, the excitation of a combination of the first four
ing control actions are shown in Fig. 3, where it is apparent that iending modes was planned in order to mimic as much as pos-
this case only one transition occurs from the control law Y®C sible the previous simulations. Then at the end of the excitation
VSCe.. For comparison, further simulations have been performgihase, the switching controller was activated. Figurés &nd
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5(b)show the experimental tip speed during excitation (Acknowledgments

<16.67) and during the control action®16.67). The cor- . . . .

responding control variables are reported in Fig. 6. The compa{'-T.hls paper was partially supported by ASI, Agenzia Spaziale
. .~ “Italiana, grant N.I/R/40/00.
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Active Vehicle Suspension Control erable opportunities for improving the ride quality, handling per-
formance, and safety of off-road vehicles through the control of

suspension forces.
Gregory D. Buckner The design of controllers for active vehicle suspensions has

Assistant Professor, Department of Mechanical and been the focus of numerous research publications in recent years

Aerospace Engineering, North Carolina State University,[1:3-12 Typically, these research contributions are theoretical in
nature and rely on linear, time-invariant suspension models for

Raleigh, NC 27695 controller design and simulated performance evaluation. However,
suspension forces are inherently nonlinear, particularly for off-
Karl T. Schuetze road vehicles. Off-road vehicles experience large suspension dis-

Ph.D. Candidate, Department of Mechanical Engineeringdlacements, where the nonlinear kinematics and damping charac-

The University of Texas at Austin, Austin, TX 78759 teristics(Fig. 2) are significant. .
These nonlinearities tend to degrade the performance of active

suspension systems, introducing harshness to the ride quality and

Joe H Ber_lo ) ) ) reducing off-road mobility. In addition, the dynamic characteris-
Electric Vehicle Program Director, The University of tics of suspension components are not time-invariant, but are sub-
Texas at Austin Center for Electromechanics, Austin,  ject to change during a vehicle’s life cycle. In light of these facts,
TX 78759 it is worthwhile to consider a control approach that accounts for

dynamic nonlinearities and responds to time-varying parameters.
While there are many techniques available for estimating the
. ) ) . parameters of linear system models using input/output data, there
Effective control of ride quality and handling performance argye considerably fewer techniques available for estimating the
challenges for active vehicle suspension systems, particularly f@fucture of nonlinear systenis3,14. A common approach is to

off-road applications. Off-road vehicles experience large suspegssume a model structure that is nonlinear in the states, but is
sion displacements, where the nonlinear kinematics and damping

characteristics of suspension elements are significant. These non-
linearities tend to degrade the performance of active suspension ...
systems, introducing harshness to the ride quality and reducing
off-road mobility. Typical control strategies rely on linear, time- =
invariant models of the suspension dynamics. While these modelss
are convenient, nominally accurate, and tractable due to the
abundance of linear control techniques, they neglect the nonlin- &
earities and time-varying dynamics present in real suspension sys- §
tems. One approach to improving the effectiveness of active ve-
hicle suspension systems, while preserving the benefits of linear
control techniques, is to identify and cancel these nonlinearities
using Feedback Linearization. In this paper the authors demon-
strate an intelligent parameter estimation approach using struc-
tured artificial neural networks that continually “learns” the non-
linear parameter variations of a quarter-car suspension model.
This estimation algorithm becomes the foundation for an Intelli-
gent Feedback Linearization (IFL) controller for active vehicle
suspensions. Results are presented for computer simulations, real-
time experimental tests, and field evaluations using an off-road

Fig. 1 EM actuator mounted on HMMW

vehicle (a military HMMWY). Experimental results for a quarter-

car test rig demonstrate 60% improvements in ride quality relati\4g ! 1 g

to baseline (non-adapting) control algorithms. Field trial results;L 0s f 0-8’;

reveal 95% reductions in absorbed power and 65% reductions § : os 2

peak sprung mass acceleration using this IFL approach vers d °-“%

conventional passive suspension®©Ol: 10.1115/1.1408945 %“ i g

4-‘4 -3 2 -1 0 1 2 3 40
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Journal of Dynamic Systems, Measurement, and Control DECEMBER 2001, Vol. 123 / 727

Copyright © 2001 by ASME



linear in the parameterge.g., x=a;x+ax*+azx>+...). A ,

. . Learning System |
model of this form allows for the use of least squares techniqu (ANN)
(or recursive least squares for on-line estimatimndetermine the
unknown model parameters from system dft8-15,5,10. A

Py

major drawback of this approach is that the structure of ea {
nonlinearity must be specified in advance, using physical mode Specifications Contoller Paﬁﬁ:‘;z“ System

ing or intuition. Another common approach is to treat the nonlin T Design e
ear dynamics as a “black box,” and use high-order regression :

Artificial Neural Networks (ANNs) to emulate their effects Pi:;‘:f:rs

[7,8,13,14. In the first case, an accurate physical model may \
difficult to derive for nonlinear, time-varying systems. In the secy, e u y
ond case, the black box structure provides little or no physic Controller System -
insight into the system dynamics. Therefore, it is worthwhile ti
utilize a technique that combines the physical insight of linea
lumped-parameter modeling with the flexibility of the nonlinea
black box approach.

This paper describes an Intelligent Feedback Linearization.. - N .
(IFL) controller that “learns” the nonlinear dynamics of a vehicle ~19- 3 The indirect adaptive intelligent control architecture
suspension and uses this information to control suspension forces.

