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An exponentially stable variable structure controller is presen
for regulation of the angular displacement of a one-link flexib
robot arm, while simultaneously stabilizing vibration transient
the arm. By properly selecting the sliding hyperplane, the gove
ing equations which form a nonhomogenous boundary va
problem are converted to homogenous ones, and hence, an
cally solvable. The controller is then designed based on the or
nal infinite dimensional distributed system which, in turn, remo
some disadvantages associated with the truncated-model-
controllers. Utilizing only the arm base angular position and t
deflection measurements, an on-line perturbation estimation
tine is introduced to overcome the measurement imperfections
ever-present unmodeled dynamics. Depending on the compos
of the controller, some favorable features appear such as elim
tion of control spillovers, controller convergence at finite tim
suppression of residual oscillations and simplicity of the cont
implementation. Numerical simulations along with experimen
results are provided to demonstrate and validate the effective
of the proposed controller.@DOI: 10.1115/1.1408608#

1 Introduction
In recent years, the demands for high-speed performance,

energy consumption and low cost have been motivating the us
lightweight robot manipulators in industrial applications. T
rigid structure of current industrial manipulators has made co
pliance impossible and limited the robotics use in automat
tasks. The use of lightweight flexible links, however, has led t
challenging problem in end-point trajectory control. Due to t
flexibility distributed along the robot arms, an improved cont
scheme is required to track the desired trajectory while simu
neously suppressing the vibrational transients in the arm.

This control problem has attracted significant attention in
literature. A flexible manipulator control must achieve the moti
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tracking objectives~similar to that of rigid one! while stabilizing
the transient vibrations in the arm. Several control methods h
been developed for flexible arms: optimal control@1,2#; finite el-
ement approach@3,4#; model reference adaptive control@5#; adap-
tive non-linear boundary control@6#; and several other technique
including variable structure control~VSC! methods@7–9#. Most
of these methods concentrate on model-based controllers de
Some of these controllers, however, may not be easy to implem
due to the uncertainties in the design model, large variations of
loads, ignored high frequency dynamics and high order of
designed controllers. In view of these methods, VSC is parti
larly attractive due to its simplicity of implementation and robu
ness to parameter uncertainties. Successful applications of
method in practical systems are numerous~@10–12# are just a
few!.

Generally, a flexible robot is governed by partial different
equations~PDE! as a system of distributed-parameter and the
fore possesses infinite number of dimensions. Due to the comp
ity of these equations and in order to facilitate the application
control strategies, discretization techniques are typically use
construct a finite-dimensional reduced model. Based on the re
ing approximate model~assumed mode model~AMM ! or finite
element method~FEM!, for instance! several controller design
approaches are then applied@4,5#, and@13#.

The problem associated with these model-based controlle
the truncation procedure used in the approximation. Due to
nored high frequency dynamics~related to control spillovers! and
high order of the designed controller~related to increased numbe
of flexible modes utilized in the model!, severe limitations occur
in implementation of these controllers. To overcome these sh
falls, alternative approaches based on infinite dimensional dis
uted ~IDD! partial differential models of flexible arms have bee
developed. A direct strain feedback control strategy was propo
to control vibration of flexible arm@9#, while an exponentially
stable VSC controller is utilized for flexible robot systems wi
translational base@14#.

A common difficulty appears in all these IDD-base control
design, which is the complexity of the control implementatio
For instance, the control strategy developed in@14# requires mea-
surements of displacement, velocity and acceleration of the
tip as well as the shear force at the root end of the link. Althou
the VSC controller is inherently insensitive to parameter var
tions, feasible measurements are required for a successful im
mentation of the controller. This is the reason why experimen
verification of these algorithms is progressing with a much slow
pace than the theoretical compartment. For more complex flex
systems~multi-link arms, for instance! these approaches becom
very hard in practical implementation.

It is, therefore, highly desirable to seek a simple and yet pr
tical technique for control of flexible arms. To this end, an im
proved IDD-base controller is proposed to eliminate the disadv
tages associated with the traditional truncated-model-b
controllers. It is specifically intended to further relax the measu
ment requirements for the flexible arm and simplify the control
design. Only the tip deflection and angular position of the flexi
© 2001 by ASME Transactions of the ASME
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arm are required to develop the new controller proposed here.
remaining measurements, the ever-present unmodeled dyna
and other parameter uncertainties are all combined to a si
term and estimated through an on-line perturbation estima
process@15,16#. This additional perturbation estimation will com
promise the robustness and trajectory tracking accuracy.

2 Mathematical Modeling
We consider regulation of the angular displacement of a o

link flexible arm. As shown in Fig. 1, one end of the arm is fr
and the other end is rigidly attached to a vertical gear shaft, dri
by a DC motor. Thus, the effect of gravity is neglected. Unifo
cross section is considered for the arm, and we make the E
Bernoulli assumptions. The control torquet, acting on the output
shaft, is normal to the plane of motion. Viscous frictions and
ever-present unmodeled dynamics of the motor compartmen
to be compensated via a perturbation estimation process, a
plained later in the text.

Since the dynamic system considered here has been utilize
literature quite often, we present only the resulting partial diff
ential equation~PDE! of the system and refer the interested rea
ers to@17,18# for detailed derivations. The system is governed

I tü~ t !1rE
0

L

xÿ~x,t !dx5t (1)

r@xü~ t !1 ÿ~x,t !#1Ely-8~x,t !50 (2)

with the corresponding boundary conditions

y~0,t !50, (3)

y8~0,t !50, (4)

y9~L,t !50, (5)

y-~L,t !50 (6)

wherer is the arm liner mass density,L is the arm length,E is the
Young’s modulus of elasticity,I is the cross-sectional moment o
inertia,I h is the equivalent mass moment of inertia at the root e
of the arm, andI t5I h1rL3/3 is the total inertia. Equation~1!
represents the motion of the arm base, while~2! describes the
vibration of the arm.

Using global variable

z~x,t !5xu~ t !1y~x,t ! (7)

the differential equations and boundary conditions can be
pressed in the global coordinates as

I hü~ t !1rE
0

L

xz̈~x,t !dx5t (8)

Fig. 1 Flexible arm in the horizontal plane with its kinematics
of deformation
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The
mics
gle
ion
-

ne-
e
en

m
ler-

he
are
ex-

d in
r-
d-
by

f
nd

ex-

r z̈~x,t !1EIz-8~x,t !50 (9)

with the corresponding boundary conditions

z~0,t !50, (10)

z8~0,t !5u~ t !, (11)

z9~L,t !50, (12)

z-~L,t !50 (13)

Clearly, the arm vibration equation~9! is a homogenous PDE bu
the boundary conditions~10–13! are nonhomogenous. Therefor
the closed-form solution is very tedious to obtain, if not impo
sible. Using the application of VSC, these equations and th
associated boundary conditions can be converted to a homoge
boundary value problem, as discussed next.

3 Variable Structure Controller
The control objective is to track the arm angular displacem

from an initial angle,ud5u(0), to zero position,u(t→`)50,
while minimizing the flexible arm oscillations. To achieve th
control insensitivity against modeling uncertainties, the nonlin
control routine of Sliding Mode Control with an additional Pe
turbation Estimation~SMCPE! compartment is adopted her
@15,16#. The method of SMCPE presented in@15# has many at-
tractive features, but is suffers from the disadvantages assoc
with the truncated-model-base controllers. On the other hand,
IDD-base controller design, proposed in@14#, has practical limi-
tations due to its measurement requirements in addition to
complex control law. We propose a new scheme to overco
these shortfalls.

3.1 Controller Design. Initiating from the idea of IDD-base
controller, we propose a new controller design approach in wh
an on-line perturbation estimation mechanism is integrated w
the controller to relax the measurement requirements. As utili
in @14#, for the tip vibration suppression, it is further required th
the sliding surface enable the transformation of nonhomogen
boundary conditions~10–13! to homogenous ones. To simulta
neously satisfy vibration suppression and robustness requ
ments, the sliding hyperplane is selected as a combination
tracking ~regulation! error and arm flexible vibration as

s5ẇ1sw (14)

wheres.0 is a control parameter and

w5u~ t !1
m

L
z~L,t ! (15)

with the scalarm being selected later. Whenm50, controller~14!
reduces to sliding variable for rigid-link manipulators@16,19#. The
motivation for such a sliding variable is to provide a suitab
boundary condition for solving the beam equation~9! as will be
discussed next.

Theorem 3.1 For the system described by (1) and (9), if
variable structure controller is given by

t5cest1
I t

11m S 2k sgn~s!2Ps2
m

L
ÿ~L,t !

2s~11m!u̇2
sm

L
ẏ~L,t ! D (16)

wherecext is an estimate of the beam flexibility effect

c5rE
0

L

xÿ~x,t !dx, (17)

k and P are positive scalars, k>(11m)uc2cestu/I t , 21.2,m
,20.45,mÞ21 and
DECEMBER 2001, Vol. 123 Õ 713
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sgn~s!5H 1 s.0

21 s,0
(18)

then the system’s motion will first reach the sliding mode s50 in
a finite time, and consequently converge to the equilibrium p
tion w(x,t)50 exponentially with a time-constant1/s

Proof: Selecting Lyapunov function candidateV5I ts
2/2, its

time derivative is given by

V̇5I tsṡ (19)

From Eq.~7!, ~14!, and~15!, we have

ṡ5ẅ1sẇ5~11m!ü1
m

L
ÿ~L,t !1sF u̇1

m

L
ż~L,t !G (20)

Substituting~20! into ~19! and utilizing ~7! yields

V̇5sF I t~11m!ü1I t

m

L
ÿ~L,t !1I ts~11m!u̇1I ts

m

L
ẏ~L,t !G

(21)

Noting ~1!, Eq. ~21! becomes

V̇5sH I t~11m!F t

I t
2

r

I t
E

0

L

xÿ~x,t !dxG
1I t

m

L
ÿ~L,t !1I ts~11m!u̇1I ts

m

L
ẏ~L,t !J (22)

Substituting controller~16! into ~22! yields

V̇5s$~11m!~cest2c!2I tk sgn~s!2I tPs% (23)

Invoking conditionk>(11m)uc2cestu/I t, Eq. ~23! reduces to

V̇<2I tkusu (24)

As shown in@20#, inequality ~24! implies that the system will
reach the sliding modes50 in a finite time, which is smaller than
us(t50)u/k, and then remain in the sliding mode. Therefore, fro
~14!, the system’s motion, after reaching the sliding mode, w
slide alongs50 towardw50 exponentially with a time constan
equal to 1/s.

It should be noted that conditionk>(11m)uc2cestu/I t is
based on the assumption thatuc2cestu<hcest whereh is experi-
mentally determined@21#. In order to assure robustness,k is se-
lected as

k5h~11m!cest/I t (25)

The discontinuity in the controller due to the signum functi
can be smoothened by replacing it with the saturation functio

sat~s!5H s/« usu<«

sgn~s! usu.«
(26)

in order to avoid control chatter@22#. However, if the forced os-
cillations of the s-dynamic display high frequencies, then the c
responding ~saturation function! control component manifes
equally high frequency dither, which is not desirable either. The
fore, a ‘‘low pass filter’’ mode,P in controller ~16!, was intro-
duced to subdue the effects of high frequency components@15#.
Once the system enters the sliding phase, the s-dynamics tak
form of a low pass filter againstuc2cestu as ~see Eq.~23!!

