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AN INFINITE DIMENSIONAL MORSE THEORY
WITH APPLICATIONS

WOJCIECH KRYSZEWSKI AND ANDRZEJ SZULKIN

ABSTRACT. In this paper we construct an infinite dimensional (extraordinary)
cohomology theory and a Morse theory corresponding to it. These theories
have some special properties which make them useful in the study of criti-
cal points of strongly indefinite functionals (by strongly indefinite we mean a
functional unbounded from below and from above on any subspace of finite
codimension). Several applications are given to Hamiltonian systems, the one-
dimensional wave equation (of vibrating string type) and systems of elliptic
partial differential equations.

0. INTRODUCTION

Let E be a real Hilbert space with an inner product (., .) and let ® be a twice con-
tinuously differentiable functional. Denote the Fréchet derivative and the gradient
of ® at = by ®'(x) and V®(x) respectively, where as usual

(VO(x),y) == (z)y Vyek.

Recall that a point 29 € F is said to be critical if ®' (xg) = 0, or equivalently, if
V®(xp) = 0. The level ¢ € R will be called reqular if ®~1(c) contains no critical
points, and critical if V®(zo) = 0 for some zo € ®~1(c).

Let a, b, a < b, be two regular levels of ®. Denote M := ®~1([a, b]) and consider
the restriction of ® to M. In Morse theory one is interested in the local topological
structure of the level sets of ®|y; near a critical point and in the relation between
this local structure and the topological structure of the set M. To be more specific,
suppose that o € M is an isolated critical point of ®. Then one defines a sequence
of critical groups of ® at xy by setting

(0.1) cq(®,z0) == Hy(®°NU,2°NU — {z0}), q=0,1,2,..,

where ¢ := ®(zg), ®° := {x € E : &(z) < ¢}, Hy is the ¢-th singular homology
group with coefficients in some field F and U is a neighbourhood of zy. Define
the Morse index of xy to be the maximal dimension of a subspace of E on which
the quadratic form (®"(zg)y,y) is negative definite. One shows that if z( is a
nondegenerate critical point, i.e., if ®”(x¢) : E — E is invertible, then ¢ (®, o) = F
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for ¢ = the Morse index of zg, and ¢,(®,z9) = 0 otherwise. So in this case the
groups ¢q(®, zo) are uniquely determined by the Morse index. If x( is degenerate,
no such simple relation exists. The global aspect of Morse theory is expressed by
the Morse inequalities which relate the critical groups of all critical points of ®|,
to the homology groups H,(®°, ) (which are isomorphic with H,(M,®~*(a)) by
the excision property of homology).

In what follows we assume that the reader is somewhat familiar with Morse
theory in Hilbert spaces. Necessary prerequisites (and much more!) may be found
e.g. in Chang [10] and Mawhin and Willem [34]. Let us also mention that a different
approach to Morse theory, based on the Conley index, has been developed by Benci
(see [6] and the references there).

The purpose of this paper is to construct a Morse theory for strongly indefinite
functionals. In order to explain why the ordinary theory fails in this case, let us
consider the following very simple example: Let £ = ET @ E~ be an orthogonal
decomposition of E into two infinite dimensional subspaces and suppose ®(z) =
Lzt ||> — 1)l27||?, where 2 € ET and 2~ € E~. Then 0 is the only critical point
of @; it is nondegenerate and has the Morse index +oo. Therefore ¢,(®,0) = 0 for
all ¢ (this can also be easily computed directly from the definition of ¢;). More
generally, if ®(z) = $[|a"||> — ]|z~ ||* + ¢(x), where V4 is a compact mapping
(i.e., it takes bounded sets to precompact ones), then the Morse index of any critical
point must necessarily be +o00. So in this case one cannot expect to obtain any
useful information from the usual Morse theory.

In order to remedy this difficulty, the second author has introduced a different
Morse theory in [41]. It was based on a suitably adapted version of an infinite
dimensional cohomology theory due to Geba and Granas [20, 21]. In the present
paper we construct another infinite dimensional cohomology theory and a Morse
theory associated with it. Let (E,)2; be a filtration of E, i.e., an increasing
sequence of closed subspaces of E such that E = cl({J,~, E,) (cl denotes the
closure), and let & = {FE,,d,}>2,, where (d,)S2; is a sequence of nonnegative
integers. Then for a pair (X, A) of closed sets in E, A C X, we define cohomology
groups of (X, A) by setting

(0.2) HY(X,A) = {H™ (X NE,, ANE,)},, q€Z

Since we are only interested in the asymptotic behaviour of the sequences on
the right-hand side above, we will consider (&,)52, and (1,)s>,, where &,,n, €
H"dn(XNE,, ANE,), as equivalent (or representing the same element of H (X, A))
if £, = n, for almost all n. In applications E,, will be a direct summand of F,, 1,
and we will have dim(E,,+1 © E,,) = k and d,, = ¢ + dn, where 0 < d < k and the
constants ¢, d, k are independent of n.

In [41] the cohomology groups were obtained as the limit as n — oo of the
direct system {H™(X N E,, AN E,),A%}, where (E,)>, is a filtration with
dim(E,+16E,) = land A4 : H""(XNE,, ANE,) — HIT" Y (XNE, 11, ANE,41)
is a certain Mayer-Vietoris homomorphism. The objects we construct here are
more unusual: each group HI(X, A) is in fact a sequence of cohomology groups
of the spaces (X N E,, AN E,) approximating (X, A). Although this is a certain
disadvantage compared to [41], our approach here has advantages which prevail. Tt
is much more flexible and more elementary. In particular, the fact that we may
have dim(E,,+1 © FE,) > 1 and d,,+1 — d;, > 1 will turn out to be very convenient in
applications. E.g., for Hamiltonian systems in R?" the natural choice of E,, and d,,
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is such that dim(E,+1 ©F,) = 4N and d,, = N(142n) (E, is in fact the space of n-
th partial sums in the Fourier expansion of functions in F, so dim E,, = 2N (1+42n)).
By this choice it will be possible to avoid a tedious approximation procedure which
was needed in [41, Section 6]. Furthermore, if the functional ® is invariant with
respect to an action of a group G, then in most cases E,, 1 © E, cannot be one-
dimensional if it is to be G-invariant.

The cohomology theory (0.2) will be constructed in Section 1, and in Sections 2—
5 we construct a corresponding Morse theory. We use an approach due to Gromoll
and Meyer [10, 22] and combine it with some ideas from the Conley index theory
[6, 11] (note that our cohomology is defined only on pairs of closed sets, so critical
groups cannot be introduced by a formula similar to (0.1)). Let us point out that
the functionals considered in [41] satisfied the Palais-Smale condition (PS) and
were of the form ®(z) = 1(Lxz,z) + ¢(x), with L linear and PpVe compact (Pp
is the orthogonal projector onto a certain subspace of F). Here we assume that ®
satisfies the condition (PS)*, which is somewhat stronger than (PS) but makes any
further assumptions on the form of ® unnecessary. In Section 6 a degree theory is
constructed. It is related to our Morse theory via formulas of Poincaré-Hopf type.

The remaining sections are devoted to applications. In Section 7 we consider the
problem of existence of periodic solutions for a Hamiltonian system of differential
equations

2= JH,(z1)

with Hamiltonian H asymptotically quadratic at 0 and infinity. We extend several
earlier results; see Remark 7.12 for more comments on previous work.

In Section 8 we are concerned with the asymptotically linear wave equation

(03) Utt — Ugy = f(xa t, u)
satisfying the boundary and the periodicity conditions
(0.4) u(0,t) = u(m,t) =0, u(z, t + 27) = u(x, t).

We extend earlier results contained in [1, 27] (cf. Remark 8.7). Moreover, we work
directly with the functional
O (u) := l/(uf —u2) dxdt +/ F(z,t,u)dxdt
2 Ja Q
(where = (0,7) x (0,27) and F is the primitive of f) which is natural for this
problem. This is in fact one of the main advantages of our approach. In [1] a finite
dimensional reduction was performed, and for this purpose it was necessary to
assume that the derivative f, of f is bounded (here f need not be differentiable).
The gradient Vi of the non-quadratic part of ® does not satisfy the previously
mentioned compactness condition. Therefore the theory of [41] cannot be applied
directly. Still, in [27] this theory was used, but only after introducing a different
functional—which had all properties required in [41].
Section 9 is concerned with the system of elliptic partial differential equations

—Av = Fy(z,u,v), —Au=F,(z,u,v), ulgg = vljan =0
in a bounded domain Q € RY. Note that the functional

D(u,v) :=/Vu-Vvdx—/F(x,u,v)da:
Q Q

corresponding to this problem is strongly indefinite.
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Notation and terminology. The closure of a set X will be denoted by X or cl(X),
the interior by int(X) and the boundary by X. B(p,r) is the open ball, B(p,r) the
closed ball and S(p,r) the sphere of radius r centered at p. Two sets A, B are said
to be bounded away from each other if d(A, B) := inf{||x —y| : z € A, y € B} > 0.
An increasing sequence (F,, )22 ; of closed subspaces of a Hilbert space E is called
a filtration of E if E = cl({J;2, En). A filtration together with a given sequence
(dn)$2, of nonnegative integers will be denoted by & = {E,,d,}32; (somewhat
improperly, we will sometimes write & = (E,,)22; when the choice of the numbers
d, is immaterial). A continuous function is called a mapping, and a mapping
f: X =Y (or f:(X,A) — (Y,B)), where X,Y C E, is filtration-preserving if
f(XNE,) C E, for almost all n. Homotopies and group isomorphisms are denoted
by ~ and 2 respectively. For level sets and critical sets we use the customary
notation

¢ :={x e E:P(x) <c},
K:={xc E:Vd®(r)=0} and K.:=Knd (c).

Occasionally we will write K(®) instead of K if we want to distinguish between
critical sets of different functionals.

1. COHOMOLOGY OF FILTERED SPACES

Let X be a metric space and A a closed subset of X. In what follows we denote
the Cech cohomology of the pair (X, A) with coefficients in a fixed field F by
H*(X,A). It is well-known that the Cech cohomology satisfies all the Eilenberg-
Steenrod axioms. It also has some additional properties which will be useful later.

Property 1.1. [39, Corollary 6.6.3] Let (X, A) be a pair of closed subsets of a
normed linear space E, A C X. Let A be the family of all pairs (U, V) of open
subsets of E such that X C U and A C V C U. Then A is an inverse system
directed by inclusion, and

(1.1) H*(X,A)ZIZ_’/QH*(U,V).
A

Since open sets in a normed linear space are absolute neighbourhood retracts, the
Cech and the singular cohomology of (U, V) coincide. It follows that for pairs (X, A)
as above, Property 1.1 (with singular groups on the right-hand side of (1.1)) may
be taken as a definition of the Cech cohomology. See also [17, Sec. VIIL6]. Note
that in [39] Property 1.1 is shown to hold for the Alexander-Spanier cohomology.
However, for paracompact Hausdorff spaces the Cech and the Alexander-Spanier
theories are equivalent (by [39, Corollary 6.8.8] and the five lemma applied to the
exact sequence of pairs).