The nonlinear dynamics are modeled using a linear parameter

varying (LPV) model structure. The parameters of this model ar@ extension of the self-tuning adaptive controller described by

estimated on-line, and are used to update the controller gainsAgtrom and WittenmarK15,20.

each time step. The result is a high-performance, real-time controlThis controller is adaptive, as controller gains are updated on-

algorithm that impoves the ride quality and predictability of théine so that overall system performance is improved. The term

suspension response. “indirect” refers to the fact that gains are adapted as an indirect
result of updated model parameters. The controller is intelligent,
as model parameters are estimated and “learned” by an ANN. At

. each sample time, the ANN re-estimates the model parameters,

Il Intelligent Control using new and previously learned information. These parameters

Intelligence, as defined by Webster’s Dictiondfy6], implies are used to recompute the controller gains, which are implemented
the ability torespond successfully to a new experience dadrn  in the controller.
or understand from previous experiences. For a control system to

be intelligent, it must possess two distinct characteristics: Il Intelligent Suspension Control Via Feedback Lin-

« the ability to successfully adafr respond) to changes in its €arization

environment (time-varying plant parameters, unmodeled A standard assumption in the design of controllers for active
plant dynamics, efcsuch that overall system performance isehicle suspension systems is that the vertical suspension dynam-

improved , , o . ics can be modeled using four independent quarter-car models
« the ability to retain(or learn) this adaptive information for (Fig. 4) [4]. Although these models are typically assumed to be
future reference linear [4], the intelligent controller development presented here

Thus, an intelligent controller can be defined as an adaptive cdtpSUmes that the stiffness and damping tégmand bs depend
troller with the ability to retain or “learn” information related to nonll_nearly on the relatl\{e_ suspension travAk=y,, —Yp. and
previous adaptive experiences. relative suspension velocith=y,,— Yy

Artificial Neural Networks(ANNSs) are frequently used to pro-
vide this learning capability, though it is important to note that not
all ANN-based control systems satisfy this definition of intelli- V3
gence. ANNs are highly interconnected data processing elements T
typically used for function approximation and pattern recognition
[17]. They are documented as being self-adapting “universal ap-
proximators” because of their ability to model any nonlinear func-
tion to any desired level of accuracy, given enough neurons

[18,19. In the context of intelligent control, ANNs can be used to

estimate the parameters of a dynamic model in real-time, even if k, l::l b,

the plant is highly nonlinear and time-varying. Yur Y
One specific type of ANN, the Radial Basis Function Network L

(RBFN), is well suited to the task of real-time system identifica- G

tion for two reasons. First, the network uses localized activation
functions(radial basis functionsand thus learns information in a
very localized fashion. As a result, parameter estimates obtained
from a small region of the plant operating space do not adversely
affect estimates from other operating regions. Second, the inter-
connection weightswhich are self-adjusted during learningre
applied linearly on the output side of the network. This feature
results in significantly reduced computational requirements for the
RBFN, making it well-suited for real-time implementation.

A Indirect Adaptive (Self-Tuning) Intelligent Control. A
large number of control architectures satisfy the definition of in-
telligence presented earlier in this section. One such architecture,
the Indirect Adaptive Intelligent ControlléFig. 3), is essentially Fig. 4 Fourth-order quarter-car suspension model
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One means of addressing the kinematic and damping nonli
earities in the design of active suspension controllers is throu
the application of Feedback Linearizatifl1]. A Feedback Lin-
earizing controller is designed in three basic steps:

1 Identify the nonlinearities in the system

2 Cancel the nonlinearities

3 Apply a control action that gives a desired linear syster Specifications Controller
response T’ pesign

Thus, Feedback Linearization transforms a system with nonline Control
dynamics into one with linear dynamics so that more tractab Farameters
linear techniques can be used to design the controller. The dev,,
opment of a Feedback Linearizing controller for the fourth-ord Controller > System
quarter-car suspension model is described next.

v

A Standard Feedback Linearization. Consider a nonlin-
ear dynamic system described by differential equatiort®irtrol-
lable canonical forn{21]:

Ny Fig. 5 Intelligent feedback linearization block diagram
g~ [0+g(xu 1)

wherex=[x,dx/dt,...d"” x/dt] is the n-dimensional state vec- B Intelligent Feedback Linearization (IFL). The IFL
tor, y is the scalar inputf(x) andg(x) are nonlinear functions of controller combines on-line, ANN-based parameter estimation
the state vectog(x) is invertable. It is easy to shoj21] that the with the standard Feedback Linearization control law of @&.

input u that linearizes the above system is: The structure of this intelligent controller, as it relates to the active
_ vehicle suspension system, is shown in the block diagram of Fig.
u=g(x)~(u —f(x)) @ & P Y 9 9
Resulting in the transformed linear system: The nonlinear suspension parametesg)) andky(A) are es-
d"x timated (“learned”) in real-time using the Radial Basis Function
WZUL (3) Networks (RBFN9 described earlier. At each sample time, the

values of A and A are measured, the RBFNs are trained, and

wherel_JL is the linear control input used to specify tht_a d‘?Siremstantaneous parameter estimdﬁg(sA) and QS(A) are used to

dynamics of the system. In other words, the control inpus  compute the cancellation forces according to Exy. Obviously,

composed one term that cancels the nonlinear plant dynamics el computed cancellation forces will not be accurate when the

another provides the desired linear dynamics. Now consider t§gstem is initialized. However, with adequate training and suffi-

dynamics of a fourth-order, nonlinear, quarter-car maé@. 4:  cjent excitation, the RBFNs will generate increasingly accurate
mb'yb(t)zbs(A)-A(t)+kS(A)-A(t)+ F. parameter estimates, and the IFL controller will do a better job of

(4) canceling system nonlinearities.