ṡ1~P1k/«!s5
11m

I t
uc2cestu (27)

We have proven that the system’s motion converges tow50
exponentially. To prove the exponential stability of the close
loop system, it will be sufficient to show that the flexible ar
stops at the final equilibrium positionz(x,t)50 provided thatw
50 @14#. Sincev→0 as t→`, based on~14! same holds foru
~i.e., u→0!. Notice, from Eq.~15!, w50 implies that
714 Õ Vol. 123, DECEMBER 2001
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u~ t !52
m

L
z~L,t ! (28)

Substituting ~28! into boundary condition~11!, transforms the
nonhomogenous boundary value problem~9–13! into a homog-
enous one. Specifically, the boundary condition~11! is recast in
the homogenous form of

z8~0,t !52
m

L
z~L,t ! (29)

which fulfills our objective. By properly selecting variablem, it is
shown, next, that the arm can be stopped at the final position

3.2 Solution to Homogenous Boundary Value Problem.
In the derivation of the controller, we shall assume that the sys
can be variable-separated, i.e.,z(x,t) can be represented by

z~x,t !5f~x!Q~ t ! (30)

wheref(x) is the transverse modal shape of the flexible arm a
Q(t) is the corresponding generalized coordinate. Note that
derivation of the controller does not require any modal reducti
i.e., the controller, theoretically, can handle the original infini
dimensional system@14#.

Substituting Eq.~30! into ~9! yields

f99

f

EI

r
52

Q̈

Q
(31)

Consequently, we obtain two ordinary differential equations@18#

Q̈~ t !1KQ~ t !50 (32)

f99~x!5
r

EI
Kf~x! (33)

with the boundary conditions

f~0!50, (34)

f8~0!52
m

L
f~L !, (35)

f9~L !50, (36)

f-~L !50 (37)

To solve this boundary value problem, we consider three poss
options forK.
Case I: K50. This yields the following expression forf(x)

f~x!5C1x31C2x21C3x1C4 (38)

To force f(x)50, which will lead toz(x,t)50, all the coeffi-
cientsCi ( i 51, . . . ,4) mustvanish. Utilizing this and Eq.~34!–
~37!, one can show that these conditions are satisfied if

mÞ21 (39)

Case II: K,0. By lettingK52v2, Eq. ~33! is written as

f99~x!52S b

L D 4

f~x! (40)

where (b/L)45rv2/EI. Noting a5&b/2L (aÞ0), the general
solution to Eq.~40! is of the form

f~x!5C1eax sin~ax!1C2eax cos~ax!1C3e2ax sin~ax!

1C4e2ax cos~ax! (41)

By substituting boundary conditions~34–37! into equation
~41!, a set of four homogenous linear algebraic equations in te
of coefficientsCi ( i 51, . . . ,4) isrendered. Using MAPLE soft-
ware package@23#, the determinant of the coefficients matrix
found to be
Transactions of the ASME
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D516a6H Fcos~aL!sinh~aL!1sin~aL!cosh~aL!

aL Gm
1cosh2~aL!1cos2~aL!J (42)

In order to forceCi50, we need to show thatDÞ0. Using
MAPLE package, it can be shown that condition21.2,m,35
will render D.0 regardless of the value ofaL ~notice,aLÞ0 in
this case!.
Case III: K.0. Letting K5v2, the general solution to~33! can
be expressed in the form

f~x!5C1 cos~bx/L !1C2 cosh~bx/L !

1C3 sin~bx/L !1C4 sinh~bx/L ! (43)

Similarly, substituting boundary conditions~34–37! into Eq. ~43!
and taking the determinant of the coefficients yields

D52
2b6

L6 H ~sinb1sinhb!

b
m1coshb cosb11J (44)

Utilizing MAPLE again, it can be shown that regardless of val
of m(mÞ0) in this case,DÞ0. Notice, in this casebÞ0. The
values ofm.2.3 will renderD,0 and values ofm,20.45 will
resultD.0.

Recalling all the three cases, one can see ifm satisfies the
inequality

21.2,m,20.45, mÞ21 (45)

then D.0, and that results inf(x)50 and ultimatelyz(x,t)
50. This is the same condition given in Theorem 3.1. Now,
can conclude thatw50 implies that the flexible beam and cons
quently arm angular displacement stop at the final equilibri
positionz(x,t)50 andu(t)50. Consequently, becausew→0 ex-
ponentially in the sliding mode, the system motions also c
verges toz(x,t)50 exponentially with time constant 1/s. This
completes the proof.~QED!
Remark 3.1: The range ofm given in Eq. (45) may not be a
complete solution. Analytically solving form from (42) and (44) is
quite complicated. Consequently, Theorem 3.1 gives only a s
cient condition to stabilize the system.

4 Controller Implementation
In the preceding section, it was shown that by properly sele

ing control variablem, the motion exponentially converges tow
50 with a time-constant 1/s, while the arm stops in a finite time
Although, the discontinuity nature of the controller introduces
robustizing mechanism, we have further made the scheme in
sitive to parametric variations and unmodeled dynamics by red
ing the required measurements and hence easier control im
mentation. The remaining measurements and ever-pre
modeling imperfection effects have all been estimated through
on-line estimation process. To realize the variable structure c
troller ~16!, we need to feedback the following quantities:cest(t),
u(t), u̇(t), y(L,t), ẏ(L,t), andÿ(L,t). As stated before, in orde
to simplify the control implementation and reduce the measu
ment effort, the effect of all uncertainties including flexibility e
fect (*0

Lxÿ(x,t)dx) and the ever-present unmodeled dynamics
gathered into a single quantity named perturbation,c, as given by
~17!.

Noting ~1!, the perturbation term can be expressed as

c5t2I tü~ t ! (46)

where requires the yet unknown control feedbackt. In order to
resolve this dilemma of causality, the current value of cont
torquet is replaced by the most recent controlt(t2d), whered is
the small time-step used for the loop closure. This replaceme
justifiable in practice, since such algorithm is implemented o
Journal of Dynamic Systems, Measurement, and Control
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digital computer and the sampling speed is high enough to cl
this. Also, in the absence of measurement noise,ü(t)> ücal(t)
5@ u̇(t)2 u̇(t2d)#/d.

Therefore, an estimate of perturbationc is utilized as

cest5t~ t2d!2I tücal~ t ! (47)

Alternatively, the bending moment of the beam at its base can
obtained as@17,18#

EIy9~0,t !52rE
0

L

xz̈~x,t !dx (48)

Then, the flexibility term used in perturbation expression can
expressed as

c5rE
0

L

xÿ~x,t !dx52EIy9~0,t !2rü~ t !L3/3 (49)

which can be measured in practice by attaching a strain gaug
the base of the flexible arm fory9(0,t) and approximatingü(t)
with ücal(t) as described above.

Due to the additional robustizing feature, perturbation estim
tion, the following approximations can be utilized at the cont
stage implementation~Section 6!:

ÿ~L,t !> ÿcal~L,t !5@ ẏcal~L,t !2 ẏ~L,t2d!#/d,

ü~ t !> ücal~ t !5@ u̇cal~ t !2 u̇cal~ t2d!#/d, (50)

where

ẏcal~L,t !5@y~L,t !2y~L,t2d!#/d

u̇cal~ t !5@u~ t !2u~ t2d!#/d. (51)

In practice and in the presence of measurement noise, approp
filtering may be considered and combined with these approxim
derivatives. This technique is referred to as ‘‘switched deriv
tives.’’ This backward differences is shown to be effective whend
is selected small enough and the controller is run on a fast D
@24,25#. Also, ÿ(L,t) can be obtained by attaching an accelero
eter at arm tip position. All the required signals are therefo
measurable by currently available sensor facilities and the con
ler is thus realizable in practice. Although these signals may
quite inaccurate, it should be pointed out that the signals, eithe
measurements or estimation, need not to be known very a
rately since robust sliding control can be achieved ifk is chosen
large enough to cover the error existing in the measurement/si
estimation@10#.

5 Numerical Simulations
In order to show the effectiveness of the proposed controlle

lightweight flexible arm is considered~h@b in Fig. 1!. For nu-
merical results, we considerud5u(0)5p/2 for the initial arm
base angle, with zero initial conditions for the rest of the st
variables.

The system parameters are listed in Table 1. Utilizing assum
mode model, the arm vibration equation~9! is truncated to 3
modes and used in the simulations. It should be noted that
controller law, Eq.~16!, is based on the original infinite dimen
sional equation, and this truncation is utilized only for simulati
purposes.

We take the controller parameterm520.66, which satisfies
inequality ~45!. The other control parameters are chosen asP
57.0, k55, e50.01 ands50.8. In practice,s is selected for
maximum tracking accuracy taking into account unmodeled
namics and actuator hardware limitations@21#. Although such re-
strictions do not exist in simulations~i.e., ideal actuator, high sam
pling frequency and perfect measurements!, this selection ofs
was decided based on the actual experiment conditions~see Sec-
tion 6!.
DECEMBER 2001, Vol. 123 Õ 715
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The sampling rate for the simulations isd50.0005 sec, while
data are recorded at the rate of only 0.002 sec for plotting purp
The system responses to the proposed control scheme are s
in Fig. 2. The arm base angular position reaches the desired
tion u50 in about 4–5 s, which is in agreement with the appro
mate settling time ofts54/s ~Fig. 2~a!!. As soon as system
reaches the sliding mode layerusu,e ~Fig. 2~d!!, the tip vibrations
stop ~Fig. 2~b!!, which demonstrates the feasibility of the pr
posed control technique. The control torque exhibits some resi
vibration as shown in Fig. 2~c!. This residual oscillation is ex-
pected since the system motion is not forced to stay ons50

Table 1 System parameters for numerical simulations and ex-
perimental setup
716 Õ Vol. 123, DECEMBER 2001
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surface~instead it is forced to stay onusu,e! when saturation
function is used. The sliding variables is also depicted in Fig.
2~d!.

To better demonstrate the feature of the controller, the sys
responses are displayed whenm50 ~Fig. 3!. As discussed,m
50 corresponds to the sliding variable for the rigid-link. The u
desirable oscillations at the arm tip are evident~see Figs. 3~b! and
3~c!!.

6 Control Experiments
In order to better demonstrate the effectiveness of the con

ler, an experimental setup is constructed and used to verifying
numerical results and concepts discussed in the preceding
tions. It is specifically intended to demonstrate the robustiz
feature of the controller in the presence of unmodeled dynamic
the actuator~frictional torque in the motor!, the arm payload and
measurements imperfections.

6.1 Experimental Setup. The experimental setup is show
in Fig. 4. The arm is a slender beam made of stainless steel,
the same dimensions used in the simulations. The experime
setup parameters are listed in Table 1. One end of the arm
clamped to a solid clamping fixture, which is driven by a hig
quality DC servomotor. The motor drives a built-in gearbox (N
514:1) whose output drives an anti-backlash gear. The a
backlash gear, which is equipped with a precision encoder, is
lized for measuring the arm base angle as well as to eliminate
backlash. For tip deflection, a light source is attached to the tip
the arm which is detected by a camera mounted on the rota
base.

The DC motor can be modeled as a standard armature cir
That is, the applied voltagev to the DC motor is

v5Rai a1Ladia /dt1Kbu̇m (52)

where Ra is the armature resistance,La is the armature induc-
tance, i a is the armature current,Kb is the back-EMF~electro-
Fig. 2 Analytical system responses to controller with inclusion of arm flex-
ibility, i.e., mÄÀ0.66; „a… arm angular position, „b… arm tip deflection, „c… con-
trol torque, and „d… sliding variable s
Transactions of the ASME
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Fig. 3 Analytical system responses to controller without inclusion of arm
flexibility, i.e., mÄ0; „a… arm angular position, „b… arm tip deflection, „c… control
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motive-force! constant, andum is the motor shaft position. The
motor torque,tm , from the motor shaft with the torque consta
Kt can be written as

tm5Kti a (53)

The motor dynamics thus become

I eüm1Cvu̇m1ta5tm5Kti a (54)

whereCv is the equivalent damping constant of the motor, a
I e5I m1I L /N2 is the equivalent inertia load including motor in
ertia, I m , and gearbox, clamping frame and camera inertia,I L . ta
is the available torque from the motor shaft for the arm.

Utilizing the gearbox from the motor shaft to the output sh
and ignoring the motor electric time constant (La /Ra), one can
relate the servomotor input voltage to the applied torque~acting
on the arm! as

t5
NKt

Ra
v2S Cv1

KtKb

Ra
DN2u̇2I hü (55)

whereI h5N2I e is the equivalent inertia of the arm base used
the derivation of governing equations~see Eq.~1!!. By substitut-
ing this torque into the control law, the reference input voltageV
can be obtained for experiment.