Property 1.2. (Strong excision) If A and B are closed subsets of a normed linear
space E, then the inclusion (A, AN B) C (AU B, B) induces an isomorphism (the
so-called excision isomorphism,)

exc

H*(A,ANB) = H*(AU B, B).

The above property, in a more general form, may be found in [39, Theorem
6.6.5]. See also [17, VIIL.6.15].
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In order to introduce cohomology theory of filtered spaces we will need some pre-
liminaries. Let (G,,)52; be a sequence of abelian groups. We define the asymptotic
group [(G,)22 ] by the formula

[(Ga)22] Hgn/@gn

In other words, in the group

we introduce the equivalence relation (§,)22; ~ (n,)52; if and only if &, = n, for
almost all n > 1, and set

gnnl Hgn/N

If in particular G, = G for almost all n, we will write [G] instead of [(G)5,].
Note that the above construction of asymptotic groups generalizes immediately to
modules.

Assume now that E is a real Hilbert space and there is a filtration (E,)22
of E. Suppose that a sequence (d,)22; of nonnegative integers is given and let
E ={FE,,d,}>2,. If (X,A) is a closed pair of subsets of F, then for any integer
g we define the g-th E-cohomology group of (X, A) with coefficients in F by the
formula

HYX,A) = [(HY" (X NE,, ANEy)) .

Since F is a field, HZ(X, A) is in fact a (graded) vector space over F.

As admissible morphisms in the category of closed pairs in E we take all mappings
f:(X,A) — (Y, B) which preserve the filtration. It is clear that each such f induces
a homomorphism

f* HE(Y,B) — Hi (X, A)
given by the formula f* := [f}], or more precisely, by

F1En)nz] = [(fa(€n))nZal;

where fn := fl(xnE,, anE,) and & € H*T(Y N E,, BN Ey,).

The coboundary homomorphism §* : H*(A) — H**1(X, A) is defined by setting
§* = [6%], where &} : H"* (AN E,) — H"+* (X NE,, ANE,) is the usual
coboundary homomorphism in the Cech theory.

A homotopy G between two admissible mappings f, ¢ : (X, A) — (Y, B) will be
called admissible or filtration-preserving if G([0,1] x (X N E,,)) C E,, for almost
all n. It is easy to see that H} is a cofunctor in our (extraordinary) cohomology
theory of closed pairs in F and filtration-preserving mappings. More precisely, we
have the following;:

Proposition 1.3. (i) (Contravariance of HE) If id is the identity mapping on
(X,A), then id" is the identity on HE(X,A), and if f : (X,A) — (Y,B) and
g:(Y,B) — (Z,C) are admissible, then (go f)* = f* o g*.

(it) (Naturality of 6* ) If f : (X, A) — (Y, B) is admissible, then 6*(f|a)* = f*6*.
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(iii) (Ezactness) For each pair (X, A), A C X, of closed subsets of E, leti: A C

X and j: X C (X, A) be the inclusions. Then the cohomology sequence
s HY(X, A) L HI(X) - g A) 2 HITY(X, A) —
18 exact.

(iv) (Strong excision) If A, B are closed subsets of E, then the inclusion

(A, AN B) C (AU B, B) induces the excision isomorphism
Hi(A, AN B) = Hi(AUB,B),

(v) (Homotopy invariance) If f,g : (X, A) — (Y, B) are admissible and homo-
topic by an admissible homotopy, then f* = g*.

(vi) (Ezact sequence of a triple) For each triple (X, A, B), where B C A C X
are closed subsets of E, let i : (A,B) C (X,B) and j : (X,B) C (X,A) be the
inclusions. Then there exists a homomorphism 6* : HE(A, B) — HF (X, A) such
that the cohomology sequence

— HY(X, A) 25 HYX, B) - HYA, B) 2 HITN(X, A) —
18 exact.

The proofs follow immediately from the definitions and the corresponding prop-
erties of ordinary cohomology (see [17, 39] and Property 1.2). E.g., for a fixed n
one has the exact sequence

e HIY (X A B AN Ey) 23 HT (X 0 E,, B E,)

b gt (AN E,, BN E,) 25 HH Y (X 0 By, AN Ey) — -

and this gives (vi).

Note that H} satisfies all the Eilenberg-Steenrod axioms for cohomology ((i)-
(v) above) except the dimension axiom which is satisfied only in the trivial case
E, = E and d,, = 0 for almost all n. Note also that (iii) is a special case of (vi)
(take B = 0).

Instead of the dimension axiom we have the following basic example:
Example 1.4. Suppose that F' is a closed subspace of E, dim(F N E,,) = k, and
d = limy,—oo(k, — dy,) exists, d € Z U {xoc}. Given p € F and r > |p|, let
D = B(p,r) N F and S := S(p,r) N F. For each n > 1, DN E,, is a closed ball
with boundary SNE,, and dim(DNE,,) = k,. So if d = +00 or —oo, then for large
n, H*% (DN E,,SNE,) =0, and H}(D,S) =0 for all ¢ € Z. If d # %00, then
q+d, =q+ k, — d for almost all n and

[F] for ¢=d,
[0] otherwise.

H{(D,S) :{

2. CRITICAL GROUPS

Let E be a real Hilbert space and & = (E,,)22, a filtration of E. Denote the
orthogonal projector of E onto E,, by P,. Observe that if Z C E is a compact set,
then P,z — x as n — oo, uniformly for = € Z.

Let ® € CY(E,R). A sequence (y;)52; is said to be a (PS)*-sequence (with
respect to &) if

®(y;) is bounded, y; € E,; for some n;, n; — oo and P,,V®(y;) — 0 as j — oo.
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If each (PS)*-sequence has a convergent subsequence, then ® is said to satisfy the
(PS)*-condition (with respect to &), and if this is true for each (PS)*-sequence
contained in a closed set N, then ® is said to satisfy the (PS)*-condition on N.

The (PS)*-condition (in a slightly different form) has been introduced by Bahri
and Berestycki [4, 5] and Li and Liu [25]. Note that if ® satisfies (PS)*, then
each convergent subsequence of (y;) tends to a critical point of ®. Moreover, ®
satisfies the usual Palais-Smale condition (PS). Indeed, suppose (z;) is a sequence
such that ®(x;) is bounded and V®(z;) — 0. For each j there exists an n; > j
such that setting y; := P, x;, we obtain |®(x;) — ®(y;)| < 1, [|y; — ;]| < 1/j and
V@ (x;) = Ve(y;)|| <1/j. Hence P,,V®(y;) — 0, so (y;), and therefore also (z;),
has a convergent subsequence.

In what follows we will usually assume that ® satisfies (PS)* on the whole space
E. However, let us remark that our results remain valid if (PS)* is satisfied only
on a suitable closed subset of E.

Definition 2.1. Let N C F — K, where K is the critical set of ®. A mapping
V : N — FE is called a gradient-like vector field for & on N if
(i): V is locally Lipschitz continuous;
(ii): |V(z)| <1 for all z € N;
(iii): there is a function 8 : N — R such that (V®(z),V(z)) > p(z) for all
x € N and inf,cz 3(z) > 0 for any set Z C N which is bounded away from
K and such that sup,., [®(z)| < oo.

We say that a gradient-like vector field V' for ® on N is related to € (or E-related)
if the mapping V|z preserves the filtration (E,)2°; on any set Z C N which is
bounded away from K and such that sup, |®| < co.

Lemma 2.2. Let N be an open subset of E. If ® € C1(E,R) satisfies the (PS)*-
condition, then there exists an E-related gradient-like vector field V for ® on N—K.

Proof. Let
1
Ny:={zxeN:d(z,K) > 7 |®(x)] < k}.

Clearly, for each k > 1 the set Ny, is open, N C Njy1 and Jpo; Nk = N — K.
Hence there is an integer kg > 1 such that Ny # () for k > kq.
For each k > kg and n > 1, let

Y (k) := inf{|| P, VO(y)| : y € Np N E, }

and

~v(k) == %hnnilgfwn(k)
Evidently,
(2.1) v(k+1) < (k).
Moreover,
(2.2) ~v(k) >0

for any k > ko. For if v(k) = 0, then there is a sequence (y;), y; € Nx N E,,, such
that n; — oo and P,, V®(y;) — 0 as j — oo. Since |®(y;)| < k for any j, it follows
from (PS)* that after passing to a subsequence, y; — y € Ni. Therefore y ¢ K.
But V&(y) = lim;_.o Py, V®(y;) = 0, a contradiction.
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For any x € N — K, let
m(x) :=min{k > ko : © € Ni}
and define a function f: N — K — R4 by the formula

B(x) = %W(m(x) +1), ze€N-K.

If Z c N-K, Z is bounded away from K and sup |®| < oo, then thereis a k > ko
such that Z C Nj. Hence by (2.1), (2.2),

(2.3) inf §(z) 2
Let € N — K and define
W, = {we S: (Vd(z),w) > %w(m(m))h

N | =

v(k+1)>0.

where S := {w € E : ||w|| = 1}. Observe that W, is open (in S) and nonempty
(because [|[V®(z)|| = limy—oo | P, VR(Pyx)|| > liminf,, . o (m(x)) = 2v(m(x))).
Denote S, := SN E,. Since cl(J,—, Sn) = S, the number

n(z) := min{n > 1: W, NS, # 0}

is well-defined. Let w(x) be an arbitrary point of W,NS,,(,. Since V@ is continuous
and Ny, () is open, there exists an open neighbourhood U (z) of = such that

(2.4) U(CE) C Nm(z) — Nm(m)_Q,

(25) (VO (y),w(a)) > 31(m(x) VyeU()

and

(2.6) IVe(y) — VO(z)| < %W(W(SC)) VyeU(z).

By (2.4),

(2.7) m(y) = m(z) or m(y) =m(x) —1 whenever y € U(z).

The open covering {U(z)}zen—x admits a locally finite Lipschitz continuous
partition of unity {);};ecs subordinate to it. For each j € J thereisan z; € N — K
such that supp A; C U(z;). Define V : N — K — E by the formula

V() = 3 Auls), yeN - K.
jeJ
Clearly, V is locally Lipschitz continuous and ||V (y)|| < 1fory € N — K.
Let y € N — K. If A\j(y) # 0, then y € U(z;), and in view of (2.7), m(z;) <
m(y) + 1. Therefore, by (2.5) and (2.1),

1
(VO(y), V(y)) = D \u)(VP(y), w(zy)) > 37(my) +1) = B(y).
jeJ
This together with (2.3) shows that V is a gradient-like vector field for ® on N — K.
It remains to show that V is related to £. Let Z C N — K be bounded away
from K and such that sup, |®| < co. Then Z C N, for some m > ko. There exists
an ng such that v, (k) > (k) for all n > ng and kg < k < m. It follows that
(2.8)
|1P.V®(y)|| >~v(k) whenever n > ng, ko <k <m andy € NyNE,.
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Let n > ngand y € ZN E,. If \j(y) # 0, then y € U(z;), and by (2.7), m(y) <
m(z;). Moreover, m(y) < m since Z C Np,. Let w := |P,V®(y)|| 1P, V®(y) €
Spn- By (2.8) (with kK = m(y)) and (2.6),
(VO(z;),w) = (VO(y), w) — (VO(y) — VO(z;), W)
= [[P.Ve@) = (Ve(y) — VO(z;), W)
¥(m(y)) — 3v(mlx;)) = 57(m(=;)).