Yu()=—byA- A(t) —kg(A) - A
MYl ®)=—b _ ® _S( ) Al IV Intelligent System Identification: Derivation of
b (Yg() —Yut)) + ke (Yg(t) —yw(t)) —Fa Equations

This system, with a relative damplng coefficient that dependspreviougy’ a fourth-order dynamic model, E(G'-), was pre-
nonlinearly on suspension velocibg(A) and a relative stiffness sented for the quarter-car model of Fig. 4. The first equation,
coefficient that depends nonlinearly on suspension tieyél), is representing the sprung mass dynamjg), is rewritten to fa-
an ideal candidate for Feedback Linearization. Let the scalar ailitate the derivation of parameter estimation equations:
tuator forceF, be composed of two part§,,=F,; +F,. If the
constitutive relationshg(A) and kg(A) are known exactly, the Yp(t)=
nonlinear forces associated with these parameters can be canceled

with the actuator control force: This equation has tractable appeal because it represents a linear
Fa=—bu(A)-A(t)—ky(A)-A(t) (5) dynamic model with state-dependent parameig(4) andbg(A).

Additionally, relative displacemeni(t), relative velocity A(t),

and sprung mass acceleratigg(t) are all easily acquired using

inexpensive sensing equipment. Althoulgl{A) and by(A) are

©) assumed to be nonlinear functions of relative displacement and
1 velocity, these constitutive relations could have been formulated

Yul(t) = — (b (Yg(t) = Yu(t)) +Ki- (Yg(t) = Y1) —Fap) using any measurable system data.

M Before implementing Eq(7) for real-time parameter estima-

The last step is to define the desired suspension dynamics tiam, it is important to understand the limitations on its use. While
actuator force-,,, which corresponds to the, term in Eq.(3). the inclusion of actuator forcg, is necessary for identification
F.» can be constructed to implement a variety of linear contr@lurposes, it can be a liability when based on output feedback. If
laws commonly used in active suspension syste8rd.2. For the this control force is solely dependent on relative suspension dis-
implementation presented in this paper, the actuator feggavas placement or velocity, the parameter estimation equations can be-
chosen to be a linear combination of absolute sprung mass veloome indeterminate. For this reason, the actuator force input
ity (a “skyhook” damping tern{3]) and relative displacemer@n should be sufficiently independent, so that it is not strongly cor-
“effective spring rate” term[9,11]). For a given control law, the related to either the relative displacement or velocity.
stability of the suspension’s internal dynamics., the wheel hop  Separate RBFNs were constructed to learn the constitutive re-
mode can be verified by analysis of the system eigenvaludations of each parametéFig. 6), leading to a naturally modular
[21,22. or “structured” neural networ 17,23, which combined the in-

—(k(A)-A+by(A)-A+F,) 7
My

Resulting in the transformed linear system:
FaZ

yp(t)= ™
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V Intelligent System Identification: Off-Line Experi-

/
- mental Results
A47) E ‘ £ 7) X As stated in the introductory sections, this research was con-
O :w' =4 1 ducted as part of the University of Texas Center for Electrome-

- EGr)|  m, chanics (UT-CEM) Electromechanical SuspensidEMS) pro-
gram, which is developing electromechanical actuators for active
vehicle suspension systeifis2,9,11,12 Currently, UT-CEM has
a quarter-car test rig to test advanced EMS control algorithms.
The test rig, shown in Fig. 7, was designed to have dynamic

- J\ Aer)
P 56T 3, &T) Ny -
aGrre(") lw, ¢ )~® characteristics comparable to a military HMMWV.
Lo For the experimental evaluations, data collected from the test
™ - rig was used to quantify the effectiveness of the intelligent system

identification algorithm. Specifically, dynamic measurements
Fig. 6 RBFN structure for intelligent system identification from the test rig were used to train the RBFN's off-liiggs.
(11)—(13)), and determine the nonlinear variations in suspension
dampingbg(A) and suspension stiffnegg(A). First, the quarter-
Car test rig was excited using a hydraulically-actuated terrain input
kT), and the resulting suspension displacem&ikT) and
ung-mass acceleratigg(kT) were acquired at a sampling rate

QOO
V\'

NG
A

OO

tuitive appeal of physics-based models with the “universal fun
tion approximating” capability of ANNs. Although Ed7) repre-
sents a continuous-time model of the sprung mass dynamics,

esstlm_a_tlon process re_qwred a discrete-time form of .th's mod% 200 Hz. A swept sinusoid input profile, with a frequency range
pecifically, 'dlscrete-Flme measurement of relative dlsplace_m%}to_1 <f,=25.0 Hz and 0.025 m amplitude, was selected for the

A(kT), relative velocity A(kT), and sprung mass accelerationerrain input to ensure adequate excitation of the system’s vertical

Yu(kT) were required to generate discrete-time estimét¢d) dynamics. The data revealed a resonant frequency for the sprung

andbg(A), whereT denotes the sample interval and’notation ~mass at 1.4 Hz, and a resonant frequency for the unsprung mass at

denotes an estimated value. Instantaneous spring force estimagigoximately 5.0 HZFig. 8). -

IEk(kT) and damping force estimaté@(kT), used to compute the Next, the experimental vehicle response data was sub-sampled

. . to obtain input/output training and testing data for the RBFN’s.
'thsésvr:]t"’i‘rrﬁﬁgsﬁgﬂrrgng mass acceleration estijgieT), are also The RBFN training equationd&Eqgs.(11)—(13)) were implemented