6.2 Experimental Results on Regulation Control. As
stated before, only arm base angular position and tip deflection
to be measured. The remaining required signals for the contro
~16! are determined as explained in Section 4. The control tor
is applied via a digital signal processor~DSP! with sampling rate
of 10 kHz, while data are recorded at the rate 500 Hz~for plotting
purpose only!. The DSP runs the control routine in a single inpu
single output mode as a free standing CPU. Most of the com
tations and hardware commands are done on the DSP card
this setup, a dedicated 500 MHz Pentium III serves as the host
stems, Measurement, and Control
t

nd
-

ft

in

are
ller
ue

t-
pu-
For

PC,

and a state-of-the-art dSPACE® DS1103 PPC controller bo
equipped with Motorola Power PC 604e at 333 MHz, 16 chann
ADC, 12 channels DAC as microprocessor.

The experimental system responses are shown in Figs. 5 a
for similar cases discussed in the numerical simulation sect
Figure 5 represents the system responses when controller~16!
utilizes the flexible arm~i.e., m520.66!. As seen, the arm bas
reaches the desired position~Fig. 5~a!!, while tip deflection is
simultaneously stopped~Fig. 5~b!!. The good correspondence be
tween analytical results~Fig. 2! and experimental findings~Fig. 5!
is noticeable from vibration suppression characteristics poin
view. It should be noted that the controller is based on the orig
governing equations, with arm base angular position and tip
flection measurements only. The unmodeled dynamics such
payload effect~due to the light source at tip, see Table 1!, viscous
friction ~at the root end of the arm! are being compensate
through the proposed on-line perturbation estimation routi

Fig. 4 The experimental device and setup configuration
DECEMBER 2001, Vol. 123 Õ 717
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Fig. 5 Experimental system responses to controller with inclusion of arm
flexibility, i.e., mÄÀ0.66; „a… arm angular position, „b… arm tip deflection, and
„c… control voltage applied to DC servomotor
p
y

ned
re
ns
This, in turn, demonstrates the capability of the proposed con
scheme when considerable deviations between model and
are encountered. The only noticeable difference is fast deca
response as shown in Figs. 5~b! and 5~c!. This clearly indicates the
high friction at the motor, which was not considered in the sim
lations ~Figs. 2~b! and 2~c!!.
MBER 2001
trol
lant
ing

u-

Similar responses are obtained when the controller is desig
based on the rigid-link only, i.e.,m50. The system responses a
displayed in Fig. 6. Similarly, the undesirable arm tip oscillatio
are obvious. The overall agreement between simulations~Figs. 2
and 3! and that of experiment~Figs. 5 and 6! is one of the critical
contributions if this work.
Fig. 6 Experimental system responses to controller without inclusion of arm
flexibility, i.e., mÄ0; „a… arm angular position, „b… arm tip deflection, and „c…
control voltage applied to DC servomotor
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7 Conclusions
An exponentially stable variable structure controller has b

applied to regulation of the angular displacement of a lightwei
one-link flexible robot arm. The governing equations with the c
responding boundary conditions have been derived, and the
troller was designed based on the original distributed system
additional on-line perturbation estimation has been introduced
integrated with the control routine to overcome the effect of u
modeled dynamics and measurement imperfections. Nume
simulations along with experimental validations have been p
vided to demonstrate the superior features of the controller.
lizing only the arm base angular position and tip deflection in
experiment, it has been shown that the proposed technique i
pable of tracking arm while simultaneously suppressing trans
vibration at the arm.
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A Note on the Computation of the
Euler Parameters

Lars Johansson
Division of Mechanics, Department of Mechanical
Engineering, Linko¨ping University, SE-581 83 Linko¨ping,
Sweden
e-mail: largo@ikp.liu.se

This paper is concerned with the integration of the different
equations for the Euler parameters, for the purpose of describ
the orientation of a rigid body. This can be done using stand
methods, but in some cases, such as in the presence of impu
forces, the angular velocities are not continuous and meth
based on high order continuity are not appropriate. In this pap
the use of the closed-form solution for piecewise constant ang
velocity as the basis for a computational algorithm is studied. I
seen that if this solution is implemented in a leapfrog manne
method with second-order accuracy is obtained in the smo
case, while this method also makes sense in the discontin
case. @DOI: 10.1115/1.1408943#

1 Introduction
The orientation of a rigid body is determined by integrating t

differential equations for one of the several sets of parame
available to describe its orientation. One such set of orienta
parameters are the Euler parameters, which are related tov by
~Wittenburg@1#!:

dq

dt
5Q~ t !q52

1

2 F 0 vx vy vz

2vx 0 2vz vy

2vy vz 0 2vx

2vz 2vy vx 0

GF q0

q1

q2

q3

G (1)

Here vx , vy , andvz are the components in body fixed coord
natesxyz of the angular velocity vectorv and the Euler param-
eters are defined as

q05cos~a/2!

q15nx sin~a/2!

q25ny sin~a/2!

q35nz sin~a/2!

wherea is the angle that the body must rotate about the direct
n5@nx ,ny ,nz#

t to reach its current position from the referen
configuration. The Euler parameters satisfy the following norm
ization condition:

q0
21q1

21q2
21q3

251 (2)
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The present paper is concerned with the calculation of the E
parameters from~1!, assuming that the angular velocity is know
with sufficient accuracy at one or several previous time instan
from numerical solution of the rotational equations of motion
otherwise. A straightforward approach is to solve the differen
equation~1! for the Euler parameters numerically by some est
lished method of high accuracy such as Runge-Kutta, typic
fourth order, or Adams-Bashforth, typically third order. In th
derivation of these methods it is assumed that the sought func
is several times continuously differentiable. However, in ca
with impulsive forces, such as rigid body frictional impact, t
angular velocity is discontinuous, resulting in a discontinuous fi
derivative of the Euler parameters and thus removing the bas
these methods. In, for example, Johansson and Klarbring@2# and
Johansson@3,4# problems of this type are studied.

The closed-form solution for the Euler parameters for a c
stant angular velocity has been used to calculate the Euler pa
eters, assuming a piecewise constant angular velocity, Whitm
et al.@5# although this does not seem to be common; some aut
feel that this approach is not accurate enough, e.g., Stevens
Lewis @6#. An obvious idea would be to calculate solutions assu
ing higher order variations of the angular velocity. Howev
while solutions are available for more general variations of
angular velocity, these are unattractively complicated, see Mo
et al. @7#.

In the present paper, the case where a piecewise constan
sumption for the angular velocity is implemented in a leapfr
type algorithm is studied. Thus, the angular velocity is assume
be available at the midpoints between the points where the E
parameters are computed. Sections 2 and 3 are concerned wi
properties of this method when the angular velocities are smo
i.e., between impacts, so that it can be assumed that the E
parameters are smooth. It is seen that the approximation is b
than might be expected from the piecewise constant assump
if the angular velocity has constant direction the proposed met
corresponds to assuming a piecewise linear variation of its m
nitude while in the case when the angular velocity does not h
constant direction, the proposed method will still work as a g
bally second-order accurate computation method for the Euler
rameters. This last point can be considered the main point of
present paper. Finally, in Section 4, numerical examples are g
where the present method is compared to other methods w
applied to discontinuous angular velocities.

2 The Constant Angular Velocity Solution
If Q is constant and the Euler parameters are known at s

time, sayt5t0 , the solution to~1! can be written in closed form
as

q~ t !5eQ•~ t2t0!q~ t0! (3)

An approximate method for time varyingQ is obtained by choos-
ing T as a time interval, short compared to the total time inter
of interest, and assuming thatQ(t) is constant at its value at th
midpoint of the interval. The Euler parameters at timet5T/2 can
then be computed as

q1/25eQ0Tq21/2, (4)

and the process is repeated to cover the desired time inte
giving a leapfrog type computational scheme based on appr
mating the angular velocity as piecewise constant. Since
scheme is based on the closed-form solution for a special case
normalization condition~2! will be satisfied exactly~within the
limits of computer accuracy!. Here and elsewhere in this paper
subscript will denote the value of a quantity at a certain time
that q21/25q(2T/2) etc. Equation~4! will be called the uncor-
rected 1-point formula. It will be seen below that this equati
also gives the exact solution for a the case of an angular velo
720 Õ Vol. 123, DECEMBER 2001
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with piecewise linearly varying magnitude but constant directio
The case of an angular velocity with changing direction will
treated in Section 3.

Due to the special structure ofQ the matrix exponential in~4!
can be calculated from, c.f. Whitmore et al.@5#:

eQT51 cosS T

2
uvu D1

2Q

uvu
sinS T

2
uvu D (5)

whereuvu5Avx
21vx

21vx
2 is the length of the vector from which

Q is constructed, c.f. Eq.~1!, and1 is the unit matrix. It is tempt-
ing to try to derive more accurate schemes by assuming thatQ is
a piecewise linear function of time, or piecewise quadratic e
Unfortunately, the closed-form solution~3! to ~1! cannot be gen-
eralized in a straightforward manner, since

q~ t !5e* t0

t Q~s!dsq~ t0! (6)

is not in general a solution to~1!. It is a solution to~1! if Q(t) has
the commutative property:

Q~ t !E
t0

t

Q~s!ds5E
t0

t

Q~s!dsQ~ t ! (7)

see Lukes@8#, where a slightly more general case is treated, a
Byers and Vadali@9#. This condition is fulfilled if the angular
velocity from whichQ(t) is constructed has constant directio
c.f. Section 3. It then holds that

d

dt
e* t0

t Q~s!ds5Q~ t !e* t0

t Q~s!ds. (8)

Accepting the~rather strong! assumption of~7! we note that~4!
will also be exact for a piecewise linear variation ofv since the
midpoint rule of integration

E
2T/2

T/2

Q~ t !dt5Q0•~T1O~T3!!

is exact for a linear variation ofQ(t), c.f. Dahlquist et al.@10#, so
that ~4! is then recovered from~6!. This result is given, in a
slightly different context, by Byers and Vadali@9#. It is thus seen
that for the case of constant directionv, the scheme based on~4!
amounts to approximatingv as piecewise linear and compute th
closed form solution to this approximation. Cases wherev has
constant direction and piecewise linear direction with jumps co
also be computed exactly~within the limits of computer accuracy!
in this way if the jumps are situated precisely at the points wh
the Euler parameters are evaluated.

3 The Non-Commutative Case
In this section the behavior of the algorithm based on Eq.~4!

will be studied for the case when the angular velocity is smo
but otherwise general i.e., Eq.~7! is not satisfied. It will be seen
that a globally second-order accurate numerical scheme is
tained for this case.

To develop a correction for the case whenv(t) is allowed to
change direction as well as magnitude,Q(t) is written

Q~ t !5Qi~ t !1Q'~ t !

whereQi(t) satisfies~7! andQ'(t) does not. Such a decompos
tion can be constructed by selecting a constant directionn and
writing the angular velocity from whichQ(t) is constructed as

v~ t !5~v•n!n1~v2~v•n!n!5 f ~ t !n1~v2 f ~ t !n!5vi1v'.
(9)

If Qi(t) is taken to be the part ofQ(t) corresponding tovi

5 f (t)n, it is a scalar function of time multiplied by a consta
matrix, which will satisfy~7!.

Using this decomposition,~1! can be written

q̇5Q~ t !q5~Qi~ t !1Q'~ t !!q. (10)
Transactions of the ASME
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Next, the solution is assumed to be of the form

q~ t !5e* t0

t Qi
~s!dsq~ t0!1q'~ t ! (11)

with

q'~ t0!50. (12)

Inserting~11! into ~10! gives, using~8!,

q̇'5Q'e* t0

t Qi
~s!dsq~ t0!1Qq'. (13)

Setting t052T/2 and using a central difference and averag
discretization we have from~13!:

q1/2
' 2q21/2

'

T
5Q0

'e*2T/2
0 Qi

~s!dsq21/21Q0

q21/2
' 1q1/2

'

2
1O ~T2!.