Hence w € W,; N S,. It follows that W,, NS, # 0, and by the definition of n(z),
n(z;) < n. Therefore w(z;) € Ey,,) C Ey and V(y) € Ey. O

\

Definition 2.3. Let A be an isolated compact subset of the critical set K of a
functional ® € C1(E,R). A pair (W,W ™) of closed subsets of E is said to be
an admissible pair for ® and A with respect to £ if the following conditions are
satisfied:

(i): W is bounded away from K — A, W~ C OW and A C int(W);

(ii): @|w is bounded;

(iii): there are a neighbourhood N of W and an &-related gradient-like vector
field V for ® on N — A;

(iv): W~ is the union of finitely many (possibly intersecting) closed sets each
of which lies on a C'-manifold of codimension 1, V is transversal to each of
these manifolds at points of W™, the flow n of —V can leave W only via W~
and if z € W, then n(t,x) ¢ W for any ¢ > 0.

The gradient-like vector field V' corresponding to (W, W ™) will be called an
admissible field. In what follows we will usually omit the expressions “related to
&7 and “with respect to £”.

Remark 2.4. Assume that a pair (W, W) of closed sets satisfies the conditions
of Definition 2.3 except that the gradient-like field V' in (iii) is defined only on a
neighbourhood N of OW. If ® satisfies (PS)*, then, using Lemma 2.2 and partition
of unity, it is easy to construct a gradient-like field V:N—A— E, where N =
N UW. Thus (W, W) is an admissible pair for ® and A.

Proposition 2.5. Assume that ® € C*(E,R) satisfies (PS)*. Let a < b, W :=
&~ ([a,b]) and W~ := ®"L(a). If A := KNint(W) and W is bounded away from
K — A, then the pair (W, W ™) is admissible for ® and A.

Proof. Clearly, there exists an open neighbourhood N of W such that N is bounded
away from K — A. In view of Lemma 2.2, there is an £-related gradient-like vector
field V for ® on N — A. Since (V®(z),V(z)) > 0 whenever x € W, (W, W) is
an admissible pair. O

Recall that S(p,8) = {z € E : |z — p| = 6}.

Proposition 2.6. Suppose that ® € C*(E,R) satisfies (PS)* and has an isolated
critical point p. For each open neighbourhood U of p there exists an admissible pair
(W,W~) for ® and p such that W C U and ®|y- < ¢:= ®(p). Moreover, there is
a &1 > 0 such that B(p,61) C int(W) and if x € S(p,61) N ®°, then n(t,z) € W-
for some t > 0 (n is the flow of =V ).
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Proof. Choose § > 0 such that 0 < § < d(p, K —{p}), B(p,8) C U and SUPp(p,s) | 9P|
< oo. Let V : B(p,6) — {p} — E be a gradient-like vector field related to £ and let

@ = nf{(z) : § < e —pl < 6)
(B(.) is the function in (iii) of Definition 2.1). Choose £ > 0 with
(2.9) 0<e< %6.
Let 61,62 > 0 be such that 62 < 61/2 < §/4 and

B(p,61) C{r € E:|®(x) —c| < e}

Set N := B(p,6). Define now a locally Lipschitz continuous function w : N —
[0,1] such that w(xz) = 0 in a neighbourhood of p, w(z) =1 for 62 < ||z —p|| < 6,
and consider the initial value problem

d
d—j = —w(0)V (o), o(0,2)=z€ N.
Having all this, define
W= {o(t,z):t >0, x € B(p,61), ®(co(t,z)) >c—¢}
and
W= =Wnd tc—e).

We will show that W C B(p,6). Assuming the contrary, there are z € B(p, 61)
and 0 < ¢ < tg such that §/2 < ||o(t,z)—p|| < é fort € (t1,t2) and ||o(t1, ) —p|| =
6/2, |lo(ta,x) — p|| = 6. Hence

5 t2
210) 5 <o) ot < [ IV(sa)ds <t - n.
t1
Moreover, by Definition 2.1,
to
O(o(ta,z)) — P(o(t1,2)) = diq)(o(s,x)) ds
t, @8

= / 2(V<I>(0(s,x)), —V(o(s,x)))ds < —altas —t1).

t1

Therefore, in view of (2.9), (2.10),
5
B(0(ts,x)) < B(o(tr,2)) — alts —t1) < c+e — 0‘7 <c—c¢,

a contradiction.

The set W is closed. For if 4, := o(t,,x,) € W, where x,, € B(p,61), tn, >0
and y, — y € OW, then z, may be chosen so that o(t,z,) ¢ B(p,ds) for 0 <
t < t,. Since ®(o(tn,xn)) > ¢ — €, we obtain that the sequence (¢,) is bounded.
Hence t,, — t > 0 (possibly after passing to a subsequence), ,, = o(—tn,yn) —
o(—t,y) =22 € B(p,61), and y = o(t,x) € W.

The set W~ is obviously closed, and it is a subset of the submanifold B(p, ) N
®~!(c—¢). Since the mapping ¢ + o(t,z) is transversal to this manifold, (W, W ™)
is an admissible pair (and @|y - < c).

To prove the second conclusion, note that since inf{3(z) : 61/2 < ||l — p|| < 6}
> 0, there exists an g9 > 0 such that if z € S(p,é1) and ®(x) < ¢, then ®(o(t,x))
< ¢ — gg whenever ||o(t,x)|| = 61/2. Choosing 62 smaller if necessary, we obtain
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®(x) > ¢ — g for each & € B(p, 62). Therefore o(t, ) cannot enter B(p, é2). Since
w(z) =1 and B(z) is bounded away from 0 as 62 < ||z —p|| < 6, P(o(tg,z)) =c—¢
for some tg, and 7n(to, z) = o(tg,z) € W~.

From now on we assume that the sequence (d,,) has been given and that £ =
{E,,d,}. Let p be an isolated critical point of a functional ® € C'(E, R) satisfying
the (PS)*-condition and let (W, W ™) be an admissible pair for ® and p. We define
the g-th critical group (¢ € Z) of ® at p with respect to £ by the formula

ct(®,p) == HE(W,W™).

Proposition 2.6 asserts the existence of an admissible pair (W, W~). We will prove
now that ¢Z(®,p), ¢ € Z, is well-defined, i.e., it does not depend on the particular
choice of such a pair.

Proposition 2.7. Suppose that ® satisfies (PS)* and W1, W[ ), (Wa, W5 ) are
two admissible pairs for ® and an isolated critical point p. Then HE(Wr, W ) =2
HE(Wo, W35 ).

Proof. To (W;, W) there correspond a neighbourhood N; of W; and an admissible
vector field V; on N; — {p}, i = 1,2. According to Proposition 2.6, there is an
admissible pair (W, W) for ® and p such that W C int(W7) Nint(W2). It suffices
to show that

Hg(Wy, W) = He(W,W™).

Assuming that (W, W ™) is constructed as in Proposition 2.6, we easily obtain
(using an appropriate partition of unity) a gradient-like vector field V which is
admissible for both (W, W~) and (W3, W7 ). Note in particular that since W~ C
®~!(c —¢), where ¢ := ®(p), the flow 77 of —V cannot re-enter W after leaving it.

Consider the initial value problem

do

dt
where @ : Ny — [0,1] is a locally Lipschitz continuous function such that @ = 0
on B(p,80/2),» =1 on Ny — B(p, &), and & is chosen so that B(p,&y) C int(W).
Observe that whenever n is large enough, then

(2.11) o(t,z) € Wi N E, provided z € Wy N E,, and o(t,x) € W,

= —&(0)V (o), o(0,2)=x¢€ Wy,

(because the mapping Wi 3 x — @(x)V (x) preserves the filtration).

Since the mapping Wi 3 z — @(z)V(x) is locally Lipschitz continuous and
bounded, it follows that for a given x € W either there is a unique t = t(z) € [0, c0)
such that o(t(x),x) € Wi or o(t,z) € W; for all ¢ > 0. In the latter case we set
t(z) = 4o00. The implicit function theorem and the transversality condition on W~
imply that the function x — t¢(x) is continuous on the set {x € W : t(z) < oo}.

Let A:={o(t,z):t>0, z € W-INWy and let W := WUA, W~ := WNWj.
Then (W, W) is an admissible pair for ® and p, and V is an admissible field.
Since
(2.12)

D(o(t,z)) — @(x) = /0 W(o(s,2)){(VP®(o(s,x)),—V(o(s,x)))ds

< —/0 W(o(s,x))B(o(s,x))ds,
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where 3 corresponds to V (in the sense of (iii) of Definition 2.1), and since & = 1
and 3 is bounded away from 0 on Wi — int(W), it follows that ¢(x) < co whenever
x € A. Therefore the mapping

[0,1] x A>3 (A x) — o(Mt(x),x) € A

is a strong deformation retraction of A onto W—. Since it preserves the filtration (cf.
(2.11)), we have Hf(A,W~) = 0. Now the exactness of the cohomology sequence
of the triple (W, A,WW~) and the excision property imply that
(2.13) HE(W, W) = Hy (W, A) = H;(W,W™).

Let Wy = WU W . Then (Wp, W, ) is an admissible pair for ® and p. Excising
again, we see that

(2.14) Hy (W, W) S He (W, W),

We will show that HE(Wo, Wy ) = HE(W1, W, ). There is a T > 0 such that for
any z € Wy cither o(t,z) € W for T < t < t(x) or T > t(z). Indeed, if o (t,z) ¢ W,
then by (2.12), ®(o(t,x)) < ®(z) — tB, where §:=inf, B(x) > 0. So we can
choose T' = (supyy,, ® — infy, ®)/p.

Consider the mapping ¢ : [0, 7] x Wi — W given by the formula

_Jo(tx) if 0 <t <t(x),
8 2) = {a(t(x),x) it i(z) <t <T.