Because there are two distinct networks in the structured moggggtézgnexz‘?gmggal rae:gonsv?/e(:gtia;it-:—gliezs dBt'(:D Ne\évsedggtrsaairad the
of Fig. 6, two distinct weight update equations were implement P P " 772 pid,

o : stable, convergence during training. The initizhtrained er-
for training. In each case, the update equations were formulatedyg(rg cost functiond(e) of the testing data was 0.030. Training

that training proceeds in the negative gradient of the error cost S ; -
function J(e), which is defined based on the error between t ontinued until the error cost function leveled off at 0.007 after
000 training epochs.

actual sprung mass acceleratigngk T) and the predicted sprung
mass accelerationg,(kT):

e(kT) =¥ (KT) = (k) 1)

1 N
NOEPN k21 e(kT)?

The output weightsv, andw, are associated with thAIeS(A)

and BS(A) networks, respectively. The activation functions asso-
ciated with each RBFN are distributed uniformly across the input
range for each network. For each discrete-time sample

(A(KT)),A(KT), the structured RBFN'’s outputs are:
ky(4)=y2(AKKT)) -y
bs(A)=yo(A(KT)) - w, (12)

- 1 -
Yo(kT)= m—b(ks(A)-A((kT))

Fig. 7 UT-CEM quarter-car test rig

Sprung Mass
40 N

+bg(A)- A((KT))+Fo(kT))

tmnlai Freq
Errors e(kT) are backpropagated to obtain the weight update 3 .i\
equations: g . [Crsprong Mafe
kD) D) 3J(e) g 0 et q:l
W. =W /I £ : Iﬁ'—
1 1 7 W, E" 20 /
71 =
=w;(kT)+ —-e(kT) S0 40
mb E B
AT y2(AKT)) " 3
KT) = wy(KT) = - L) o 80 :
Wo(KT) =wo(KT) = 7, W, 0.01 0.10 1.00 1000
Frequency (i-[z)
—wWy(kT)+ 2 . e(kT)
. My Fig. 8 Magnitude versus frequency diagram of the collected
-A(KT) - yo(A(KT)) data
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P A VI Intelligent Feedback Linearization: Real-Time Ex-
l | perimental Results

L In the previous section, the effectiveness of off-line intelligent
: parameter estimation was demonstrated. Although the results were
¥ promising, the real potential of this technique lies in its applica-
tion to real-time control. In this section, experimental results are
presented for real-time, closed-loop intelligent control. The con-
sequences of “closing the loop” and performing system identifi-
20 cation at 1000 Hz presented two new technical challenges. First,
O mOmOome me o Wme whome ®0 ®%  the presence of output feedback tended to destabilize the estima-
tion process, especially when the control signal was a linear com-
Fig. 9 Swept sine wave input experimental results bination of the input datéSUSpenSion diSplaCEment and Velo):ity
Second, completing the estimation and control calculations in less
than 1 millisecond required highly specialized control hardware
and software.
To experimentally assess the performance of real-time intelli-

ent suspension control, the UT-CEM quarter-car testFig. 7)

AF this point, the network’s predictions of sprung mass acce\?\-las again used. The IFL control law of Eq$) and (6) was
erationy,(kT) were very reasonable approximations to the “aczompined with a real-time implementation of the RBFN training

tual” measured accelerationg,(kT), as shown in Fig. 9. Figure equationgEgs.(11)—(13)) to create a self-adapting active suspen-
10 compares the estimated variation of suspension stiffness Wiy controller. In this configuration, the RBFN provided instan-
“actual” measurements made on the quarter-car test rig. Becayg@eous estimates of suspension stiffness and damping, so that
the range of suspension travel was relatively siaD.03 m, the  poplinear dynamics could be canceled and replaced with the de-
spring rate was relatively constant. The wide spread in measugghq linear dynamics. The effectiveness of this approach was
stiffness is .primarily due to hysteresis in the suspensioq, aS.Stiﬁfreasured by comparing sprung mass response to terrain inputs
ness magnitudes were found to be dependent on the direction,8fng standardnonintelligent and intelligent control laws.
suspension travelvhich was not an input to the RBANFigure  The quarter-car test rig was equipped with dSfakardware
11 shows the estimated variation of damping as a function ghq software to manipulate amplifier current for the EM actuator.
relative suspension velocity. No suitable technique could be dg-aseline control law was designed using a combination of sky-
vised to expe_rimentally Valldate this Vari.ation, bUt the trend is iﬁook dampmds] and sprung mass proportiona| control, resumng
agreement with characteristics reported in the literaf2#g. in a Proportionat Derivative (PD) control of sprung mass posi-
The results of this intelligent system identification experimerﬁon. This control law was pro rammed in Simul kcomp”ed
illustrates two main points. First, they demonstrate that the strugnd downloaded to the dSp&cdardware, and executed at a
tured RBFNs can accurately model the nonlinear dynamics of‘ggl-time” rate of 1000 Hz.
quarter-car suspension system. More importantly, they provideNext, the quarter-car test rig was excited using a hydraulically-
very reasonable estimates of parameter variations on an acty@uated terrain inputy(kT), chosen to simulate 0.07 (.75 in)
suspension with unknown characteristics. Although this demopeak-to-peak off-road conditions at 64.5 k@0 mph (Fig. 12.
stration was performed off-line, the next section details the exteThe resulting suspension displacemér(kT) and sprung mass
sion to real-time, closed-loop identification accelerationy,(kT) were acquired as part of the controller imple-
mentation. Sprung mass positigg(kT) was measured using a
linear encoder, and was acquired and differentiated for control
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purposes.
The baseline controller gains were tuned to achieve an absolute
(skyhook damping rate of 15277 18/m (87 Ib-s/in) and an ab-