(14)

Note that the fourth time derivative ofq' is required to exist in
this step, Vandergraft@11#

From ~14!, ~11!, and ~12! we obtain the Euler parameters
time t5T/2 as

q1/25e*2T/2
T/2 Qi

~s!dsq21/21
11Q0T/2

11uv0u2T2/16
TQ0

'e*2T/2
0 Qi

~s!dsq21/2

1O ~T3! (15)

where the inverse

~12Q0T/2!215
11Q0T/2

11uv0u2T2/16
,

see Omelyan@12#, has been used. In Eq.~15! the first term to the
right is the exact solution if the angular velocity has const
direction, the second term is a correction if it has not and the th
term is the truncation error of the correction.

It is immediately observed that if we put

n5v0 /uv0u (16)

that is, if we decide to take the direction ofv at time t50 as the
direction on which the split ofv in ~9! is based then

Q0
'5Q'~ t50!50 (17)

and ~15! becomes

q1/25e*2T/2
T/2 Qi

~s!dsq21/21O ~T3! (18)

The first term to the right of Eq.~18! provides us with a glo-
bally second-order accurate scheme for the Euler parameters
is used repeatedly to cover the time interval of interest~or the
exact solution if it so happens thatQ'(t)50!.

Next, we turn to the evaluation of the integral in Eq.~18!. By
the midpoint rule we have, c.f. Dahlquist et al.@10#:

E
2T/2

T/2

Qi~s!ds5Q0
i
•~T1O~T3!!5Q0•~T1O~T3!!, (19)

where~17! has been used.

Inserting~19! into ~18! gives

q1/25eQ0•~T1O~T3!!q21/21O ~T3!

5eQ0TeQ0O~T3!q21/21O ~T3!5eQ0Tq21/21O ~T3! (20)

which will be called the corrected 1-point formula. Note that t
detailed form of the truncation errorO (T3) changes in the las
equality. The second equality holds because a constant matrix
isfies the commutative property, c.f. Lukes@8#.

It is noted that the corrected 1-point formula~20! is the same as
the uncorrected 1-point formula~4!, apart from theO (T3) term. It
has thus been established that if the formula for piecewise c
stantQ(t) is implemented as a leapfrog method it gives a globa
second order accurate solution for a general variation ofQ(t). For
Journal of Dynamic Systems, Measurement, and Control
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the case when the orientation is described using the compon
of the transformation matrix rather than the Euler parameter
corresponding result is established by Omelyan@13#, using a dif-
ferent line of thought for the derivations.

Keeping~16!, Eq. ~18! can be used with other numerical inte
gration rules, with the same level of approximation for the p
Q'(t) of Q(t) not fulfilling ~7!. For example, a corrected 3-poin
formula based on a piecewise quadratic variation ofQ(t) is

q1/25e1/24~25Q022Q21
i

1Q22
i

!Tq21/21O ~T3!

4 Numerical Examples
In this section the 1-point method is tested on some examp

with discontinuous angular velocity. The results using fourt
order Runge-Kutta and third-order Adams-Bashforth~see e.g.
@10,6,11#! are included for comparison; as expected these la
methods doesn’t work well since they cannot be expected
handle the discontinuities well.

Two different angular velocities are used. In both casesvx and
vy are zero, whilevz varies as shown in Fig. 1. Physically th
case with an alternating piecewise constantvz might be a bounc-
ing so-called superball, see Vu-Quoc et al.@14#, while the increas-
ing piecewise constantvz might correspond to a ball bouncing
with friction on a surface whose speed is increasing. In both th
cases closed form solutions can be computed.

The error to be studied is computed as

error5uqnumeric2qexactu/uqexactu.

Obviously, for a numerical method to be accurate, this er
should be small compared to 1. It can be noted that, because o
normalization condition~2!, uqexactu51. If the numerical solution
also fulfills this condition, which the 1-point formula does, th
error can never be larger than 2. The timesteps used below
0.051 and 0.0051 seconds. These are selected to avoid puttin
discontinuities at an integral number of timesteps, in which ca
the 1-point method under investigation would give a closed fo
solution to the examples and the only errors would be related
computer accuracy.

In Fig. 2 the results for a piecewise constant stepwise incre
ing vz is shown for a timestep of 0.051 seconds. It is seen that
1-point method gives reasonably small errors while the Run
Kutta and Adams-Bashforth methods manages to follow the so
tion for a while but then breaks off to unacceptable errors. T
Adams-Bashforth solution in fact becomes numerically unsta
after a while. Figure 3 shows the results using a smaller times
to avoid this instability, but the observation that Runge-Kutta a
Adams-Bashforth methods eventually breaks of to unaccepta
errors still holds true.

Fig. 1 Variation of vz in the examples
DECEMBER 2001, Vol. 123 Õ 721
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In Fig. 4 the results for alternating piecewise constantvz are
shown. This figure shows the maximum error occurring up to a
including a certain time instant rather than the error at each ti
Again it is seen that the Runge-Kutta and Adams-Bashforth m
ods tends to break away to large errors, although the advanta
the 1-point method is not quite as pronounced as in the prev
example.

5 Discussion
In this paper the solution of the differential equation for t

Euler parameters have been discussed. The closed form sol
for piecewise constant angular velocity is attractive for mot
with discontinuous angular velocity, but a more accurate met
is desirable if such motion is combined with long intervals
motion with smoothly varying angular velocity.

Fig. 2 Errors for increasing piecewise constant vz

Fig. 3 Errors for increasing piecewise constant vz , short
timestep

Fig. 4 Errors for alternating piecewise constant vz
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Unfortunately, there are no simple closed-form solutions
higher order variation of the angular velocity, unless the direct
is constant. This paper is therefore concerned with the implem
tation of the piecewise constant solution in a leapfrog type al
rithm. This method works well for discontinuous angular velo
ties, as indicated by the numerical examples, and provide
second order accurate algorithm for cases with smooth but ot
wise general variation of the angular velocity. The method is a
exact for cases of constant angular velocity and constant direc
angular velocity with linearly varying magnitude, which makes
attractive for spinning objects such as flywheels. In conclusi
the proposed method should be appropriate for problems w
large numbers of impacts, such as that studied in Johansson@4# or
problems with occasional impacts and periods of free flight w
high angular velocity with constant direction, such as in Joha
son @3#.
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1 Introduction
On/off jet thrusters have often been used for vibration supp

sion in large flexible space structures, see e.g.,@1,2# where em-
pirical control switching strategies have been adopted or@3,4#
where the Variable Structure Control~VSC! technique has been
applied. When a bang-bang control action is not sufficient, pie
electric rods can be used as both structural and actuation elem
see e.g.,@5,6#. An interesting technological solution can includ
both jet thrusters for the suppression of large vibrations and
ezoelectric actuators for the damping of residual vibrations. T
configuration has been considered here for the control of the l
flexible experimental space structure shown in Fig. 1.

The space structure is located at the Department of Aeros
Engineering at the Politecnico di Milano and has been alre
considered in@2,4,7#. It is a modular truss with mass of 75 Kg
length of 19 m, built with commercial PVC elements for a total
54 cubic bays. The truss is suspended by three pairs of s
springs ensuring a satisfactory decoupling of rigid and ela
bending modes. It has been designed so that the bending mod
the horizontal and in the vertical plane are independent, altho
closely spaced in frequency. Hence, the controller can be desi
and implemented in the horizontal plane only.

The truss is equipped with six pairs of on-off air jet thruste
each one delivering a non-modulable force of about 2.1 N w
supplied with air at 3 bar. Thrust is generated with a delay
about 12 ms after the transmission of the control command,
the actuators do not operate properly at switching frequen
greater than 40 Hz. The structure includes also six active pie
electric rods substituting symmetric passive PVC elements
providing a maximum traction force of 700 N and a maximu
compression force of 3000 N, with input voltage range@0 V, 100
V#. Standard amplifiers provide high bandwidth gain and bias
piezoelectric actuators at their midpoint. The rods also exhibi
hysteresis which has been considered in the simulation model
which has not been included into the linear model used in
preliminary control synthesis phase. The horizontal motion of
truss is measured by six accelerometers, whose outputs are
cessed by analog and digital filters, so that only the first ei
natural modes in the horizontal plane can be considered in
control problem. These filters introduce a phase lag equivalen
a delay of about 60 ms at the sampling frequency of 200 Hz.

2 Mathematical Model
Let h be the vector of the amplitudes of the vibration modes,uJ

and uP be the control variables associated with the jets and
piezoelectric actuators, respectively,y be the vector of accelera
tion measurements. Moreover, denote byF the matrix of the
modal shape vectors, byV andJ the matrices of natural frequen

Fig. 1 The experimental device
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cies and damping coefficients and byI the identity matrix of ap-
propriate size. Neglecting the nonlinearities mainly due to
actuators, the linear mathematical model of the structure is~see
@7#!

H ẋ~ t !5Ax~ t !1BJuJ~ t !1BPuP~ t !
y~ t !5Cx~ t !1DJuJ~ t !1DPuP~ t ! (1)

wherex5@h8ḣ8#8PR1320, uJPR6, uPPR6, yPR6 and

A5F 0 I

2V2 22JV
G , BJ5F 0

2F8MaJ
G , BP5F 0

2F8MaP
G
(2)

C5@2MsFV2 22MsFJV#, DJ5MsFF8MaJ ,

DP5MsFF8MaP

In ~2! Ms transformsx into the vector of sensor displacements a
MaJ ,MaP represent the influence ofuJ ,uP on the structure.

For simulation and control design purposes, it is advisable
neglect high frequency modes. Hence, a model with 54 state v
ables suitable for preliminary simulation studies has been deriv
Then this model has been further reduced to obtain a model
16 state variables, which has been used in the control synth
phase. The natural frequenciesvn and the damping coefficientsj
of the corresponding eight modes are reported in Table 1.

3 Switching Control Design
Two different VSC control laws, namely VSCJ and VSCP, for

the jet thrusters and for the piezoelectric rods have been desi
assuming that one type of actuator is inactive when the other
is used, that is by alternatively settinguP50 anduJ50. In both
cases, adjacent and symmetric pairs of actuators have been
trolled jointly, so avoiding their simultaneous switching in opp
site directions. This introduces a functional dependence betw
the elements ofuJ and uP , so that only three control variable
have to be independently chosen in both cases and reduced
vectorsūJPR3 and ūPPR3 must be considered.

According to@8#, the sliding surfacessJ(x)50, sP(x)50 have
been computed by minimizing the cost function

J5
1

2 E0

`

x8~ t !Qx~ t !dt (3)

The elements of the diagonal matricesQ5QJ and Q5QP have
been chosen by extensive simulation experiments. Then, the
lowing control laws have been determined:

VSCJ5 H ūJ~ t !52KJ sign~sJ~x!!

ūP~ t !50 ,

VSCP5 H ūJ~ t !50
ūP~ t !52KP sign~sP~x!!

(4)

where the gainsKJ andKP depend on the maximum force deliv
ered by the actuators.

Concerning the control laws 4, the following assumption is
order.

Assumption A1: For the control laws VSCJ and VSCP there
exist closed setsXJ andXP containing the origin as interior poin
such that:

Table 1 Natural frequencies and damping coefficients

Mode vn @Hz# j Mode vn @Hz# j

rigid rotation 0.2823 0.0032 III bending 5.4506 0.010
rigid translation 0.2870 0.0085 IV bending 8.9540 0.01
I bending 1.0356 0.0077 V bending 13.0443 0.01
II bending 2.9185 0.0094 VI bending 17.7674 0.010
DECEMBER 2001, Vol. 123 Õ 723
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1 for any initial statex(0)PXJ (x(0)PXP) the state trajec-
tory reachessJ(x)50 (sP(x)50) in a finite time upper-
bounded bytJ (tP);

2 for any x(0)PXJùsJ(x)50 (x(0)PXPùsP(x)50) and
any t>0, there exist positive constantsa andb such that

ix~ t !i<ae2btix~0!i (5)

Remark 1. The previous assumption is readily verified in
context of VSC, see@9#, where a proper control law design ca
guarantee both a finite time reaching of the sliding surface a
the exponential stability on it.