Since the function x — t(x) is continuous on the set {x € W7 : t(z) < oo}, we get
that & is a filtration-preserving deformation of the pair (W1, W7 ) into (Wo, W)
and £([0,T) x Wy) € Wy, &([0, T x W) € Wy . It follows that the pairs (Wo, W1 ")
and (Wq, W, ) are homotopy equivalent by filtration-preserving homotopies. In-
deed, if 7 : (Wo, W) — (W1, W1 ) is the inclusion and &p := £(T, .), then {roi ~ id
on (Wo, Wy") and i o & =~ id on (Wi, W;). Hence Hi(Wo, Wy ) =2 Hi (W1, Wy),
which together with (2.13), (2.14) completes the proof. |

The critical groups cg(®,p) have a certain continuity property which will be
useful further on.

Proposition 2.8. Suppose that ® satisfies (PS)*, p is an isolated critical point of
® and (W, W) is an admissible pair for ® and p. There exists an € > 0 such that
if ® € C1(E,R) satisfies (PS)*, supy, |®| < oo, supy, |[VO(z) — VO(z)|| < &, ®

has only one critical point p in W and W is bounded away from K(®) —{p}, then
(W, W) is an admissible pair for ® and p.

Proof. Choose a neighbourhood N of W such that N is bounded away from K (®)—
{p} and supy |®| < 0o. Let V : N — {p} — FE be an admissible vector field for ®
and let B(p, ) C int(W). Since the set N — B(p,§) is bounded away from K (®),
B :=inf{f(z) : x € N — B(p, )} is positive (again, 3() is the function in (iii) of
Definition 2.1). Let £ € (0, 8) be fixed. If @ satisfies our hypotheses, we may assume
after shrinking N if necessary that supy |®| < co and supy [|[V®(z) — Vo (z)]|| < e.
Evidently, for z € N — B(p, ),

(VB(a), V() = (VO(x), V(@) + (VE(z) - VE(z), V(2)) > B(z) — > B—= > 0.
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So p € B(p,6) and N — B(p, §) is bounded away from K (®). Invoking Remark 2.4,
we easily conclude the proof. O

Corollary 2.9. Let {®x}rcp0,1) be a family of C*-functionals satisfying (PS)*, and
suppose there is an open set U such that each ®) has a unique critical point py € U,
sup{|®x(x)| : z € U, A € [0,1]} < 00 and the mapping A — V®y is continuous, uni-
formly in x € U (i.e., supy [|[V®,(x) — VO(z)|| = 0 as p — ). Then ct(Px, px)
is independent of A € [0, 1].

Proof. Take any A € [0,1] and a ball By C U around py. There is an admissible
pair (W,\,WA_), Wy C By, for &) and py. By Proposition 2.8, there is an € > 0
such that for each p € [0,1], |p — A < &, (W, Wy ) is an admissible pair for
®,, and p, (that p, € B(px,8) C Wi is seen in the same way as in the proof of
Proposition 2.8). Hence c&(®,,p,) = c¢z(Px,pr). The conclusion follows from the
connectedness of [0, 1]. |

Recall our earlier observation that the results above remain valid if (PS)* is
satisfied on a suitable closed subset of E. In particular, in Lemma 2.2 (PS)* is
needed on N, in Proposition 2.6 on a closed neighbourhood of p, in Proposition 2.7
on a closed neighbourhood of W7 U W5, and in Corollary 2.9 all ®, should satisfy
(PS)* on U.

Corollary 2.10. Suppose p is an isolated critical point of ® and let ®,(x) =
O(x+ p). If there exists a closed neighbourhood N of p such that ® satisfies (PS)*
on N and V® is uniformly continuous on N, then ct(®,p) = c&(Pp,0).

Proof. Let p,, := P,p. We show first that ®,,_,, satisfies (PS)* on B(p, §) for n large
and 6 small enough. Suppose z, € B(p,§)NE,, , ny — oo and P, V®,_, () — 0.
Since V@ is uniformly continuous on N, |V®(zx+p—pn) — V(2 +Dn, —0n)| — 0,
and therefore P, V® (x4 ppn, —pn) — 0 as k — co. Moreover, xi +pn,, —pn € NN
E,, for almost all k. Hence (z)) has a convergent subsequence. Now let (W, W ™),
W C B(p,6), be an admissible pair for ® and p. Choosing a larger n if necessary,
it follows from Proposition 2.8 that (W, W ™) is also an admissible pair for ®,_,,
and p,. Since the mapping x — = — p, is a filtration-preserving homeomorphism
and (W —p,,, W~ —p,,) (where W —p,, := {x — p, : © € W}) is an admissible pair
for ®, and 0, c&(®,p) = HE(W, W) = HE(W — pu, W™ — pn) = c&(P,,0). O

Remark 2.11. Tt is easy to see that if A = K, where ¢ is an isolated critical value,
then Propositions 2.6 and 2.7 remain valid for & and K..

Suppose now that the critical set K = K(®) is compact. A pair (W, W) of
closed subsets of E will be called a globally admissible pair for ® and K with respect
to £ if (W, W) satisfies the conditions of Definition 2.3 with A = K and N = F
(i.e., K C int(W) and the gradient-like vector field V is defined on E — K). The
field V' will be referred to as globally admissible. We also define the critical groups
of the pair (®, K) by setting

CL(P, ) == HI(W, W),
where (W, W) is a globally admissible pair.

Proposition 2.12. Suppose that ® satisfies (PS)* and the critical set K is com-
pact. Then the critical groups ct(®,K) are well-defined.
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Proof. Let (W,W~) := (®~([a,b]),®"(a)), where a and b are chosen in such a
way that K C int(W), and let V : E— K — FE be a gradient-like vector field related
to . It is easily seen (cf. Proposition 2.5) that (W, W ™) is globally admissible.
Let (W1, W7 ) be another globally admissible pair with a corresponding globally
admissible field V. Choose a and b above so that Wi C W. Since V is also globally
admissible for (W, W), the argument of Proposition 2.7 shows that Hz (W, W) =
HE(Wh, W71 (the cutoff function w should be 0 in a neighbourhood of K and 1
outside a neighhbourhood U of K, where U C int(W7)). O

Lemma 2.13. Suppose that @ satisfies (PS)* and the critical set K is compact.
Then there exists a bounded globally admissible pair (W, W~) for ® and K.

Proof. Choose a and b so that a < ®(z) < bforz € K. Let V: E— K — E be
a gradient-like vector field related to £ and let N, U be two neighbourhoods of K
such that N is closed, U open and N C U C ®~1([a, b]). Consider the initial value

problem
do

dt
where w : E — [0,1] is locally Lipschitz continuous and w(z) = 0 for z € N,
w(z) =1for x ¢ U. Define

W= {o(t,r):t >0, x € U, ®(o(t,z)) > a}

= —w(o)V (o), o(0,2) = x,

and

W~ =Wno a).
It is easy to see using the argument of Proposition 2.6 that (W, W ™) is a globally
admissible pair and W, W~ are bounded sets. O

The critical groups ¢ (®, K') have a continuity property similar to the one known
from the Conley index theory [6, 15]:

Proposition 2.14. Let {®x}acjo,1] be a family of Cl-functionals satisfying (PS)*.
Suppose that the mapping A — V@ is continuous, uniformly on bounded subsets
of E, and there exist a bounded set N and a constant C such that K(®)) C N and
supy |®x| < C for all A € [0,1]. Then cf(®x, K(®y)) is independent of .

Proof. Choose A € [0, 1] and a bounded globally admissible pair (Wy, Wy ) for @y
and K (®y). It is easily seen from the proof of Proposition 2.8 that (Wy, W, ) is a
globally admissible pair for ®,, and K(®,) whenever |A — | is small enough. Note
in particular that supyy,, |®,| < co (because W) is bounded and supyy, [®x] < 00)
and K (®,) C Wy (because K(®,) C N and

VO, (2)[| = [[VOr(2)[| = [VE,u(x) = VOA(2)] >0

for  in a neighbourhood of N —int(W))). Also, using partition of unity it is easy to
construct a gradient-like vector field V,, : E—K(®,) — E for ®, such that V,, = Vy
in a neighbourhood of 0W). So the conclusion follows from the connectedness of
[0, 1]. |

Remark 2.15. Let My be a C? Riemannian manifold and (F,)%; a filtration of a
Hilbert space F'. Denote the orthogonal projector of F' onto F,, by @, and define
M := My x F, M, := My x F,, and P,(x,y) := (z,Qny) for (z,y) € My x F. It is
easy to see by inspection that the results of this and the preceding section remain

valid for M.
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3. MORSE INEQUALITIES

Denote [Z] := ], Z/ @, , Z and [Z] := {[(&,)524] € [Z] : &, > 0 for almost
all n}. Let (X, B) be a pair of closed subsets of E with the property that for each
q € Z there is an n(q) such that

dim H"" % (X N E,,BNE,) < oo
whenever n > n(q). Then
(3.1) dimg HY(X, B) := [(dim H*" " (X N E,, BN E,)) ]

is a well-defined element of [Z]. The sequence on the right-hand side of (3.1) will
often be constant for almost all n. In such a case we will write dimg HZ(X, B) =
[d], d being the constant. We will say that the pair (X, B) is of E-finite type,
or E-finite for short, if dimg HZ(X, B) is well-defined (in the above sense) and
dimg HX(X, B) = [0] for almost all ¢ € Z.

Suppose that @ satisfies (PS)* and (W, W ™) is an admissible pair for ® and
A= {p1,...,pr}. We will say that p; is of E-finite type, or E-finite, if some (and
therefore every) admissible pair for ® and p; is E-finite. If (W, W ™) and all p; are
E-finite, then we define

k
(3.2) MW, W)= dime ck(®,p;), q€Z,
j=1
and
(3.3) BLW, W) := dimg HX(W,W™), qcZ.

Moreover, in such a case we may define the Morse and the Poincaré polynomials of
(W, W~) by setting

Me(t, WW™) o= > MW, W)t

g=—00

and

Pe(t, WW ™)=Y BEHW, W) ¢4,
gqg=—00
Note that Mg and Pg are not polynomials in the usual sense (because some expo-
nents ¢ may be negative). Formally, Mg and Pg are elements of [Z][t,t71].

Theorem 3.1. (Morse inequalities) Suppose that ® € CY(E,R) satisfies (PS)*
and (W, W) is an admissible pair for ® and A := {p1,...,px}. If all p; are E-finite,
then the pair (W, W) is E-finite and there is a polynomial Q(t) = Z;i_oo aqgt?
such that aq € [Z4] for all g and

Me(t, W, W™) = Pe(t, W,IW™) + (1 + t)Q(¥).

Note that an equivalent way of expressing the Morse inequalities is

So(=0TIMIWWT) > Y (-D)TIRL W), e

j=—00 j=—o00

First we prove the following special case of Theorem 3.1:
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Lemma 3.2. Under the hypotheses of Theorem 3.1, suppose that ®(p1) = ®(p2) =
... =®(pg). Then

MW, W) =BE(W, W) for all g € Z.