solute sprung rate of 97736 N/(B58 Ib/in). These gains resulted

in very significant reductions in sprung mass respdiesgs than

P B ey S g o M - 0.0125 m(0.5 in) peak-to-peak, an 81% amplitude reducjicas
shown in the first 30 seconds of Fig. 13. While the baseline algo-
rithm was controlling the active suspension system, the intelligent
system identification algorithm was allowed to train using real-
time input/output data. Thus, at each control interval, the RBFN
training equationsEgs.(11)—(13)) were executed using instanta-
neous measurements of suspension displace@dr), suspen-

g
H

Stiffness (N/m)
aoaS 8888
L BEEEEELEE

5
8

-0.015 -0.01 -0.005 o 0.005 0.01 0015 0.02
Delta (m)

Fig. 10 Experimental stiffness identification results
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Fig. 12 Off-road terrain inputs for experimental control
Fig. 11 Experimental damping identification results evaluations
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sion veIocityA(kT), actuator forceé=,(kT), and sprung mass ac- i ‘ ‘ . ‘ 1

15 L L L !

celeration y,(kT). The RBFN weights and the adaptation ™o 2 4 3 8 w2 1 6 8 2
parametersy; and 7, were initialized to ensure rapid, yet stable, Timale)
convergence during training.

Finally, after 5 minutes of real-time training, the IFL controlle
was activated using the same controller gains as the basel
(fixed-gain controller. Figure 13 shows the dramatic improve-
ment in sprung mass response when the IFL controller was acti-
vated at 30 seconds. The IFL controller exhibited an additional. . ,
60% reduction in sprung mass displacement when activated. Rlven over a variety of off-road test courses at the U.S. Army’s
call that only difference in the two control laws was the cancellaluma Proving Ground. The baseline control law was a nonadapt-
tion of learned system nonlinearities by the IFL controller. ing, independentnonmodal combination of skyhook damping

The results of this closed-loop experiment clearly demonstrdt@l @nd spring cancellatiofd,9,11,13. Over a period of several
the improvements in performance that can be achieved using “ﬂgurs, real-time data was collected from all four suspension ele-
even for baseline PD control. The IFL controller significantly reMents and used to train the RBFNs. Thus, at each control interval,
duced the transmission of high-frequency forces to the spruffie RBFN training equationéEgs. (11)—(13)) were executed us-
mass, translating to better ride quality for passengers and eqUlff instantaneous measurements of suspension displacements
ment. Also, these results provide conclusive evidence that the ih{kT), suspension velocitied;(kT), actuator forces=;(kT),
telligent identification algorithm runs effectively in real-time andand sprung mass accelerationgkT). These parameter estimates

rFig. 14 Sprung mass accelerations for passive HMMWV sus-
ﬁgsion (top) and active HMMWYV suspension with IFL control
f ttom )—0.04 m RMS terrain at 24.1 kph (15 mph)

may be feasible for full-vehicle applications. were updated at each control interval and utilized by the IFL con-
trol law (Egs.(5) and(6)).
VIl Intelligent Feedback Linearization: Real-Time Figure 14 compares the vertical acceleration measurentents

: the sprung mass center of gravifpr the HMMWYV with standard
HMMWV Implementation passive suspensiofiop) and active suspensiotbottom). Each

As explained in the introductory sections of this paper, a milHMMWYV was professionally driven across a straight-line wash-
tary HMMWYV was retrofitted with electromechanical actuators djoard terrain(0.04 m RMS at 24.1 kph(15 mph. The passive
each suspension element to improve ride quality and mobility fgssponse exhibits peak accelerations in excess of 86, @isl
off-road terrains. The extension of quarter-vehicle system idenfihsorbed power of 6.64 W, which exceeds the 6.0 W threshold
fication and control algorithms to a full-vehicle implementatiofi25]. Peak accelerations for the active suspension are below 3.0
was complicated by several factors. Most notably, the vertical
dynamics at each corner of the sprung mass are coupled to other
corners through rigid body modéseave, pitch, and roll Clearly,
the utilization of quarter-vehicle algorithmsvhich neglect this
coupling on full-vehicle platforms is a simplification of the true | k

vehicle dynamics, and will result in reduced performance. Hov &
ever, extensive computer simulations conducted at UT-CEM usi ohiiilfi
full-vehicle, half-vehicle, and quarter-vehicle models suggeste u
that such performance reductiofmrticularly those related to ride _
quality) were not substantial and could be justified by the reduce ;
complexity of implementation. These findings are consistent wi1§ o 2 4 6 8 10
previous research, and resulted in implementation of the §
quarter-car algorithms. Current research at UT-CEM is investigeé 2 5
ing the adoption of a fully coupled dynamic modé#th-ordey 2
for system identification and control, particularly with respect t°
handling performance.