The adopted switching control strategy consists of using the
for damping both rigid and elastic modes when an ‘‘energy fu
tion’’ E(x)5x8Pcx, Pc5diag$V2,I% of the truss is beyond a pre
scribed thresholdC, that is whenxPXc5$x:E(x).C%, while
commuting to the piezoelectric rods for the elimination of resid
elastic vibrations whenE(x)<C. A priori, this strategy leads to a
switched system whose stability properties cannot be guaran
For this reason, it is advisable to define a ‘‘dwelling time’’t as the
time which must be elapsed from the last control switching bef
a new switching can occur, see@10#.

Theorem 1. Assume that: (i) A1 holds; (ii) XJ.Xc and XP.Xc .
Then there exist a computable constant C¯ and a computable
dwelling timet̄ such that for any C.C̄ and anyt. t̄ the switch-
ing control strategy makes the origin an asymptotically sta
equilibrium point with region of attraction XJ .

Proof: Definet5max(tJ ,tP) and lett5 t̄ 1 t̄, wheret̄.0 is the
minimum time which must be spent onsJ(x)50 or sP(x)50
even if the system state has moved outside the region where
corresponding control law should be used. Note that there exis
positive constantg such thatieAti<g,;t< t̄ , and a positive con-
stanth such that

E
0

t

eAhBJK̃Jdh<h, E
0

t

eAhBPK̃Pdh<h, ;t< t̄

whereK̃J andK̃P are two vectors with the dimensions ofKJ and
KP and whose elements have the same absolute value of the
responding ones ofKJ andKP with any combination of sign.

Now assume thatx(0)PXJ andx(0)¹sJ(x)50. Then VSCJ is
used and, at a timet1< t̄ ,

ix~ t1!i<gix~0!i1h
724 Õ Vol. 123, DECEMBER 2001
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with x(t1)PsJ(x)50. Until time t25t11 t̄ the state trajectory is
on sJ(x) and

ix~ t2!i<ae2bt̄ix~ t1!i<gae2bt̄ix~0!i1ae2bt̄h

At t5t2 , the control law commutes to VSCP provided that
x(t2)PXP . Following the same arguments and assuming t
there aren commutations between VSCJ and VSCP, it is possible
to verify that

ix~ t2n11!i<~gae2bt̄ !ngix~0!i1(
i 50

n

~gae2bt̄ ! ih

Provided thatt̄. log(ag)/b, the right hand side of this inequality
tends, forn→`, to w5h(12gae2bt̄)21. Denoting bylmin(Pc)
the minimum eigenvalue ofPc , if C.C̄5w2lmin(P), then the
state tends to a point onsP(x) and insideXP , so that no other
commutation occurs. Finally, observe that botht̄ and C̄ can be
computed from the problem data by means of the previous exp
sions.j

4 Implementation Issues
The switching control law has been implemented in digi

form with a sampling interval of 5 ms. A standard Kalman pr
dictor has been used, see@2#. It predicts the first eight natura
modes 15 steps onward~75 ms! so as to reduce the effect of th
phase lag due to the adopted anti-aliasing filters.

When using VSCJ, a dead band has been introduced on
sliding surface to reduce chattering phenomena. The amplitude
the dead zones have been related to the allowed residual m
ment at the end of the control action, as discussed in@4#. The use
of the local dead band is such that the sliding mode on the slid
surface is not ideal, and is usually called a ‘‘quasi-sliding mod
see@11#. As for the rods, their static characteristic is of linea
saturated type, not suitable for an on-off control strategy. Th
the VSCP control law has been implemented by resorting to t
concept of ‘‘equivalent control,’’ see@8#, according to which the
VSC action is obtained by passing the computed control varia
through a low-pass filter.

Finally, in order to reduce energy consumption, a maxim
acceptable amount of residual movement has been determined
all the control actions have been switched off when the truss
ergy is below a given threshold.
Fig. 2 Tip speed with the switching controller „bold … and with the jets only
Transactions of the ASME
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Fig. 3 Control variables: „a… jets, „b… rods

Fig. 4 Tip speed using „a… only PZT actuators, „b… only jets with a smaller deadzone
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5 Simulation and Experimental Results
An extensive preliminary simulation study has been perform

to tune the unknown design parameters. The bending mode
interest were excited separately or jointly so as to consider a l
number of experimental cases. For brevity, only the results re
ring to the joint excitation of the four bending modes (M1
2M4) at low frequencies are here reported. Specifically, the lo
velocities at the end of the excitation phase werevM1

50.12 m/s,
vM2

50.12 m/s,vM3
50.03 m/s,vM4

50.03 m/s. Figures 2~a! and
2~b! ~which is a zoom of Fig. 2a! compare the transient of the ti
speed with VSCJ only to that achieved with the proposed switc
ing strategy. The effect of the rods is evident in the second pa
the response, when the jets are switched off and the control a
provided by the rods damps the tip oscillations. The correspo
ing control actions are shown in Fig. 3, where it is apparent tha
this case only one transition occurs from the control law VSCJ to
VSCP. For comparison, further simulations have been perform
mic Systems, Measurement, and Control
ed
s of
rge

fer-

cal

-
t of
tion
nd-
t in

ed

starting from the same initial conditions and using only the ro
~control law VSCP! or the jets~control law VSCJ with smaller
deadzones! in all the operating range. The corresponding tra
sients are reported in Figs. 4~a! and 4~b!, which clearly show that
the rods are unable to provide an effective vibration suppress
while an excessive use of the jets causes an useless fuel cons
tion without any performance improvement.

In all the performed experiments on the real truss, the ini
conditions were set using an electromagnetic shaker connecte
one end of the structure which brought the truss to a steady o
lation via excitation of one or a combination of its natural fr
quencies. Then, the shaker was automatically disconnected w
the predetermined initial condition was reached. In the res
reported here, the excitation of a combination of the first fo
bending modes was planned in order to mimic as much as
sible the previous simulations. Then at the end of the excita
phase, the switching controller was activated. Figures 5~a! and
DECEMBER 2001, Vol. 123 Õ 725
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Fig. 5 Tip speed in experimental results

Fig. 6 Control variables in experimental results
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the
5~b!show the experimental tip speed during excitationt
,16.67s) and during the control action (t>16.67s). The cor-
responding control variables are reported in Fig. 6. The comp
son of Figs. 2 and 5~b!show a good agreement between the sim
lation and the experimental results. In fact, the 90% settling t
is reached after about 1s in simulation and 1.2s in the real experi-
ments. This small discrepancy can be due to an approximate
mation of the damping factors of the bending modes, as well a
the nonlinear dynamics of the actuators.

6 Conclusions
The switching control strategy proposed here for vibration s

pression allows to optimize the control performance and to red
the energy consumption. This is fundamental in space app
tions, where fuel availability is limited. An extensive experimen
phase has witnessed the potentialities of this approach, the t
retical properties of which have also been investigated.
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Effective control of ride quality and handling performance a
challenges for active vehicle suspension systems, particularly
off-road applications. Off-road vehicles experience large susp
sion displacements, where the nonlinear kinematics and dam
characteristics of suspension elements are significant. These
linearities tend to degrade the performance of active suspen
systems, introducing harshness to the ride quality and reduc
off-road mobility. Typical control strategies rely on linear, tim
invariant models of the suspension dynamics. While these mo
are convenient, nominally accurate, and tractable due to
abundance of linear control techniques, they neglect the non
earities and time-varying dynamics present in real suspension
tems. One approach to improving the effectiveness of active
hicle suspension systems, while preserving the benefits of li
control techniques, is to identify and cancel these nonlineari
using Feedback Linearization. In this paper the authors dem
strate an intelligent parameter estimation approach using str
tured artificial neural networks that continually ‘‘learns’’ the non
linear parameter variations of a quarter-car suspension mod
This estimation algorithm becomes the foundation for an Inte
gent Feedback Linearization (IFL) controller for active vehic
suspensions. Results are presented for computer simulations,
time experimental tests, and field evaluations using an off-r
vehicle (a military HMMWV). Experimental results for a quarte
car test rig demonstrate 60% improvements in ride quality relat
to baseline (non-adapting) control algorithms. Field trial resul
reveal 95% reductions in absorbed power and 65% reduction
peak sprung mass acceleration using this IFL approach ver
conventional passive suspensions.@DOI: 10.1115/1.1408945#

Contributed by the Dynamics Systems and Control Division of THE AMERICAN
SOCIETY OF MECHANICAL ENGINEERS. Manuscript received by the Dynamics Sy
tems and Control Division July 3, 2000. Associate Editor: S. Sivashankar.
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Keywords: Active Vehicle Suspension, Artificial Neural Networ
Feedback Linearization, Intelligent Control

1 Introduction
Researchers at the University of Texas Center for Electrom

chanics ~UT-CEM! have been involved in the development o
active suspension systems for off-road military vehicles sin
1993 @1#. A major contribution of this research has been the d
velopment of linear electromechanical~EM! actuators that serve
as force control elements in active suspensions@2#. These EM
actuators were designed to retrofit into the existing suspens
space of a military HMMWV, and are installed in parallel with
soft spring for static load support~Fig. 1!. They are electronically
controlled to provide bidirectional forces within a nominal rang
of 62000 lb. These high-performance actuators introduce con
erable opportunities for improving the ride quality, handling pe
formance, and safety of off-road vehicles through the control
suspension forces.

The design of controllers for active vehicle suspensions
been the focus of numerous research publications in recent y
@1,3–12#. Typically, these research contributions are theoretica
nature and rely on linear, time-invariant suspension models
controller design and simulated performance evaluation. Howe
suspension forces are inherently nonlinear, particularly for o
road vehicles. Off-road vehicles experience large suspension
placements, where the nonlinear kinematics and damping cha
teristics~Fig. 2! are significant.

These nonlinearities tend to degrade the performance of ac
suspension systems, introducing harshness to the ride quality
reducing off-road mobility. In addition, the dynamic character
tics of suspension components are not time-invariant, but are s
ject to change during a vehicle’s life cycle. In light of these fac
it is worthwhile to consider a control approach that accounts
dynamic nonlinearities and responds to time-varying paramete

While there are many techniques available for estimating
parameters of linear system models using input/output data, th
are considerably fewer techniques available for estimating
structure of nonlinear systems@13,14#. A common approach is to
assume a model structure that is nonlinear in the states, bu

-

Fig. 1 EM actuator mounted on HMMW

Fig. 2 Typical nonlinear suspension damping characteristics
DECEMBER 2001, Vol. 123 Õ 727
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linear in the parameters~e.g., ẋ5a1x1a2x21a3x31...). A
model of this form allows for the use of least squares techniq
~or recursive least squares for on-line estimation! to determine the
unknown model parameters from system data@13–15,5,10#. A
major drawback of this approach is that the structure of e
nonlinearity must be specified in advance, using physical mo
ing or intuition. Another common approach is to treat the nonl
ear dynamics as a ‘‘black box,’’ and use high-order regression
Artificial Neural Networks ~ANNs! to emulate their effects
@7,8,13,14#. In the first case, an accurate physical model may
difficult to derive for nonlinear, time-varying systems. In the se
ond case, the black box structure provides little or no phys
insight into the system dynamics. Therefore, it is worthwhile
utilize a technique that combines the physical insight of line
lumped-parameter modeling with the flexibility of the nonline
black box approach.