Proof. Let (W;, Wj_) be an admissible pair for ® and p;, 1 < 7 < k. We may assume
that the W;’s are pairwise disjoint. Then (Uf:1 W;, U?:1 W) is an admissible pair
for & and A. Using Remark 2.11, we obtain

k k k
HI(W, W) = Hg(U wy. U Wj—) ~ D HLW, W) = Dl (@,p)).
=1 =1 j=1 j

Jj=1

So the conclusion follows from the definitions (3.1)—(3.3). O

Proof of Theorem 3.1. Our argument follows closely [34] and [41].

Let X DY D Z be closed subsets of E. In the exact sequence of the triple
(X,Y,Z) (ct. (vi) of Proposition 1.3) denote the range of a mapping by R and
dimg HZ(.) by BZ(.). Assume that the pairs (X,Y), (X, Z) and (Y, Z) are E-finite.
It follows (using the exactness) that

BLX,Z) = dimg R(j7) + dimg R(i9),
BL(Y,Z) = dimg R(i?) + dimg R(67),
BLUX,Y) = dimg R(677") + dimg R(j%).

Hence
(34)  BLUX,Y)+BLY, Z) = BL(X, Z) + dime R(697") + dime R(6).
Denote the Poincaré polynomial of (X,Y") by Pe(t, X,Y), and set
(3.5) Qt, XY, Z):= Y dimg R(87)t".
q=—00

Since dimg R(67) = [0] for almost all g, it follows by multiplying (3.4) by ¢ and
summing over g that

(3.6) Pe(t,X,Y)+ Pe(t,Y,Z2)=Pe(t, X, Z)+ (1 + )Q(¢, X, Y, Z).

Let ¢1 < ¢a < ... < ¢y, be the critical values of ®|y. Chooose numbers d; such
that do := infyw @, d,,, := supy, @ and

do<c1<dy <co<...<dmo1<cm<dp.
Define
W =Wnat)yuw-, i=0,1,..,m,
and, for alli=1,...,m,
Wi={zeW,: ®x)>di_1}, W, :={zeWe_:®x)>di1}.
Note that W,,, =W, Wy = W~ and

(3.7) HE (Wi, Wis1) = HE (Wi, W),  i=1,..,m.
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Since (V®(z),V (z)) > 0 whenever x € W N ®~1(d;) (cf. (iii) of Definition 2.1), it
is easy to see that (/V[v/z, W;) is an admissible pair for ® and the critical points p;
satisfying ®(p;) = ¢;. Hence
(3.8) ng(W, wo) = ZMS(WhWi_) = Zﬂg(WhWi_)

i=1 i=1
according to Lemma 3.2.

By (3.8), each pair (W;, W,) is E-finite, and by (3.7), the same is true for
(W;, W;_1). Exactness of the cohomology sequence of the triple (W;, W;_1, W;_2)
implies that also the pair (W;, W;_2) is E-finite. So the E-finiteness of (W, W ™) =
(Wi, W) follows by induction.

Substituting X = W,, =W, Y =W, and Z = W,;_; in (3.6), we obtain

Pe(t, W, W;) + Pe(t,W;, Wi_1) = Pe(t, W, W;_1) + (1 + )Q(t, W, W;, W;_1).
Adding these equalities gives
(3.9) D Pe(t, Wi, Wi1) = Pe(t, W, W) + (1 + 1)Q(t),
i=1

where Q(t) has coeflicients a, € [Z4] and a, = [0] for almost all ¢ (cf. (3.5)).
Finally, multiplying (3.8) by t?, summing over ¢ and employing (3.7), (3.9) and the
definitions, we obtain

Me(t,W,W™) = Pe(t, Wi, W,")

|

If ® satisfies (PS)*, a < b, 7 !(a), ®~!(b) are bounded away from the critical
set K and K N ® 1(a,b) is finite, then (W, W~) = (®~([a,b]),®1(a)) is an
admissible pair, as follows from Proposition 2.5. Since

HE(W,W™) = HE(9",8%),
we may denote the Morse and Poincaré polynomials of (W, W ™) by Mg(t, ®°, ®2)
and Pg(t, %, ®%) in this case.

Corollary 3.3. Suppose that ® € C*(E,R) satisfies (PS)*, @~ 1(a), ®~1(b) (where
a < b) are bounded away from K and the set A := K N ® 1(a,b) is finite. If all
points of A are E-finite, then

Me(t, ®°, @) = Pe(t, 2", @) + (1 + H)Q(t),
where Q(t) is as in Theorem 3.1.

Remark 3.4. Note for further reference that if (E,)2; is the trivial filtration of E
(i.e., E, = F for all n) and d,, = 0 for all n, then essentially our theory is equivalent
to the usual Morse theory. In particular, in this case our notion of admissible pair

is a variant of the notion of Gromoll-Meyer pair as defined in [10].
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4. AUXILIARY RESULTS ON LINEAR MAPPINGS

In order to study the local behaviour of a functional ® near an isolated critical
point p one usually assumes that ® satisfies (PS), the second Fréchet derivative of
® exists, at least at p, and L := ®”(p) is a Fredholm operator [10, 34, 41]. Then L
is necessarily self-adjoint, of index 0 and

E=R(L)® N(L),

where R(L) and N(L) are the range and the null space of L. Note that if L is
Fredholm, it is proper on bounded sets, i.e., if C' is compact, then the intersection
of L7(C) with any closed ball is compact. In other words, if (z;) is a bounded
sequence such that Lz; — y, then (z;) possesses a convergent subsequence.

If & satisfies (PS)* instead of (PS), it seems natural to replace the condition
Lxz; — y by x; € Ey; and P, Lr; — y, i.e., to assume that L is A-proper. More
precisely, let E be a real Hilbert space with a given filtration £ = (F,,)5 ;. Recall
that a mapping f : D — E, D a closed subset of E, is said to be A-proper (with
respect to &) if each bounded sequence (z;)72; C D such that z; € DN E,; for
some 1, n; — oo and Py, f(x;) — y € E as j — oo, has a convergent subsequence.
Clearly, if xz;, — x as k — oo, then f(z;,) — f(z) and f(z) = y. It is easily
seen that if B is a compact mapping and f(z) = z + B(x), then f is A-proper.
More generally, f is A-proper if f(x) = Az + B(z), where A is a bounded linear
Fredholm operator of index 0, A(E,,) C E,, for all n and B is compact. A survey of
A-proper mappings may be found e.g. in Petryshyn [35, 36]. The definition given
there is more general than ours. On the other hand, in [35, 36] it is assumed that
dim F,, < oo, which is not necessarily the case here.

In [36, Theorem II.3.1] it is shown that if L is an A-proper bounded linear
operator, then L is Fredholm of index > 0. For the sake of completeness and
because we do not assume that dim F,, < oo, we give a proof for a self-adjoint L.

Denote the space of bounded linear operators from E to F' by L(E, F).

Proposition 4.1. If L € L(E, E) is A-proper and self-adjoint, then L is a Fred-
holm operator of index 0.

Proof. In order to prove that dim N(L) < oo, assume the contrary. Then there
exists a sequence (z;) C N(L) such that ||z;|| =1 and ||z; — x;|| > 1 if i # j. For
each j thereis a z; € E,;, nj > j, such that [|z; — ;|| <1/j. Then ||z; — z;|| > 1/2
for all 7, j sufficiently large, i # j . On the other hand,

1
[P, Lzjl| = (10, L(z5 — 25) || < ;||L|| -0,

so (z;) has a convergent subsequence, a contradiction.
Since L is self-adjoint,
E=R(L)® N(L).
To show that R(L) is closed, let y; — y, where y; € R(L). Then y; = Lx; for some
x; and we may assume that x; € R(L). Again, there is a z; € E,,, n; > j, such
that ||z; — z;|| <1/j. Hence

(4.1)

Py, Lzj = Py, L + Pp,L(zj — x5) = Py,y; + P, L(z; — ;) — y.

Therefore, if (z;) is bounded, z; — z after passing to a subsequence, and Lz = y.
Soy € R(L). If (z;) is unbounded, we may assume ||z, — oco. Let w; := z; /| 2]
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It follows from (4.1) that P, Lw; — 0, so after passing to a subsequence, w; — w
and w € N(L), ||w|| = 1. On the other hand, since z; — z; — 0,

lim —— = lim wj = w.
j=oo [lasl| oo

Hence w € R(L). This contradiction completes the proof of the closedness of R(L).
We have shown that L is a Fredholm operator. Since it is self-adjoint, its index
must be 0. O

Assume from now on that L € L(E, E) is a self-adjoint Fredholm operator (of
index 0) and & is a given filtration. As usual, P, is the orthogonal projector of E
onto F,,.

Lemma 4.2. (i) There exists an no such that if n > ng, then Py|y) : N(L) —
P,N(L) is a linear isomorphism and ||z|| < 2||Pnz|| for all z € N(L).

(ii)) B, = (R(L)N E,) ® P,N(L), and the spaces R(L) N E,, and P,N(L) are
orthogonal.

Proof. (i) This is obvious because dim N(L) < oo and P, — I uniformly on com-
pact sets (I is the identity operator).
(ii) Let « € E,, and suppose that z is orthogonal to P, N(L). Then

0= {(x,P,z) =(x,2) VzeN(L).

It follows that x € R(L), so the orthogonal complement of P, N(L) in E,, is R(L)N
E,. O

Let @, be the orthogonal projector of R(L) onto R(L)N E,. Since P,|r(z) and
Q. map R(L) into E, P, — @, may be considered as an element of L(R(L), E).

Proposition 4.3. P, — Q, — 0 in L(R(L), E) as n — oc.
Proof. Let x € R(L). Since P,y = Qny =y whenever y € R(L) N E,,,

Therefore, in view of (ii) of Lemma 4.2, P,z—Qnz € P,N(L). So Pyx—Qnx = Ph2z,
for some z, € N(L). By (i) of Lemma 4.2,

(4.2) [znll < 2l Prznll = 2[[(Pn — @n)z|| < 42|
for almost all n. Since z € R(L), Q,x € R(L)N E, and z, € N(L),
(4.3)

(P — Qn)$||2 = (Pnuzn, (Pn — Qn)T)
= <Pnzn7x> = <Pnzn - Zna$> < ”(Pn - I)ZnHH??H

Since P, — I uniformly on bounded subsets of N(L), it follows from (4.2) and
(4.3) that (P, — Q,)x — 0 as n — oo, uniformly in z € R(L), ||z|| < 1. Hence the
conclusion. O

Corollary 4.4. The sequence (R(L) N E,)$2 is a filtration of R(L). More pre-
cisely, for each v € R(L), Qnr — = as n — o0.

Proof. Immediate from Proposition 4.3 since P,x — x as n — oo. O

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3200 WOJCIECH KRYSZEWSKI AND ANDRZEJ SZULKIN

Theorem 4.5. Let L € L(E,E) be a self-adjoint operator. Then the following
conditions are equivalent:

(i) L is A-proper;

(ii) L is a Fredholm operator of index 0 and there exist ¢ > 0 and ng > 1 such
that if n > ng, then |P,Lx| > c||z| for all x € R(L) N E,.