Preliminary field evaluations focused on parameter estimatic
and IFL control(based on quarter-car algorithjrte improve ride 5
quality, as measured by the U.S. Army “absorbed power” inde 4. i
(AMM-75 Ground Mobility Mode) [25]. This ride quality stan- s ‘ ‘ , ) , , , , ‘
dard uses weighted filtering of sprung mass acceleration to qu 0 2 4 8 8 o1z 14 1 18 20
. . Time(s)
tify the rate of energy absorbed by human occupants, and limits
this value to 6.0 W. For these tests, two militaryrig. 15 Sprung mass accelerations for passive HMMWV sus-
HMMWVs, one equipped with a standard passive suspension sion (top) and active HMMWV suspension with IFL control
one equipped with the active electromechanical suspension, wérettom )—0.04 m RMS terrain at 40.2 kph (25 mph)
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; ; ; 0 (NCFS Concept on Subscale Four Corner, Full Vehicle Test-Rig,” presented
mlsz’ and the absorbed power is an mcredlbly low O'BSWSA SAE International Congress and Exposition, Detroit, MI, February 24—-27.

reduction. Figure 15 is a similar comparison for 40.2 kpR5 [13] Ljung, L., 1991, “Issues in System Identification,” IEEE Control Syst. Mag.,
mph). The passive respongeop) exhibits peak accelerations in pp. 25-29.
excess of 15.0 misand absorbed power of 13.85 W, more than[14] Ljung, L. and Glad, T., 1994lodeling of Dynamics SystenRrentice Hall.

twice the limiting threshold25]. Peak accelerations for the active 15 Cvsetgg K. J., and Wittenmark, B., 1998daptive Contral2nd Ed., Addison

suspension are below 5.0 r/snd the absorbed power is a re-[16] G. C. Merriam Co., 1991Webster's New Collegiate Dictionarg. C. Mer-

markably low 1.49 W(an 89% reduction riam Co.
[17] Haykin, S., 1994 Neural Networks, A Comprehensive Foundati®mentice
VIII  Conclusions and Recommendations Hall.

) ) ) ) [18] Cybenko, G., 1989, “Approximations by Superpositions of a Sigmoidal Func-
This paper details the development and real-time implementa- tions,” Mathematics of Control Signal Systems 2 pp. 303—314.

tion of intelligent parameter estimation and Intelligent Feedback!®! “g{cvingJs"arséi%Crzsg?;g?}xaﬂb}oi?;a\g)?ist%NHé[Jrg?gr\?ét;v“gﬁ:gegg;egg%rwam
Llnearlzatlon(IFL) to Improve the ride qua“ty and hand“ng per- EZO] Baker, W. L., and Farrell, J. A., 1992n I}ltroduction to Connectionist Learn-

formance of off-road active suspension systems. The IFL control- ~ ing Control Systems, Handbook of Intelligent Control: Neural, Fuzzy, and
ler combines Radial Basis Function Networl®BFN9g with an Adaptive Approaches/an Nostrand Reinhold. )
adaptive control strategy to cancel undesired nonlinearities, th % g'r‘;t";% i/v JL aggg‘-l'Mvg’aelrg9&%’:::“T’r\]‘ggr'"§3’e%°“Sf;ﬁt’iig“ﬁz””a"-
facilitating the use of “,near control laws. E,Xpenmemal rQSUlF 23] Brugzoﬁe, .L.,”Roli, F., and Serpico, S. B., 151998, “Structured Neural Networks
from a qual‘ter-car test I‘Ig demonstrate 60% |mpr0VementS N ride for Signal Classification,” Signal Proces$4, No. 3, pp. 271-290.
quality relative to a baselinénon-adapting controllers. Addi- [24] Bastow, D., and Howard, G. P., 1993ar Suspension and Handlingrd Ed.,
tional, field trial results from a HMMWV impl_ementation clearly . mﬂStYJOfYAUltgggalsolrfyglfngfginzl%ehidew"ey New York. Ny
qemons”ate the perfc_)rmance ‘?f quarter'\{ehlde p_arameter esti 6] Buckn’er; G D., aﬁd Schuetze, K. T., 1999, “Intellyigem Estirﬁatioﬁ of System
tion and control algorithms for improved ride quality. 95% reduc- ~ parameters for Active Vehicle Suspension Control” SP-1438, Steering and
tions in absorbed power and 65% reductions in peak sprung mass Suspension Technology Symposium 1999, SAE, Warren, MI.
acceleration have been documented using this IFL approach.

The IFL controller design followed a logical progression from
concept and computer simulatig26], to real-time experiment, to
full-yehlcle implementation. Testing and refinement _of the fullpomt_to_pomt Motion p|ann|ng for
vehicle controller, currently installed on a HMMWYV, is still un- . .
derway. Current research at UT-CEM is addressing fuII-vehicsel’VOsyStemS With Elastic
(dynamically couplef control algorithms and bump-stop avoid- fee : ; ;
an)::e algori¥hms,pas the energgy transmitted to (?ccuppants rel;ggansrmss'on Via Optlmal Dynamlc
heavily on avoiding the shocks associated with travel space dﬂversionl
haustion.
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1 Introduction In general(we refer for example to the motion planning of

High performances servosystems might suffer from the preléldustrlal robot manipulatoysthe elasticity of the transmission is

TR . : . 1ot taken into account and the motion is planneq ¢ie input of
ence of elasticities in the transmission, which produces a resid L > -
vibration at the end of a point-to-point motion. This fact intro- e systen1)), exploiting the full capabilities of the actuator and

duces limitations in the reduction of the working cycle time, sinc onsidering the mass rigidly linked to the motor. When, how-

the oscillation has to vanish before achieving the desired accuraé:v ; gfxtcheesfrg/% g/t'(l))rratrl]gcz ?ocguer,retZﬁcve?::obcmi(re]i’rea;sciﬁle;ﬁtelor?]f)tﬁ)nnd
of the positioning system. This problem has been addressed ! Y Y 9

number of researchers in the past and two strategies have b %@v gggk”;g:]eg)er%\l;g:ggnrg;hbe gfjrczot[man;zss?;rT—?n%?;?(;rr]{-bT;slz d
followed: either implementing a closed-loop control scheme, i y pling & sy