This paper describes an Intelligent Feedback Lineariza
~IFL! controller that ‘‘learns’’ the nonlinear dynamics of a vehic
suspension and uses this information to control suspension fo
The nonlinear dynamics are modeled using a linear param
varying ~LPV! model structure. The parameters of this model
estimated on-line, and are used to update the controller gain
each time step. The result is a high-performance, real-time con
algorithm that impoves the ride quality and predictability of t
suspension response.

II Intelligent Control
Intelligence, as defined by Webster’s Dictionary@16#, implies

the ability torespondsuccessfully to a new experience andlearn
or understand from previous experiences. For a control syste
be intelligent, it must possess two distinct characteristics:

• the ability to successfully adapt~or respond! to changes in its
environment ~time-varying plant parameters, unmodele
plant dynamics, etc! such that overall system performance
improved

• the ability to retain~or learn! this adaptive information for
future reference

Thus, an intelligent controller can be defined as an adaptive
troller with the ability to retain or ‘‘learn’’ information related to
previous adaptive experiences.

Artificial Neural Networks~ANNs! are frequently used to pro
vide this learning capability, though it is important to note that n
all ANN-based control systems satisfy this definition of intel
gence. ANNs are highly interconnected data processing elem
typically used for function approximation and pattern recognit
@17#. They are documented as being self-adapting ‘‘universal
proximators’’ because of their ability to model any nonlinear fun
tion to any desired level of accuracy, given enough neur
@18,19#. In the context of intelligent control, ANNs can be used
estimate the parameters of a dynamic model in real-time, eve
the plant is highly nonlinear and time-varying.

One specific type of ANN, the Radial Basis Function Netwo
~RBFN!, is well suited to the task of real-time system identific
tion for two reasons. First, the network uses localized activa
functions~radial basis functions!, and thus learns information in
very localized fashion. As a result, parameter estimates obta
from a small region of the plant operating space do not adver
affect estimates from other operating regions. Second, the in
connection weights~which are self-adjusted during learning! are
applied linearly on the output side of the network. This featu
results in significantly reduced computational requirements for
RBFN, making it well-suited for real-time implementation.

A Indirect Adaptive „Self-Tuning… Intelligent Control. A
large number of control architectures satisfy the definition of
telligence presented earlier in this section. One such architec
the Indirect Adaptive Intelligent Controller~Fig. 3!, is essentially
728 Õ Vol. 123, DECEMBER 2001
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an extension of the self-tuning adaptive controller described
Åström and Wittenmark@15,20#.

This controller is adaptive, as controller gains are updated
line so that overall system performance is improved. The te
‘‘indirect’’ refers to the fact that gains are adapted as an indir
result of updated model parameters. The controller is intellige
as model parameters are estimated and ‘‘learned’’ by an ANN
each sample time, the ANN re-estimates the model parame
using new and previously learned information. These parame
are used to recompute the controller gains, which are impleme
in the controller.

III Intelligent Suspension Control Via Feedback Lin-
earization

A standard assumption in the design of controllers for act
vehicle suspension systems is that the vertical suspension dy
ics can be modeled using four independent quarter-car mo
~Fig. 4! @4#. Although these models are typically assumed to
linear @4#, the intelligent controller development presented he
assumes that the stiffness and damping termks and bs depend
nonlinearly on the relative suspension travel,D5yw2yb , and
relative suspension velocity,Ḋ5 ẏw2 ẏb .

Fig. 3 The indirect adaptive intelligent control architecture

Fig. 4 Fourth-order quarter-car suspension model
Transactions of the ASME
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One means of addressing the kinematic and damping non
earities in the design of active suspension controllers is thro
the application of Feedback Linearization@21#. A Feedback Lin-
earizing controller is designed in three basic steps:

1 Identify the nonlinearities in the system
2 Cancel the nonlinearities
3 Apply a control action that gives a desired linear syst

response

Thus, Feedback Linearization transforms a system with nonlin
dynamics into one with linear dynamics so that more tracta
linear techniques can be used to design the controller. The de
opment of a Feedback Linearizing controller for the fourth-ord
quarter-car suspension model is described next.

A Standard Feedback Linearization. Consider a nonlin-
ear dynamic system described by differential equations incontrol-
lable canonical form@21#:

dnx

dtn
5 f ~x!1g~x!u (1)

wherex5@x,dx/dt,...dn21x/dt# is the n-dimensional state vec
tor, y is the scalar input,f (x) andg(x) are nonlinear functions o
the state vector,g(x) is invertable. It is easy to show@21# that the
input u that linearizes the above system is:

u5g~x!21~uL2 f ~x!! (2)

Resulting in the transformed linear system:

dnx

dtn
5uL (3)

whereuL is the linear control input used to specify the desir
dynamics of the system. In other words, the control inputu is
composed one term that cancels the nonlinear plant dynamics
another provides the desired linear dynamics. Now consider
dynamics of a fourth-order, nonlinear, quarter-car model~Fig. 4!:

mbÿb~ t !5bs~Ḋ!•Ḋ~ t !1ks~D!•D~ t !1Fa
(4)

mwÿw~t!52bs~Ḋ•Ḋ~ t !2ks~D!•D~ t !

1bt•~ ẏg~ t !2 ẏwt !!1kt•~yg~ t !2yw~ t !!2Fa

This system, with a relative damping coefficient that depe
nonlinearly on suspension velocitybs(Ḋ) and a relative stiffness
coefficient that depends nonlinearly on suspension travelks(D), is
an ideal candidate for Feedback Linearization. Let the scalar
tuator forceFa be composed of two parts,Fa5Fa11Fa2. If the
constitutive relationsbs(Ḋ) and ks(D) are known exactly, the
nonlinear forces associated with these parameters can be can
with the actuator control force:

Fa152bs~Ḋ!•Ḋ~ t !2ks~D!•D~ t ! (5)

Resulting in the transformed linear system:

ÿb~ t !5
Fa2

mb (6)

ÿw~ t !5
1

mw
•~bt•~ ẏg~ t !2 ẏw~ t !!1kt•~yg~ t !2yw~ t !!2Fa2!

The last step is to define the desired suspension dynamics
actuator forceFa2, which corresponds to theuL term in Eq.~3!.
Fa2 can be constructed to implement a variety of linear con
laws commonly used in active suspension systems@3–12#. For the
implementation presented in this paper, the actuator forceFa2 was
chosen to be a linear combination of absolute sprung mass ve
ity ~a ‘‘skyhook’’ damping term@3#! and relative displacement~an
‘‘effective spring rate’’ term@9,11#!. For a given control law, the
stability of the suspension’s internal dynamics~i.e., the wheel hop
mode! can be verified by analysis of the system eigenval
@21,22#.
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B Intelligent Feedback Linearization „IFL …. The IFL
controller combines on-line, ANN-based parameter estimat
with the standard Feedback Linearization control law of Eq.~6!.
The structure of this intelligent controller, as it relates to the act
vehicle suspension system, is shown in the block diagram of
5.

The nonlinear suspension parametersbs(Ḋ) and ks(D) are es-
timated~‘‘learned’’! in real-time using the Radial Basis Functio
Networks ~RBFNs! described earlier. At each sample time, t
values of D and Ḋ are measured, the RBFNs are trained, a
instantaneous parameter estimatesb̂s(Ḋ) and k̂s(D) are used to
compute the cancellation forces according to Eq.~5!. Obviously,
the computed cancellation forces will not be accurate when
system is initialized. However, with adequate training and su
cient excitation, the RBFNs will generate increasingly accur
parameter estimates, and the IFL controller will do a better job
canceling system nonlinearities.

IV Intelligent System Identification: Derivation of
Equations

Previously, a fourth-order dynamic model, Eq.~4!, was pre-
sented for the quarter-car model of Fig. 4. The first equati
representing the sprung mass dynamicsyb(t), is rewritten to fa-
cilitate the derivation of parameter estimation equations:

ÿb~ t !5
1

mb
~ks~D!•D1bs~Ḋ!•Ḋ1Fa! (7)

This equation has tractable appeal because it represents a
dynamic model with state-dependent parametersks(D) andbs(Ḋ).
Additionally, relative displacementD(t), relative velocityḊ(t),
and sprung mass accelerationÿb(t) are all easily acquired using
inexpensive sensing equipment. Althoughks(D) and bs(Ḋ) are
assumed to be nonlinear functions of relative displacement
velocity, these constitutive relations could have been formula
using any measurable system data.

Before implementing Eq.~7! for real-time parameter estima
tion, it is important to understand the limitations on its use. Wh
the inclusion of actuator forceFa is necessary for identification
purposes, it can be a liability when based on output feedbac
this control force is solely dependent on relative suspension
placement or velocity, the parameter estimation equations can
come indeterminate. For this reason, the actuator force in
should be sufficiently independent, so that it is not strongly c
related to either the relative displacement or velocity.

Separate RBFNs were constructed to learn the constitutive
lations of each parameter~Fig. 6!, leading to a naturally modula
or ‘‘structured’’ neural network@17,23#, which combined the in-

Fig. 5 Intelligent feedback linearization block diagram
DECEMBER 2001, Vol. 123 Õ 729
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tuitive appeal of physics-based models with the ‘‘universal fu
tion approximating’’ capability of ANNs. Although Eq.~7! repre-
sents a continuous-time model of the sprung mass dynamics
estimation process required a discrete-time form of this mo
Specifically, discrete-time measurement of relative displacem
D(kT), relative velocity Ḋ(kT), and sprung mass acceleratio
ÿb(kT) were required to generate discrete-time estimatesk̂s(D)
and b̂s(Ḋ), whereT denotes the sample interval and ‘‘∧’’ notation
denotes an estimated value. Instantaneous spring force estim
F̂k(kT) and damping force estimatesF̂b(kT), used to compute the
instantaneous sprung mass acceleration estimateŷ̈b(kT), are also
shown in the figure.

Because there are two distinct networks in the structured m
of Fig. 6, two distinct weight update equations were implemen
for training. In each case, the update equations were formulate
that training proceeds in the negative gradient of the error c
function J(e), which is defined based on the error between
actual sprung mass accelerationsÿb(kT) and the predicted sprun
mass accelerationsŷ̈b(kT):

e~kT!5 ÿb~kT!2 ĝ̈b~kT!
(11)

J~e!5
1

2N (
k51

N

e~kT!2

The output weightsw1 and w2 are associated with thek̂s(D)
and b̂s(Ḋ) networks, respectively. The activation functions as
ciated with each RBFN are distributed uniformly across the in
range for each network. For each discrete-time sam
(D(kT)),Ḋ(kT), the structured RBFN’s outputs are:

k̂s~D!5y1~D~kT!!•w1

b̂s~Ḋ!5y2~Ḋ~kT!!•w2 (12)

ŷ̈b~kT!5S 1

mb
~ k̂s~D!•D~~kT!!

1b̂s~Ḋ!•Ḋ~~kT!!1Fa~kT!! D
Errors e(kT) are backpropagated to obtain the weight upd

equations:

w1~kT!5w1~kT!2h1•
]J~e!

]w1

5w1~kT!1
h1

mb
•e~kT!

•D~kT!•y1~D~kT!!
(13)

w2~kT!5w2~kT!2h2•
]J~e!

]w2

5w2~kT!1
h2

mb
•e~kT!

•Ḋ~kT!•y2~Ḋ~kT!!

Fig. 6 RBFN structure for intelligent system identification
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V Intelligent System Identification: Off-Line Experi-
mental Results

As stated in the introductory sections, this research was c
ducted as part of the University of Texas Center for Electrom
chanics ~UT-CEM! Electromechanical Suspension~EMS! pro-
gram, which is developing electromechanical actuators for ac
vehicle suspension systems@1,2,9,11,12#. Currently, UT-CEM has
a quarter-car test rig to test advanced EMS control algorith
The test rig, shown in Fig. 7, was designed to have dyna
characteristics comparable to a military HMMWV.