Proof. (i) = (ii) By Proposition 4.1, L is Fredholm of index 0. Suppose that for
any j > 1 there exist n; > j and x,,, € R(L) N Ey,; such that

1
1B, Lo, | < = llon, |

Then P,,Ly,, — 0, where y,,, := @y, /||zn,||. The A-properness of L implies that,
after passing to a subsequence, y,, — y € R(L) and ||y|| = 1. But Ly = 0, i..,
y € N(L). This contradiction shows that (ii) is satisfied.

(ii) = (i) Although this implication will not be used, we prove it for the sake of
completeness.

Suppose that L is Fredholm of index 0. Let (z;) C E be a bounded sequence such
that z; € E,,;, n; — oo and P,;Lr; — y as j — oo. Passing to a subsequence,
r; — x weakly and P, Lr; — Lz weakly. Therefore y = Lz and y € R(L).
According to (ii) of Lemma 4.2, x; = u; + P,,z;, where u; € R(L) N E,; and
zj € N(L). Passing to a subsequence again, z; — z and

Pp,Luj = Py Lx; — Py, LPp,2; —y+ Lz =y.

There is a u € R(L) such that Lu = y. Since uj — Qn,u € R(L) N E,,, it follows
from the inequality in (ii) and Corollary 4.4 that

clluj — Qnyull < [ Po,; L(uj — Qnyu)|| = [|Pn, Lty — Py LQnul| — [ly — Lul| = 0.
Hence u; — u, and therefore x; = u; + Py;2; — u + z. This shows that L is
A-proper. O

5. COMPUTATION OF CRITICAL GROUPS

Suppose (E,)S2 , is a filtration of a real Hilbert space E and € = {E,,,d,, }5% .

For an arbitrary self-adjoint operator L € L(E, E), denote the Morse index of L
(or more precisely, of the quadratic form z +— (Lx,x)) by M~ (L). Suppose L is a
Fredholm operator, and recall that

Qn:R(L)— R(L)NE,

is the orthogonal projector of R(L) onto R(L) N E,. Define the £-Morse index
Mg (L) of L by the formula

(5.1) Mg (L) = nlingo(M_(QnL|R(L)ﬁE7l) —dp).

The above limit exists in many important cases, as will be shown later. However,
in general it does not, so Mz (L) is not always well-defined.
As usual, M°(L) will denote the nullity of L, i.e.,

M°(L) := dim N(L).

Observe that M~ (QnL|r(L)nE, ) is the Morse index of the quadratic form R(L)N
E, >z — (Lz,z). It might seem more natural to consider the form E, > z —
(Lz, x) and therefore define the £-Morse index by

(5.2) Mg (L) := lim (M~ (PyL|g,) = dn).
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However, in view of Lemma 4.2, E, = (R(L) N E,) ® P,N(L), and since the
quadratic form P,N(L) > z — (Lz,z) tends to 0 as n — oo (in the sense that
|(Lx,z)| < en|lz||?, where &, — 0), its contribution to the Morse index as n — co
should be neglected. This justifies the definition (5.1). See also Theorem 5.4.

Remark 5.1. If N(L) C E,, then E,, = (R(L)NE,) ® N(L), and the quadratic
forms (R(L) N E,) > ¢ — (Lz,z) and E, > x — (Lz,z) have the same Morse
index. Therefore if N(L) C Ey, for some ng, then M, (L) is well-defined if and

only if M; (L) is and My (L) = M (L).

Proposition 5.2. Suppose A € L(E, E) is a self-adjoint Fredholm operator of in-
dex 0 such that A(E,) C E, for almost all n and B € L(E,E) is a self-adjoint
compact operator. Then A+ B is A-proper. If M~ (A|g, ) = dn + k for almost all
n and some k € Z, then Mg (A + B) is well-defined and finite.

Proof. Set L := A+ B. It is easy to verify that L is A-proper.
Let us introduce some auxiliary notation. @ : E — R(L) is the orthogonal
projector,

F, = (R(L)NE,+1)N(R(L)NE,)*, Gn:=E, 1 NE:-
and
Uyp:=Pyi1— P E— G,

According to Lemma 4.2, E,, = (R(L)NE,)®P,N(L) and E, 411 = (R(L)NEp4+1)®
P,+1N(L). Therefore

Epi1 = (R(L) N Ey) @ F, ® Payy N(L) = (R(L) N En) ® PaN(L) ® G
and the sums are orthogonal. So each € R(L) N E,,+1 may be represented as
(5.3) r=y+z=y+ P.(+w,

where y € R(L)NE,, z € F,, (€ N(L) and w € G,
It follows from Proposition 4.3 and Theorem 4.5 that there exist ¢ > 0 and
mg > 1 such that

(5.4) |QnLz| > 2¢||z|| whenever z € R(L)N E,, and n > my.
For n > mg and z € R(L) N E,,4+1, define
Tz :=Qn+1Lle — (QnLQnx + U, AU, x).

Using the decomposition (5.3) of x and observing that (Ay,w) = 0 (because
A(E,) C E,), we obtain

<TnZIJ,ZIJ> = <L(y+z)vy+z> - <Ly7y> - <vaw>
= 2(L(y +w), Pol) + (LPuC, Pol) + 2(By,w) + (Bw, w).

Since B is compact, w € G, C E;- and LP,( — 0 uniformly in ¢ € N(L) NB(0,1),
it follows that || T, || = sup{|{Thz,z)| : ® € R(L)N E,+1NB(0,1)} < ¢ if my is large
enough. Hence by (5.4),

[Qn+1Lla — ATz = [|QnarLall = A Twz|| = ez
for each A € [0,1] and © € R(L) N E,,41. Therefore, for n > my,
(5.5) M~ (Qu+1Llriyne,) = M™(QnLlQn + UnAUn)|r(L)nE, 1)
= M (QnL|rir)ng,) + M (Alg,)
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The second equality follows because R(L) N E,, is orthogonal to G,,. Finally, since
A(E,) C E,,

dn+1 - dn = M_(A|En+1) - M_(A|En) = M_(A|Gn)'

This and (5.5) imply that M~ (QnL|r(r)nE,) — dn is constant for almost all n.
Moreover, it is finite because M~ (Q,QA|r()nE,) < dn + k, dim N(A) < oo and

B is compact. O

Theorem 5.3. Suppose that ® € C1(E,R), p is an isolated critical point of ® and
1

(5.6) ®(z) = ®(p) + 5(L(z —p),z —p) +¢(2),

where L is an invertible A-proper operator and Vo(x) = o(||lx — p||) as x — p.
If Mz (L) is well-defined and finite, then c&(®,p) = [F] for ¢ = Mg (L) and [0]
otherwise. If Mg (L) = 400 or —oo, then c¢&(®,p) = [0] for all q.

Proof. Note first that since R(L) = E, we have P, = @, and Mg (L) = ]T/[;_ (L).
Consider the family of functionals

D, (z) :=d(p) + %(L(x —p),x—p)+ (1= Ne(z), Ael0,1], z€ E.

By Theorem 4.5, there are ¢ > 0 and ng > 1 such that for n > ng and =z € E,,
| PnLz|| > c||lz||. Take 6 > 0 such that ||Ve(z)|| < §||lz — p|| for x € B(p,6). We
claim that each ® satisfies (PS)* on B(p,d). Indeed, assume z, € B(p,6) N E,,,
ny — oo and P, V®(xx) — 0. Let py := P, p € E,,. Since V@ (x) =
L(zy — pr) + L(px — p) + (1 = \)Ve(2r),

1Po. VO ()l > ||PoyL(zk — i)l = | L(pr — p)I| = IV ()]
C
>z — prll = [ L(px — p)I| — §||17k =7

for ny > ng. Hence zp — p as k — oo.
In view of Corollary 2.9,

ce(®1,p) = (P, p).
1

Since ®1(x) = ®(p) + 5(L(xz —p), z — p) clearly satisfies the hypotheses of Corollary
2.10, we may assume that p = 0 (and of course that ®1(0) = 0).

Let W := & '([~1,1]) and W~ := &, !(~1). Since ®; satisfies (PS)* on F,
(W,W~) is an admissible pair for ®; and 0 (see Proposition 2.5). Moreover, if
n > ng, then ®1|g, is a nondegenerate quadratic form and (W N E,, W~ N E,) is
an admissible pair for ®1|g, and 0 (with respect to the trivial filtration of E,,, cf.
Remark 3.4).

It remains to compute H*(W N E,,W~ N E,). Choose an equivalent inner
product in E, such that ®1(z) = 3|z — ||z~ ||>, where z = 2T + 2~ € Ef &
E,; = E,. For x € ®INE,, let t(x) be the smallest ¢ > 0 for which 2+ +(1—t)z~ €
®7'([~1,1]). Then the mapping (\, z) — zt + (1 = M(z))z~, A € [0,1], is a strong
deformation retraction of (&1 N E,, &' NE,) = ({z € E, : &1(x) < 1},{z €
E, : ®1(z) < —1}) onto (W N E,, W~ N E,). Similarly, the mapping (A, z) —
(1—XNzt42~, A € [0,1], is a strong deformation retraction of (&} NE,,, &' NE,,)
onto (®1 N E;, &' NE;) = (E,;,E,; — B(0,1)). Hence (W N E,,W~ NE,)
is homotopy equivalent to (B,9B), where B is the closed unit ball in E;, and

n?

therefore H*(W N E,,W~ NE,) = H*(B,0B). Since dim E,, = M~ (P,L|g, ), we
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obtain Hit(W N E,,W~NE,) = Fifq= M~ (P,L|g,) — d, and 0 otherwise.
Now the conclusion follows from the definitions of Hg and Mg (L). O

Suppose ® € C%(U,R), where U is a neighbourhood of a critical point p. Then
® admits the representation (5.6). Assume that the operator L is Fredholm, let
x=p+2z+y, where z € N(L), y € R(L), and denote the orthogonal projector
onto R(L) by Q. Then

VO(p+z+y)=Ly+Vo(p+z+y),
Vo®(p)=0 and &"(p)=L.
Since L|g(z) is invertible, it follows from the implicit function theorem that there
exist § > 0 and a C'-function y = a(2) : B(0,8)NN(L) — R(L) such that a(0) = 0,
a/(0) =0 and
(5.7) QVe(p+z+afz)) =0.
Define

(5.8)

1

~(La(2), a(2)) + ¢(p + 2 + al2)).

P(z)=@(p+ 2+ a(z) —2(p) = 5

Suppose 0 is an isolated critical point of ¢ and let ¢?(,0) := H‘Z(W7 W‘), where
(W, W) is an admissible pair for ¢ and 0 in N(L) (with respect to the trivial
filtration of N(L)).