which the state of the dynamic system has to be known during t gig;gdgé%%)]’ which will be briefly described in the following. For
motion (and therefore apposite sensors have to be adppteah . L . -
open-loop control scheme which relies on an appropriate moti?nDenne a point-to-point motion law from position 0 pfor the

planning methodology. In the context of the open-loop strateqﬁad in the time interval0,7] using the “transition” polynomials

the input shaping technique has been successfully developed ngroduced in[4]:

the last decadésee e.g[1,2]). Basically, it consists of convolving h _qy\h-i

. - ) (2h+1)! (=1 ) )
a sequence of impulses, also known as the input shaper, with a x(t;7)=q R E o = . A2 ()
desired system command to generate the system command that is hir =0 it(h—D)I(2h—i+1)

then used to drive the system. . Outside the intervdl0,7], x(t; 7) is simply defined ag(t;7)=0 if
In & previous papef3] we proposed an alternative approach 9_ g a0y t: /) =q if t=r. In (2) the integerh can be arbitrarily
the input shaping technique. It is based on the concept of dynamic ’ :

; X . S X . ; i : (h) i :

inversion and it allows minimization of the motion time while® oien In o(;de_r t?. assuve(z,f)tﬁm(r:] gverﬁ,tl.eihxg,;) has

taking into account actuator constraints. The general idea is to figghtinuous derivatives up to order. Note thak(t;7) is
onotonically increasing and as a consequence, the planned mo-

define an arbitrarily smooth closed-form polynomial motion funcy! ) : ;
tion, parameterized by the time interval for the load of the tion of the massn s, by construction, free of o§C|IIatory modes.
system to avoid oscillations during and at the end of the motion Consider the transfer function of the systé
[4]. Then, by means of dynamic inversion the actual command X(s) cs+k
input that causes the desired planned load motion is derived. G(s)= = ?3)
Simulation and experimental results have proven the effectiveness
of the method, with respect to the input shaping technique, apgplying the Laplace transform operatdr both to y(t;7) and
how it is inherently robust to modeling errors. x(t;7), the closed-form expression of the parameterized input
In this paper, we further develop the system-inversion-bas@ghction fort=0 (obviouslyy(t;7)=0 if t<0) which causes the
methodology. Rather than considering a priori the uncertainties @ésired output function can be calculated as:
the model, we perform a simple procedure to search for the opti-
mal inversion point to minimize the residual vibration amplitude.
In other words, starting from values of the system parameters
determined by means of a simple identification experiment, we
modify them in the system model adopted for the dynamic inver- mk* Jte“(IC)UX(U'T)dU

Y(s) ms+cst+k

m. mk
Yt D=L G H)X(sm)]= S X(t7)+| 1= ?)X(t;r)

—(k/o)t
sion, through repetitive experiments, until the residual vibration + c3 €

amplitude is minimized.

4)

0

Note thaty(t;7) is all over bounded because the excited zero

. . . . — (KOt ; o - I
2 Dynamic Inversion Based Motion Planning modee WOt is stable. In order to obtaiy(t; ) belonging to(_Z()
h ] box i hanical bositioni it is necessary that, by virtue 64), x(t; 7) belong toC!* 9, i.e.,
The presence of a gearbox in a mechanical positioning Seryp=| 4 1 |n particular, to at least ensure the continuity of the ve-
system generally introduces an elastic element which can be sk ingt function, the constrairit=2 must be satisfied.
ply described by the model shown in Fig. 1 wheres the coor- a¢ s noint the optimization procedure described3ifor the

dlnatjg representing .the hmotor shgft Idlsplacer.nenl?s Ith?j minimization of the motion time subject to actuator constraints
coordinate representing the mass displacemenis the load ., pe readily applied.

massk the stiffness constant, armthe damping of the transmis-
sion[5]. The well-known linear relation betweenandy has the
following differential form:

3 Dynamic Inversion Point Optimization

In the previous section it has been exposed a dynamic inversion
based synthesis of the motion input that depends, besjaesthe
7+ 2¢waz+ wﬁz: -y parametersn, ¢, andk. In particular, the linkage parametersind
) _ k, which are not exactly known in many practical cases, can be
wherez=x-vy, w,=/kimrads ! is the frequency of the oscil- explicitly indicated as formal parameter arguments/(t;c,k, 7).
latory mode andt=c/2me,, is the damping ratio. Thus, the problem of the optimal selectionast 5, andk= 6, in
y(t;c,k,7) arises, wheres, and §. are given arbitrarily small
positive values of the natural frequency and of the damping ratio.

mX+ cx+kx=cy+ky (1)
which can be rewritten as:

k We propose to choogeandk in order to minimize the amplitude

A A of the actual residual vibratiofthe transient motion of the load

for t= 7). Application of inputy(t;c,k,7) to the actual servo de-

__y_,.. —:I:I-c— m tgrmines an.output motion denoted >e($;c,k,r). Hence, the re-
& S sidual vibration amplitude can be defined as:

B X J=J(c,k):==maxx(t;c,k,7)—q|. (5)
t=1

The addressed motion planning problem is therefore posed as
Fig. 1 Model of an elastic transmission the following minimization problem:
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min  J(c,k). (6)

c=6; k=6

Searching for a global solution of the optimization problem is

extremely difficult because it has to be solved by means of suit- &
ably arranged experimental trials. Therefore, we propose a practi- 22 — QEB_
cable local optimization procedure based on a simplified coordi- m /

nate descent methd@6], p. 227 which is in any case capable to
significantly improve the control system performances. Hence, the
minimizersc* andk* of problem(6) can be found by means of
the following optimal inversion pointOIP) procedure.