For the experimental evaluations, data collected from the
rig was used to quantify the effectiveness of the intelligent sys
identification algorithm. Specifically, dynamic measureme
from the test rig were used to train the RBFN’s off-line~Eqs.
~11!–~13!!, and determine the nonlinear variations in suspens
dampingbs(Ḋ) and suspension stiffnessks(D). First, the quarter-
car test rig was excited using a hydraulically-actuated terrain in
yg(kT), and the resulting suspension displacementD(kT) and
sprung-mass accelerationÿb(kT) were acquired at a sampling rat
of 200 Hz. A swept sinusoid input profile, with a frequency ran
of 0.1 <f g<25.0 Hz and 0.025 m amplitude, was selected for
terrain input to ensure adequate excitation of the system’s ver
dynamics. The data revealed a resonant frequency for the sp
mass at 1.4 Hz, and a resonant frequency for the unsprung ma
approximately 5.0 Hz~Fig. 8!.

Next, the experimental vehicle response data was sub-sam
to obtain input/output training and testing data for the RBFN
The RBFN training equations~Eqs.~11!–~13!! were implemented
using the experimental response data. The RBFN weights and
adaptation parametersh1 andh2 were initialized to ensure rapid
yet stable, convergence during training. The initial~untrained! er-
ror cost functionJ(e) of the testing data was 0.030. Trainin
continued until the error cost function leveled off at 0.007 af
1000 training epochs.

Fig. 7 UT-CEM quarter-car test rig

Fig. 8 Magnitude versus frequency diagram of the collected
data
Transactions of the ASME
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At this point, the network’s predictions of sprung mass acc
eration ŷ̈b(kT) were very reasonable approximations to the ‘‘a
tual’’ measured accelerationsÿb(kT), as shown in Fig. 9. Figure
10 compares the estimated variation of suspension stiffness
‘‘actual’’ measurements made on the quarter-car test rig. Beca
the range of suspension travel was relatively small~60.03 m!, the
spring rate was relatively constant. The wide spread in measu
stiffness is primarily due to hysteresis in the suspension, as s
ness magnitudes were found to be dependent on the directio
suspension travel~which was not an input to the RBFN!. Figure
11 shows the estimated variation of damping as a function
relative suspension velocity. No suitable technique could be
vised to experimentally validate this variation, but the trend is
agreement with characteristics reported in the literature@24#.

The results of this intelligent system identification experime
illustrates two main points. First, they demonstrate that the str
tured RBFNs can accurately model the nonlinear dynamics o
quarter-car suspension system. More importantly, they prov
very reasonable estimates of parameter variations on an a
suspension with unknown characteristics. Although this dem
stration was performed off-line, the next section details the ext
sion to real-time, closed-loop identification

Fig. 9 Swept sine wave input experimental results

Fig. 10 Experimental stiffness identification results

Fig. 11 Experimental damping identification results
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VI Intelligent Feedback Linearization: Real-Time Ex-
perimental Results

In the previous section, the effectiveness of off-line intellige
parameter estimation was demonstrated. Although the results
promising, the real potential of this technique lies in its applic
tion to real-time control. In this section, experimental results
presented for real-time, closed-loop intelligent control. The c
sequences of ‘‘closing the loop’’ and performing system ident
cation at 1000 Hz presented two new technical challenges. F
the presence of output feedback tended to destabilize the es
tion process, especially when the control signal was a linear c
bination of the input data~suspension displacement and velocity!.
Second, completing the estimation and control calculations in
than 1 millisecond required highly specialized control hardw
and software.

To experimentally assess the performance of real-time inte
gent suspension control, the UT-CEM quarter-car test rig~Fig. 7!
was again used. The IFL control law of Eqs.~5! and ~6! was
combined with a real-time implementation of the RBFN traini
equations~Eqs.~11!–~13!! to create a self-adapting active suspe
sion controller. In this configuration, the RBFN provided insta
taneous estimates of suspension stiffness and damping, so
nonlinear dynamics could be canceled and replaced with the
sired linear dynamics. The effectiveness of this approach
measured by comparing sprung mass response to terrain in
using standard~nonintelligent! and intelligent control laws.

The quarter-car test rig was equipped with dSpace® hardware
and software to manipulate amplifier current for the EM actua
A baseline control law was designed using a combination of s
hook damping@3# and sprung mass proportional control, resulti
in a Proportional1Derivative ~PD! control of sprung mass posi
tion. This control law was programmed in Simulink®, compiled
and downloaded to the dSpace® hardware, and executed at
‘‘real-time’’ rate of 1000 Hz.

Next, the quarter-car test rig was excited using a hydraulica
actuated terrain inputyg(kT), chosen to simulate 0.07 m~2.75 in.!
peak-to-peak off-road conditions at 64.5 kph~40 mph! ~Fig. 12!.
The resulting suspension displacementD(kT) and sprung mass
accelerationÿb(kT) were acquired as part of the controller impl
mentation. Sprung mass positionyb(kT) was measured using
linear encoder, and was acquired and differentiated for con
purposes.

The baseline controller gains were tuned to achieve an abso
~skyhook! damping rate of 15277 N•s/m ~87 lb•s/in! and an ab-
solute sprung rate of 97736 N/m~558 lb/in!. These gains resulted
in very significant reductions in sprung mass response~less than
0.0125 m~0.5 in.! peak-to-peak, an 81% amplitude reduction!, as
shown in the first 30 seconds of Fig. 13. While the baseline al
rithm was controlling the active suspension system, the intellig
system identification algorithm was allowed to train using re
time input/output data. Thus, at each control interval, the RB
training equations~Eqs.~11!–~13!! were executed using instanta
neous measurements of suspension displacementD(kT), suspen-

Fig. 12 Off-road terrain inputs for experimental control
evaluations
DECEMBER 2001, Vol. 123 Õ 731
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sion velocityḊ(kT), actuator forceFa(kT), and sprung mass ac
celeration ÿb(kT). The RBFN weights and the adaptatio
parametersh1 andh2 were initialized to ensure rapid, yet stabl
convergence during training.

Finally, after 5 minutes of real-time training, the IFL controll
was activated using the same controller gains as the bas
~fixed-gain! controller. Figure 13 shows the dramatic improv
ment in sprung mass response when the IFL controller was
vated at 30 seconds. The IFL controller exhibited an additio
60% reduction in sprung mass displacement when activated.
call that only difference in the two control laws was the cance
tion of learned system nonlinearities by the IFL controller.

The results of this closed-loop experiment clearly demonst
the improvements in performance that can be achieved using
even for baseline PD control. The IFL controller significantly r
duced the transmission of high-frequency forces to the spr
mass, translating to better ride quality for passengers and eq
ment. Also, these results provide conclusive evidence that the
telligent identification algorithm runs effectively in real-time an
may be feasible for full-vehicle applications.

VII Intelligent Feedback Linearization: Real-Time
HMMWV Implementation

As explained in the introductory sections of this paper, a m
tary HMMWV was retrofitted with electromechanical actuators
each suspension element to improve ride quality and mobility
off-road terrains. The extension of quarter-vehicle system ide
fication and control algorithms to a full-vehicle implementati
was complicated by several factors. Most notably, the vert
dynamics at each corner of the sprung mass are coupled to
corners through rigid body modes~heave, pitch, and roll!. Clearly,
the utilization of quarter-vehicle algorithms~which neglect this
coupling! on full-vehicle platforms is a simplification of the tru
vehicle dynamics, and will result in reduced performance. Ho
ever, extensive computer simulations conducted at UT-CEM us
full-vehicle, half-vehicle, and quarter-vehicle models sugges
that such performance reductions~particularly those related to ride
quality! were not substantial and could be justified by the redu
complexity of implementation. These findings are consistent w
previous research, and resulted in implementation of th
quarter-car algorithms. Current research at UT-CEM is investig
ing the adoption of a fully coupled dynamic model~14th-order!
for system identification and control, particularly with respect
handling performance.

Preliminary field evaluations focused on parameter estima
and IFL control~based on quarter-car algorithms! to improve ride
quality, as measured by the U.S. Army ‘‘absorbed power’’ ind
~AMM-75 Ground Mobility Model! @25#. This ride quality stan-
dard uses weighted filtering of sprung mass acceleration to q
tify the rate of energy absorbed by human occupants, and lim
this value to 6.0 W. For these tests, two milita
HMMWVs, one equipped with a standard passive suspension
one equipped with the active electromechanical suspension,

Fig. 13 Sprung mass response baseline and intelligent FBL
control
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driven over a variety of off-road test courses at the U.S. Arm
Yuma Proving Ground. The baseline control law was a nonad
ing, independent~nonmodal! combination of skyhook damping
@3# and spring cancellation@1,9,11,12#. Over a period of severa
hours, real-time data was collected from all four suspension
ments and used to train the RBFNs. Thus, at each control inte
the RBFN training equations~Eqs.~11!–~13!! were executed us-
ing instantaneous measurements of suspension displacem
D i(kT), suspension velocitiesḊi(kT), actuator forcesFai(kT),
and sprung mass accelerationsÿb(kT). These parameter estimate
were updated at each control interval and utilized by the IFL c
trol law ~Eqs.~5! and ~6!!.

Figure 14 compares the vertical acceleration measurement~at
the sprung mass center of gravity! for the HMMWV with standard
passive suspension~top! and active suspension~bottom!. Each
HMMWV was professionally driven across a straight-line was
board terrain~0.04 m RMS! at 24.1 kph~15 mph!. The passive
response exhibits peak accelerations in excess of 80 m/s2, and
absorbed power of 6.64 W, which exceeds the 6.0 W thresh
@25#. Peak accelerations for the active suspension are below

Fig. 15 Sprung mass accelerations for passive HMMWV sus-
pension „top … and active HMMWV suspension with IFL control
„bottom …—0.04 m RMS terrain at 40.2 kph „25 mph …

Fig. 14 Sprung mass accelerations for passive HMMWV sus-
pension „top … and active HMMWV suspension with IFL control
„bottom …—0.04 m RMS terrain at 24.1 kph „15 mph …
Transactions of the ASME
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m/s2, and the absorbed power is an incredibly low 0.35 W~a 95%
reduction!. Figure 15 is a similar comparison for 40.2 kph~25
mph!. The passive response~top! exhibits peak accelerations i
excess of 15.0 m/s2, and absorbed power of 13.85 W, more th
twice the limiting threshold@25#. Peak accelerations for the activ
suspension are below 5.0 m/s2, and the absorbed power is a r
markably low 1.49 W~an 89% reduction!.

VIII Conclusions and Recommendations
This paper details the development and real-time impleme

tion of intelligent parameter estimation and Intelligent Feedb
Linearization~IFL! to improve the ride quality and handling pe
formance of off-road active suspension systems. The IFL cont
ler combines Radial Basis Function Networks~RBFNs! with an
adaptive control strategy to cancel undesired nonlinearities,
facilitating the use of linear control laws. Experimental resu
from a quarter-car test rig demonstrate 60% improvements in
quality relative to a baseline~non-adapting! controllers. Addi-
tional, field trial results from a HMMWV implementation clearl
demonstrate the performance of quarter-vehicle parameter es
tion and control algorithms for improved ride quality. 95% redu
tions in absorbed power and 65% reductions in peak sprung m
acceleration have been documented using this IFL approach.