Theorem 5.4. Suppose U is a neighbourhood of an isolated critical point p of
® € C?(U,R) and the operator L (cf. (5.6)) is A-proper. If Mz (L) is well-defined
and finite, then ck(®,p) = [c¥=Me (L)(5,0)] for all q (§ is given by the formula
(5.8)). If Mg (L) = +00 or —oo, then ct(®,p) = [0] for all g.

Proof. Consider a family of functionals

1 1
AP +z+y) = 2p) + 5{Ly.y) + SA2 — A){Lalz), a2)
FAe(p+ 2+ a(z) + (1= ANp(p + 2 +y + Aa(z)),
where z +y € (N(L) @ R(L)) N B(0,6) and 0 < A < 1 (this family has been
introduced by Dancer in [15]). Observe that &y = @,
1 ~
Ci(p+2+y) = 2(p) + 5(Ly,y) +(2)

and
(5.9) Vy@rx(p+z4+y)=Ly+ (1 =NQVe(p+ z+y+ Aa(z)),
(5.10)
V. Px(p+2z+y)
= A2 = N{La(z),d/(2) ) + MV + 2 + a(2)), - +a'(2) )
+ (1 =N (Vo(p+2+y+ra(2)), - + A (2)-).

We will show that the family {®,} satisfies the hypotheses of Corollary 2.9 on a
suitably small ball B(p,r), where 0 < r < ¢ and K(®) N B(p,r) = {p}.
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__ First we verify that each ®, satisfies (PS)* on B(p,r). Suppose 2 = p+2,+yi, €
B(p,r)NE,,, ny — oo and P,, V®,(z) — 0. Then, in view of (5.9),
P, Vy@x(p+2zk+yi) = Po Lyr + (1 =N P, QVo(p+ 2+ yr + Aa(zr)) =: wi, — 0.
Setting vg == yr — (1 — N a(zk), we get
(1 = NPy, La(zk) + Pu, Lok + (1 = MNP, QVo(p + 2k + a(zk) + v) = wg.
Since La(z,) + QV(p + 21 + a(zx)) = 0 (cf. (5.7)),
(5.11)
P, Lvg + (1 — )\)PnkQ(th(p + zi + alzk) + vk) — Vo(p + 2z + a(zk))) = Wg.
Since vy =z —p — 2z, — (1 — Na(zi) and oy € E,,,
P, vg—vp =1 — P, )0+ 2k + (1 — Naf(zg)).
So P, vr —vr — 0 (because N(L) is finite dimensional) and @, vx — vy — 0
according to Proposition 4.3. It follows from Theorem 4.5 that
(5.12)
[P Lo || = | Py L@y vk || — ([ Py, L(Qny v — vr )|
2 | @ny vkl = 1L Qnivr — vill = cllorll = (1L + )| @ny vk — v
for almost all k. Since ¢ € C?(U,R) and ¢" (p) = 0, then taking the radius r of the
ball B(p,r) smaller if necessary, we obtain
V(b + 26+ alzr) + 1) = Violp + 21+ a(zi))|| < 5 llvell
Combining this with (5.11) and (5.12) gives
cllogll = (IL1 + | @ny v — vkl < gHvkll + [Jwel]-

Hence vy, — 0 as k — oo. Passing to a subsequence, z; — Zz and zp, = p+ 2z + yx —
p+Z+ (1 — ANa(z). This completes the proof of (PS)*.

Suppose p+z+y € B(p,r) and V@, (p+2z+y) = 0. Since QP (p)|r(z) = Llr(1)
(cf. (5.9)), it follows from the implicit function theorem that (5.9) has a unique
solution y = y(z, ) provided r is small enough (r independent of A). A direct
verification using (5.7) shows that y = (1 — A)a(z). Inserting this in (5.10) we
obtain

Ve@r(p + 24 (1= Aa(z))

= A2 = A(Ve(p + 2 +al2),a/(2) ) + (I = Q)Ve(p+ 2 + a(2))

= (I -Q)Volp+z+al2))
because o/(z)- € R(L) and (5.7) is satisfied. Recall that K(®) N B(p,r) = {p}.
Since V@(p+ z +y) =0 if and only if y = a(z) and (I — Q)Ve(p + z + a(z)) = 0,
we must have z = 0 and y = (1 — A\)a(0) = 0. So K(®,) N B(p,r) = {p}.

Since Ve is locally Lipschitz continuous at p, it is easy to see from (5.9), (5.10)

that if r is small enough, then |®,(x)| is bounded by a constant independent of

x € B(p,r) and X € [0,1], and the mapping A — V&, is continuous, uniformly in
x € B(p,r). Now all the hypotheses of Corollary 2.9 are verified; hence

CZ‘((I)vp) = CZ‘((I)lvp)'
Moreover, by Corollary 2.10, we may assume that p = 0 (and ®(p) = 0).
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Let x(y) := 1(Ly,y). Then ®1(z +y) = x(y) + $(z). Since (R(L) N E,)32, is a
filtration of R(L) (cf. Corollary 4.4), there exists an admissible pair (W;, W, ) for
x and 0 (in R(L)) such that W7 is bounded. Denote the correspondlng admissible
field by Vi (y). Let (W, W ™) be an admissible pair for 3 and 0, W C B(0,8)NN(L )
and let V(z) be a corresponding admissible field. Choose mg so that Pp,| N(L
N(L) — Pp,N(L) is a linear isomorphism, and define

Wy = Py, W, Wy =Py, W~
and
(W, W) = (W + Wa, (Wi +Wa) U (W +Wy)).
Note that W7 N Wy = {0} since W7 C R(L) and Wy C Py, N(L). We claim that

(W, W) is an admissible pair for ®; and 0. For each € E we have the unique
decompositions z = z +y = P, + &, where 2z, € N(L) and y,& € R(L). Let

Vo(x)

1+ [[Vo(z)]”

where w : R — [0,1] is a Lipschitz continuous function such that w(s) = 0 for
s <¢€/2, w(s) =1for s > £ and € > 0 is so small that B(0,e) N R(L) C int(Wy),
B(0,e)NN(L) C int(W). According to Remark 2.4, it suffices to show that V' is an
admissible field in a neighbourhood of OW. Note that without the cutoff function
w, V would not be defined on the subspaces £ =0 and { =0 (because respectively
Vi and V are not). Let m, 7 and 7 be the flows of —V7, —V and —V. Then
n(t,z) = n1(t1, &)+ Pmy7i(t, €), and it is easy to see that condition (iv) of Definition
2.3 is satisfied. Since £ € R(L)NE,, whenever 2 € E,, and n > mg, V is related to £.
It remains to show that V is gradient-like in some neighbourhood N of 0W. Since
W is bounded, we may assume that N is bounded. Then || —y| = ||Pm,(—2|| — 0
uniformly in € N as mg — oo, and therefore

(Vo(), Ly + V3(2)) = w([[€VA(€), Ly) + w(ICNV(C), VH(2))
+ w(l[¢{(Prmg — DV (), Ly + V@(2))
> w(llENBLE) +wICINBEC) = Emos

where €,,, — 0 as mp — oo and [, 5 are as in Definition 2.1. We may assume
the neighbourhood N has been chosen in such a way that z ¢ N if ||£|| < ¢ and
ICIl < e. Taking myg large enough, we see that (V(z), Ly + V@(z)) is positive and
bounded away from 0 on N. Hence (W, W ™) is an admissible pair.

If n > mg, then (Wy +Ws) N E, = (W1 NE,) + Ws. We need to compute the
cohomology of

((W1 N Ey) + Wa, (Wi 0 E,) + Wa) U (W N E,) + W;)).

Vo(z) = w(llENViE) +w(llc) P V(¢)  and  Vi(x) :=

Topologically this pair is equivalent to
(WiNE,, W NE,) x Wy, W5 ),
where we have used the customary notation
(A, Ag) x (B,By) = (A x B, (AX By)U (Ag x B)).

Let B be a closed ball of dimension m,, := M~ (QnL|r(z)nE, ). For almost all n,
(W1 N E,, W] NE,) is homotopy equivalent to (B,dB) (cf. the proof of Theorem
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5.3). It follows from the Kiinneth formula [17, Proposition VI.12.16], [39, Theorem
5.6.1] that

HI 4 (Wi 0 By, Wi N E,) x (Wa, Wy ) &2 HT 4 ((B,0B) x (W, Wy))
>~ [H*(B,0B) @ H*(Wo, W, )| = gratdn=mn (yy, W,")

(note that the hypotheses in the Kiinneth formula are satisfied because the Cech
cohomology has the strong excision property and (B,9B) is a pair of ANRs). If
Mg (L) is finite, then ¢ + d,, — m,, = ¢ — M (L) for almost all n, and the first
conclusion follows. If Mz (L) = 400 or —oo, then respectively g + d,, — my, < 0 or
q+d, —m, > dim N(L) for almost all n, so the right-hand side above is 0 for such
n. This completes the proof. O

Corollary 5.5. Suppose that ® satisfies the hypotheses of Theorem 5.4 and Mg (L)
is finite. If (x) > @(p) =0 for all x € U (p is given by the formula (5.6)), then
ct(®,p) = [F] for ¢ = Mg (L) and [0] otherwise. If ¢(xz) < 0 for all x € U, then
ck(®,p) = [F] for ¢ = Mg (L) + M°(L) and [0] otherwise.

Proof. Let R(L) = E* @ E~ be the decomposition corresponding to the positive
and the negative part of the spectrum of L. There exists a constant ¢ > 0 such
that (Ly,y) > c||y||? for y € E* and (Ly,y) < —c||y||® for y € E~. According to
(5.8) (with a(z) =a™(2) +a~(2) € EY ® E7),

oz >=§<La (), 0% () + (p + 2 + ¥ (2))
+ < “(2),07(2) + (p(p+ 2+ al2)) — o+ 2+ 0" (2)))

for all z € B(0, 6) N N(L). We claim that ¢ has a local minimum at 0 if ¢(z) > 0
for all x € U. Since

p(z) = %<La_(z), a”(2) + (ep+ 2 +a(z) —e(p+2+a"(2),

it suffices to show that the right-hand side above is nonnegative.
Let o : [0,1] — E be given by o(t) := p+ z+ at(z) + ta~ (z). Then

1
oo+ a) gl 2 +at ) = [ Aelow)i= [ (Volot).am )i

/O (Vo(o(t)) = Velp+ 2+ a(z)),a” (2)) dt + (Vo(p + 2z + a(2)), @ (2))

= /O (Ve(a(t)) = Veo(p + 2 + a(2)), a7 (2)) dt — (La™ (2),a” (2)),

where the last equality follows from (5.7). Moreover, since ¢”(p) = 0, we may
assume after choosing a smaller ¢ if necessary that

IVe(o(t)) = Velp + 2+ a2)| < cllo(t) —p—z —a(z)[ = (1 = t)cfa” (2)]
for all z € B(0,6) N N(L). Hence

Bz) > g(Lam(z),07(2) + (plp+ 2+ (=) — plp+ = +a*(2))

1
> —%(La_(z),of(Z))—/O (1 - t)ella(2)]2dt >0,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



AN INFINITE DIMENSIONAL MORSE THEORY WITH APPLICATIONS 3207

which proves the claim. So ¢?(¢,0) = F if ¢ = 0 and 0 otherwise (see [15] or [34,
Corollary 8.4]). It follows from Theorem 5.4 that cZ(®,p) = [c?=Me (1)(3,0)] = [F]
for ¢ = Mg (L) and [0] otherwise.