OIP Procedure
1 Perform an identification experiment and estimaieandc,

T
S

(initial values. EZ

2 Setk* =kg, c*=c,, flag=0. &,\‘
3 Perform an experiment and detJ(c* ,k*) and|* =1. L] L]
4 Setk* =(1+¢)k*.
5 Perform an experiment and detJ(c* ,k*).
6
7
8
9

==

If I<I* then set flagc1 and go to 3.
If flag=1 go to 11.
Setk* =(1—¢g)k*. If k* <§, then sek* = 5.
Perform an experiment and detJ(c* ,k*).
10 If I<I™ then go to 8.
11 Set flag=0.
12 Setc* =(1+¢g)c*.
13 Perform an experiment and setJ(c* ,k*).
14 If I<I™ then set flag:1 and go to 12.
15 If flag=1 go to 19.
16 Setc* =(1—¢e)c*. If c* <&, then setc* = 6,.
17 Perform an experiment and setJ(c* ,k*).
18 If I<I™ then go to 16.
19 End.

Fig. 3 The two carts linked with the spring adopted for the

The typical identification experiment that can be performed §¢Periments
step 1 might consist of applying a torque impulse to the motor and
analyzing the oscillatory response of the load. From the evaluation
of the frequency and of the decay ratio of the response, the stiffhose mass is 0.8 kg, is not actuated and its posixi) is
ness constant and the damping ratio can be straightforwardhgasured with an incremental linear scale with a resolution of
determined. 40 pm.

Parametee determines the velocity of the descent to the mini- The control system is implemented in a PC with I/O boards and
mum and the precision in determinik andc*. It is easy to the control frequency is 1 kHz. The position of the first cart is
adapt it in order to have a fast descent to the minimum at ti§@ntrolled by a standard Proportional-Integral-Derivati¥D)
beginning and then increasing the accuracy once we are close@@ptroller which has been accurately tuned by a trial and error
it (for example, on the practical groundscan be initially fixed to  Procedure, in order to guarantee a very low positioning error dur-
0.05. ing the motion.

Remark 11t is very important to stress that the resulting opti- A simple identification experiment, in which a torque impulse
mal parameters do not necessarily coincide with the real valuesvéts applied to the first cart and the oscillatory response of the
the parameters of the physical system. In other words, minimizig§cond cart has been analyzed, has been initially performed. The
the residual vibration does not mean in general that we have ac-
curately identified the stiffness constant and the damping ratio of
the system, since nonlinear effects, which are inevitably present in T - , - "
the system, are not included in the simple modg! o2y

0.18f

0.16

4 Experimental Setup and Results el
The experimental setup consists of a testbed, depicted in Fig. 2, orz

in which two carts, linked by a spring, slide on a stainless steel
rectilinear guidgsee Fig. 3 for a detail of the two cart§he first

cart is connected to a belt which is moved through some pulleys i
by means of a brushless motor configured in torque mode, i.e., the g -
signal given to the drive by the controller is a torque command. ~oosf
The overall reduction rate of the transmission system is known
and therefore, we assume that the input reference fungfionis

the position of the first cart, rather than the position of the motor ~ 002;

retical load motion [m}

=]
o
@

i

0.041

shatft. o . . . . .

Then, the positioly(t) of the first cart is measured by means of ° 0.1 o2 ﬁn?fls] o4 05 08
an incremental encoder, mounted on the motor shaft, whose reso-
lution is 4-1000 impulses per motor revolution. The second cart, Fig. 4 The planned motion of the load
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t)=0 6t5 15t4+ 1ot3
xO=0253" "oz Toz" )

Then, the OIP procedure has been applied, having fi&ed

] =6,=10"%. At the end, it results irk* =3000 andc* =0.001,

that is, a natural frequency of 61.24 rad® and a damping ratio

of 1.02 10" °. The resulting input function, obtained via dynamic

inversion, is plotted in Fig. 5, where it is compared with the input

function obtained by inverting the nominal system with and

Co. The actual load motions for both the nominal and optimal

4 dynamic inversion are plotted in Fig. 6, where it appears that

significant improvement is achieved by using the OIP procedure.

Note that the objective functiodis reduced from 2.7.0 3 m to

e s ] 0.6-10"3m. Moreover, the steady-state value of 0.2 m is attained
. . . : - att=0.4s for the optimal case and &t 0.54 s for the nominal

0 0.1 0.2 i rg(;a[s] 0.4 0.5 06 one.
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Fig. 5 The command input function for the nominal and opti- 5 Conclusions
mal dynamic inversion . . .
In this paper we have presented an important development in

the system-inversion-based technique for the reduction of the re-
sidual vibration in point-to-point motion of mechanical servosys-
tems endowed with elastic transmissions. It has been shown that
the use of the dynamic inversion methodology provides flexibility
in the motion planning design, as it allows to easily cope with the
actuator limits. Moreover, the identification phase can be kept at a
very simple level, as the use of the polynomial functions ensure an
inherent robustness to the system and the OIP procedure allows
achieving high performances straightforwardly. Indeed, despite
_ the simple modeling of the system and the simple adopted opti-
mization procedure, significant results have been obtained and the
improvement with respect to the previously defined system-
1 inversion-based methodology is evident. The readiness of the
E——— | overall methodology makes it very suitable to be adopted in in-
— optimal inversion point J dustrial environments, as demonstrated by the experimental
03 04 o5 06 results.

time [s]

0.2r

actual load motion [m]
1od
s
T

Fig. 6 The actual load motion for the nominal and optimal dy- References
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