The IFL controller design followed a logical progression fro
concept and computer simulation@26#, to real-time experiment, to
full-vehicle implementation. Testing and refinement of the fu
vehicle controller, currently installed on a HMMWV, is still un
derway. Current research at UT-CEM is addressing full-veh
~dynamically coupled! control algorithms and bump-stop avoid
ance algorithms, as the energy transmitted to occupants r
heavily on avoiding the shocks associated with travel space
haustion.
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A new technique, based on dynamic inversion, for the resid
vibration reduction in the point-to-point motion of servosyste
with elastic transmission is presented. The methodology con
of defining a suitable motion law for the load, and subsequen
determining, via dynamic inversion, the corresponding comm
function for the system. The method inherently assures the rob
ness of the control scheme despite inaccuracies in the estima
of the stiffness constant and of the damping of the transmiss
The main contribution of the paper lies in the definition of
simple optimization procedure which allows the system invers
point that minimizes the residual vibration to be found. Expe
mental results show that in this way the identification phase is
critical and performances can be significantly improved.
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1 Introduction
High performances servosystems might suffer from the p

ence of elasticities in the transmission, which produces a resi
vibration at the end of a point-to-point motion. This fact intr
duces limitations in the reduction of the working cycle time, sin
the oscillation has to vanish before achieving the desired accu
of the positioning system. This problem has been addressed
number of researchers in the past and two strategies have
followed: either implementing a closed-loop control scheme,
which the state of the dynamic system has to be known during
motion ~and therefore apposite sensors have to be adopted! or an
open-loop control scheme which relies on an appropriate mo
planning methodology. In the context of the open-loop strate
the input shaping technique has been successfully developed
the last decade~see e.g.@1,2#!. Basically, it consists of convolving
a sequence of impulses, also known as the input shaper, w
desired system command to generate the system command t
then used to drive the system.

In a previous paper@3# we proposed an alternative approach
the input shaping technique. It is based on the concept of dyna
inversion and it allows minimization of the motion time whi
taking into account actuator constraints. The general idea is to
define an arbitrarily smooth closed-form polynomial motion fun
tion, parameterized by the time intervalt, for the load of the
system to avoid oscillations during and at the end of the mo
@4#. Then, by means of dynamic inversion the actual comm
input that causes the desired planned load motion is deri
Simulation and experimental results have proven the effective
of the method, with respect to the input shaping technique,
how it is inherently robust to modeling errors.

In this paper, we further develop the system-inversion-ba
methodology. Rather than considering a priori the uncertaintie
the model, we perform a simple procedure to search for the o
mal inversion point to minimize the residual vibration amplitud
In other words, starting from values of the system parame
determined by means of a simple identification experiment,
modify them in the system model adopted for the dynamic inv
sion, through repetitive experiments, until the residual vibrat
amplitude is minimized.

2 Dynamic Inversion Based Motion Planning
The presence of a gearbox in a mechanical positioning se

system generally introduces an elastic element which can be
ply described by the model shown in Fig. 1 wherey is the coor-
dinate representing the motor shaft displacement,x is the
coordinate representing the mass displacement,m is the load
mass,k the stiffness constant, andc the damping of the transmis
sion @5#. The well-known linear relation betweenx andy has the
following differential form:

mẍ1cẋ1kx5cẏ1ky (1)

which can be rewritten as:

z̈12jvnż1vn
2z52 ÿ

wherez5x2y, vn5Ak/m rad•s21 is the frequency of the oscil
latory mode andj5c/2mvn is the damping ratio.

Fig. 1 Model of an elastic transmission
734 Õ Vol. 123, DECEMBER 2001
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In general~we refer for example to the motion planning o
industrial robot manipulators!, the elasticity of the transmission i
not taken into account and the motion is planned ony ~the input of
the system~1!!, exploiting the full capabilities of the actuator an
considering the massm rigidly linked to the motor. When, how-
ever, excessive vibrations occur, the velocities, accelerations
jerks of the trajectory have to be reduced by increasing the mo
time and therefore limiting the performances of the system. T
drawback can be overcome by adopting a system-inversion-b
methodology which will be briefly described in the following. Fo
details see@3#.

Define a point-to-point motion law from position 0 toq for the
load in the time interval@0,t# using the ‘‘transition’’ polynomials
introduced in@4#:

x~ t;t!5q
~2h11!!

h! t2h11 (
i 50

h
~21!h2 i

i ! ~h2 i !! ~2h2 i 11!
t i t2h2 i 11. (2)

Outside the interval@0,t#, x(t;t) is simply defined asx(t;t)50 if
t<0 andx(t;t)5q if t>t. In ~2! the integerh can be arbitrarily
chosen in order to assurex(t;t)PC(h) over R, i.e., x(t;t) has
continuous derivatives up to thehth order. Note thatx(t;t) is
monotonically increasing and as a consequence, the planned
tion of the massm is, by construction, free of oscillatory modes

Consider the transfer function of the system~1!:

G~s!5
X~s!

Y~s!
5

cs1k

ms21cs1k
(3)

Applying the Laplace transform operatorL both to y(t;t) and
x(t;t), the closed-form expression of the parameterized in
function for t>0 ~obviouslyy(t;t)50 if t,0! which causes the
desired output function can be calculated as:

y~ t;t!5L21@G21~s!X~s;t!#5
m

c
ẋ~ t;t!1S 12

mk

c2 D x~ t;t!

1
mk2

c3 e2~k/c!tE
0

t

e~k/c!vx~v;t!dv. (4)

Note thaty(t;t) is all over bounded because the excited ze
modee2(k/c)t is stable. In order to obtainy(t;t) belonging toC( l )

it is necessary that, by virtue of~4!, x(t;t) belong toC( l 11), i.e.,
h5 l 11. In particular, to at least ensure the continuity of the v
locity input function, the constrainth>2 must be satisfied.

At this point the optimization procedure described in@3# for the
minimization of the motion time subject to actuator constrai
can be readily applied.

3 Dynamic Inversion Point Optimization
In the previous section it has been exposed a dynamic inver

based synthesis of the motion input that depends, besidest, on the
parametersm, c, andk. In particular, the linkage parametersc and
k, which are not exactly known in many practical cases, can
explicitly indicated as formal parameter arguments iny(t;c,k,t).
Thus, the problem of the optimal selection ofc>dc andk>dk in
y(t;c,k,t) arises, wheredk and dc are given arbitrarily small
positive values of the natural frequency and of the damping ra
We propose to choosec andk in order to minimize the amplitude
of the actual residual vibration~the transient motion of the load
for t>t!. Application of inputy(t;c,k,t) to the actual servo de
termines an output motion denoted asx(t;c,k,t). Hence, the re-
sidual vibration amplitude can be defined as:

J5J~c,k!ªmax
t>t

ux~ t;c,k,t!2qu. (5)

The addressed motion planning problem is therefore pose
the following minimization problem:
Transactions of the ASME
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c>dc ,k>dk

J~c,k!. (6)

Searching for a global solution of the optimization problem
extremely difficult because it has to be solved by means of s
ably arranged experimental trials. Therefore, we propose a pr
cable local optimization procedure based on a simplified coo
nate descent method@@6#, p. 227# which is in any case capable t
significantly improve the control system performances. Hence,
minimizersc* andk* of problem~6! can be found by means o
the following optimal inversion point~OIP! procedure.

OIP Procedure

1 Perform an identification experiment and estimatek0 andc0
~initial values!.

2 Setk* 5k0 , c* 5c0 , flag50.
3 Perform an experiment and setIªJ(c* ,k* ) and I 15I .
4 Setk* 5(11«)k* .
5 Perform an experiment and setIªJ(c* ,k* ).
6 If I ,I 1 then set flag51 and go to 3.
7 If flag51 go to 11.
8 Setk* 5(12«)k* . If k* ,dk then setk* 5dk .
9 Perform an experiment and setIªJ(c* ,k* ).
10 If I ,I 1 then go to 8.
11 Set flag50.
12 Setc* 5(11«)c* .
13 Perform an experiment and setIªJ(c* ,k* ).
14 If I ,I 1 then set flag51 and go to 12.
15 If flag51 go to 19.
16 Setc* 5(12«)c* . If c* ,dc then setc* 5dc .
17 Perform an experiment and setIªJ(c* ,k* ).
18 If I ,I 1 then go to 16.
19 End.

The typical identification experiment that can be performed
step 1 might consist of applying a torque impulse to the motor
analyzing the oscillatory response of the load. From the evalua
of the frequency and of the decay ratio of the response, the s
ness constant and the damping ratio can be straightforwa
determined.

Parameter« determines the velocity of the descent to the mi
mum and the precision in determiningk* and c* . It is easy to
adapt it in order to have a fast descent to the minimum at
beginning and then increasing the accuracy once we are clos
it ~for example, on the practical grounds,« can be initially fixed to
0.05!.

Remark 1. It is very important to stress that the resulting op
mal parameters do not necessarily coincide with the real value
the parameters of the physical system. In other words, minimiz
the residual vibration does not mean in general that we have
curately identified the stiffness constant and the damping rati
the system, since nonlinear effects, which are inevitably prese
the system, are not included in the simple model~1!.

4 Experimental Setup and Results
The experimental setup consists of a testbed, depicted in Fi

in which two carts, linked by a spring, slide on a stainless s
rectilinear guide~see Fig. 3 for a detail of the two carts!. The first
cart is connected to a belt which is moved through some pul
by means of a brushless motor configured in torque mode, i.e.
signal given to the drive by the controller is a torque comma
The overall reduction rate of the transmission system is kno
and therefore, we assume that the input reference functiony(t) is
the position of the first cart, rather than the position of the mo
shaft.

Then, the positiony(t) of the first cart is measured by means
an incremental encoder, mounted on the motor shaft, whose r
lution is 4•1000 impulses per motor revolution. The second c
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whose mass is 0.8 kg, is not actuated and its positionx(t) is
measured with an incremental linear scale with a resolution
40 mm.

The control system is implemented in a PC with I/O boards a
the control frequency is 1 kHz. The position of the first cart
controlled by a standard Proportional-Integral-Derivative~PID!
controller which has been accurately tuned by a trial and er
procedure, in order to guarantee a very low positioning error d
ing the motion.

A simple identification experiment, in which a torque impuls
was applied to the first cart and the oscillatory response of
second cart has been analyzed, has been initially performed.

Fig. 2 Sketch of the experimental setup

Fig. 3 The two carts linked with the spring adopted for the
experiments

Fig. 4 The planned motion of the load
DECEMBER 2001, Vol. 123 Õ 735
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resulting values ofk0 and c0 were 1858.15 kg•s22 and 8.03
kg•s21, respectively, which corresponds to a nominal natural f
quency of 48.19 rad•s21 and a nominal damping ratio of 0.10
Then, a load motion ofq50.2 m to be accomplished int50.3 s
was planned~see Fig. 4!. The value of the motion time have bee
selected in order to exploit the full dynamics of the actuator, wi
out saturating. A polynomial output function of fifth order (h
52) has been adopted, in order to guarantee the continuity o
input function until the first order, i.e., discontinuities in the a
celeration reference signal are allowed. Thus, we have:

Fig. 5 The command input function for the nominal and opti-
mal dynamic inversion

Fig. 6 The actual load motion for the nominal and optimal dy-
namic inversion
736 Õ Vol. 123, DECEMBER 2001
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Then, the OIP procedure has been applied, having fixeddc

5dk51024. At the end, it results ink* 53000 andc* 50.001,
that is, a natural frequency of 61.24 rad•s21 and a damping ratio
of 1.02•1025. The resulting input function, obtained via dynam
inversion, is plotted in Fig. 5, where it is compared with the inp
function obtained by inverting the nominal system withk0 and
c0 . The actual load motions for both the nominal and optim
dynamic inversion are plotted in Fig. 6, where it appears t
significant improvement is achieved by using the OIP procedu
Note that the objective functionJ is reduced from 2.7•1023 m to
0.6•1023 m. Moreover, the steady-state value of 0.2 m is attain
at t50.4 s for the optimal case and att50.54 s for the nominal
one.

5 Conclusions
In this paper we have presented an important developmen

the system-inversion-based technique for the reduction of the
sidual vibration in point-to-point motion of mechanical servosy
tems endowed with elastic transmissions. It has been shown
the use of the dynamic inversion methodology provides flexibi
in the motion planning design, as it allows to easily cope with
actuator limits. Moreover, the identification phase can be kept
very simple level, as the use of the polynomial functions ensure
inherent robustness to the system and the OIP procedure al
achieving high performances straightforwardly. Indeed, des
the simple modeling of the system and the simple adopted o
mization procedure, significant results have been obtained and
improvement with respect to the previously defined syste
inversion-based methodology is evident. The readiness of
overall methodology makes it very suitable to be adopted in
dustrial environments, as demonstrated by the experime
results.
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