If () < 0 for all z € U, a similar argument shows that ¢ has a local max-

~

imum at 0. Hence employing Theorem 5.4 and [15, 34] we obtain c&(®,p) =
[ca=Me (B)(5,0)] = [F] for ¢ = Mz (L) + M°(L) and [0] otherwise. O

A functional @ is said to satisfy the local linking condition at 0 if there exist a
decomposition £ =Y ¢ Z and a constant p > 0 such that

B(y) <c:=(0) foreachye B(0,p)NY

and
®(z) > ¢ for each z € B(0,p)N Z.
This is a variant of a condition introduced in [25].
Clearly, the functional ® in Corollary 5.5 satisfies the local linking condition at p.

If ® ¢ C?(E,R), the argument of this corollary can no longer be applied. However,
we still have the following weaker result:

Theorem 5.6. Suppose that ® € C1(E,R) satisfies (PS)* and the local linking
condition at 0 (with Y and Z as above). If 0 is an isolated critical point of @,
E,=XYnNE,)®(ZNE,) and dim(Y N E,) = qo + dy, for almost all n, then
& (®,0) £ [0].

Proof. We may assume that ®(0) = 0, 0 is the only critical point of ® in B(0, p) and
SUpp(o,p) |®| < 00. Let 6 € (0,p) and let (W,W™), W C B(0,¢), be an admissible
pair having the additional properties given in Proposition 2.6. Define

A:={n(t,z) e W:t>0, z€S5(0,6)NY}.

Since ® < 0 on S(0,61) NY, for each x € A there is a unique #(x) such that
n(t(z),z) € W~. According to (iv) of Definition 2.3, t(x) depends continuously on
z. Hence the mapping

a(\ x) =

n(At(z),z) ifxeAd 0< A<,
xX lf(EGW_,OS)\Sla

is a filtration-preserving strong deformation retraction of AU W™ onto W~. So it
follows from the exact sequence of the triple (W, AU W~ W ™) that

H(W,W™) =2 H;(W,AUW™).
For z € Z, let 61(z) := min{é1,d(z, AUW ™)} and
D={y+zeYaZ:|y| <)}

Since 61(z) > 0Vz € Z and ®|y- <0, (AUW~)NZ = 0. Hence D is an open
set, Z C D and (AUW~™)N D = (). Denote Fs := (B(0,6)NY) @ (B(0,6) N Z) and
let i: (B(0,6,)NY,S8(0,6)NY) — (W, AUW™), j: (W,AUW ™) — (Fs, Fs — D)
be the inclusion mappings. Then we have

(5.13)
HE(Fs, Fs — D) 2= HE W, AUW™) -5 H2(B(0,6,)NY, S(0,8)NY),
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where i*, 7* are the induced homomorphisms. It is easy to see that the mapping
2/\61y

YNy +2) = maX{Hglllg}él(z)}

max{]|y|, 61(2)}

is a deformation of (Fs,Fs — D) onto (B(0,61) NY,S(0,61) NY). It preserves
the filtration since y,z € E,, whenever y + z € F,. Moreover, the restriction of
v to [0,1] x (B(0,6;) NY,S(0,6;) NY) is a homotopy between ~(1,.) o (5i) and
the identity on (B(0,61) NY,S(0,61) NY). Similarly, v is a homotopy between
(ji) o v(1,.) and the identity on (Fs,Fs — D). So the inclusion mapping ji is
a homotopy equivalence by filtration-preserving homotopies, and it follows that
i*j* in (5.13) is an isomorphism. In particular, H2 (W, W~) = HEX(W,AUW")
is nontrivial because HZ*(B(0,61) NY,S(0,61) NY) = [F] according to Example
1.4. O

+ (1 —=2\N)y + =, OS/\S%,

+(2-2)\)z, 1<a<,

6. RELATION TO DEGREE THEORY

Assume that U C FE is an open neighbourhood of an isolated critical point p of
® c C*(U,R), V®(z) = 2 — T(x) and T is compact. Define the Leray-Schauder
index of V& at p as

ind(V®, p) := deg(I — T, B(p, p),0),

where B(p, p) C U and on the right-hand side we have the Leray-Schauder degree
of I — T with respect to B(p, p) and 0 (see e.g. [31]). According to [10, Theorem
I1.3.2], cf. also [34, Theorem 8.5],

(6.1) ind(Ve,p) = Y (~1)?dim cq(®, p)

q=0
(cq are the critical groups defined in (0.1)). It follows by inspection of the proof in
[10] that (6.1) remains valid with c,(®, p) replaced by the critical Cech cohomology
groups ¢?(®,p) of ® at p (with respect to the trivial filtration of E; cf. Remark
3.4). Recall that the Euler characteristic for a pair (X, B) of finite type is defined
by

X(X,B) =Y (-1)*dim H*(X, B) = P(~1, X, B),
q=0
where P(t, X, B) is the Poincaré polynomial of (X, B).
Let (W, W ™) be a bounded admissible pair for ® and p (again, with respect to
the trivial filtration of E). Since ¢*(®,p) = H*(W, W), (6.1) may be reformulated
as

(6.2) deg(V®,int(W),0) = x(W, W),

and this relation remains valid also if (W, W) is admissible for ® and a set A C K,
cf. [10, Theorem II.3.3]. Formula (6.2) may be seen as a generalization of the
Poincaré-Hopf theorem.

Recall from [31] that a mapping T : X — Y is said to be a k-set contraction
if for each bounded set B C X, a(T(B)) < ka(B), where « is the (Kuratowski)
measure of noncompactness. 1 is called a strict set contraction if it is a k-set
contraction with k£ < 1. For mappings f of the form f(x) =z — T'(z), where T is
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a strict set contraction, there exists a degree theory (see [31, Section 6.2]) which
coincides with the Leray-Schauder degree if T is compact (compact mappings are
0-set contractions). Omne can verify that formula (6.2) remains valid if V®(x) =
x —T(x) and T is a strict set contraction (this will be done in the course of the
proof of Theorem 6.1).

In this section we will look for a possible generalization of formula (6.2) to the
case of strongly indefinite functionals.

Let (E,) 4 be a filtration of E, (d,,)22; a sequence of nonnegative integers and
& :={E,,d,}°,. Suppose that ® € C1(E,R), U is an open bounded subset of F

and

(6.3) ® satisfies (PS)* on U,

(6.4) ®|y is bounded,

(6.5) ® has no critical points on 9U,

(6.6) P,V®(z) =2 —T,(z) foralln>1 and z € UNE,, where

T,:UNE, — E,is a strict set contraction.

Clearly, (6.6) is satisfied if all E,, are finite dimensional or all T, are compact.
Denote U, := U N E,, and ®,, := ®|g,. It is easy to see that U, is nonempty for
almost all n, U,, C UNE,, 0U, C U N E,, and V®,, = P, V®|g,. We are going
to define a generalized topological degree of V® with respect to U and 0. Observe
that for large n, say n > ng, 0 ¢ V®,,(9U,,). Indeed, otherwise for each j there are
nj > j and y; € OU,, such that V&, (y;) = 0. By (PS)* (recall ®|y is bounded),
(y;) has a subsequence converging to some y € K N 90U, a contradiction to (6.5).
Therefore
Sp = deg(V®,,,U,,0)

is well-defined for n > ng. For n < ng we put s,, := 0. Now we define the £-degree
of V& with respect to U and 0 by the formula

Dege (V®,U,0) := [((—1)%s,) . ].

n=1
Note that Dege (V®,U,0) € [Z]. The above definition is modelled on the definition
of the generalized degree for A-proper mappings given in [24] (in [24] there are no
terms (—1)%).

It is easy to see that Dege satisfies the usual properties of topological degree
except that Degg(I,U,0) = [((—1)%")22,] (instead of being equal to [(1)5,]) if
0 € U. Admissible homotopies are the ones which preserve the filtration and map
oU,, x [0,1] into E,, — {0} for almost all n. By the excision property, it is possible
to define the £-index of V& at an isolated critical point p € U by setting

Ind5(vq)7p) = Deg£(vq)7 B(pv p)v O)a

where p is such that B(p, p) C U and B(p,p) N K = {p}.
Define the £-FEuler characteristic of an E-finite pair (X, B) of closed subsets of
E by

Xe(X,B) := Pe(—1,X,B)= Y (—1)¢dimg H{(X, B).
gq=—00
The pair (X, B) will be called strongly E-finite if there is a k > 1 such that
dim H+ (X N E,, BN E,) is finite for all ¢ € Z and n > k, and zero for all
lg| > k and n > k. Similarly, an isolated critical point p of a functional ® which
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satisfies (PS)* will be called strongly E-finite if so is some (and therefore every)
admissible pair for ® and p. Note that strongly E-finite implies E-finite (but not
conversely, as will be seen from Remark 6.3 below). The reason for introducing the
notion of strong £-finiteness is that then

(67) XE(Xv B) = [((_l)dHX(XmEnaBmEn))zozl]a

and in general this equality is not true for E-finite pairs (again, Remark 6.3 will
provide an example). To show (6.7), observe that if n > k, then

(-1)x(XNE,,BNE,) = (-1)"Y (-1)9dimHYXNE,, BNE,)
q=0
= > (-1)?dimH"*" (X NE,,BNE,).
g=—00

Since all terms on the right-hand side are zero for |q| > k, the conclusion follows
from the definition of xg.
Now we state the main result of this section.

Theorem 6.1. Suppose that ® € C*(E,R) satisfies (PS)*, (W,W~) is a bounded
admissible pair for ® and A, and V® has the form (6.6) on W. Then
(i) Degg (V®,int(W),0) = [((—1)x(W N E,, W™ NE,)) ~];
(i1) If (W, W) is strongly E-finite, then Degg (V®,int(W),0) = xe(W, W™);
(iit) (Poincaré-Hopf formula) If A = {p1,...,px} and all p; are strongly E-finite,

then
k

> Inde(VO,p;) = xe(W, W7).

j=1
Proof. (i) Since (6.3)—(6.6) are satisfied (with U = int(W)), Degg(V®, int(W),0) is
well-defined. Tt is easy to see that for almost all n, (W,,, W,") := (WNE,, W™ NE,)
is an admissible pair for ®,, and A, := W N K(®,,) (with respect to the trivial
filtration of E,). Indeed, if V is an admissible field for (W,WW~) and N is a
sufficiently small neighbourhood of 9W, then V maps N N E,, into E,, for all large
n. According to Remark 2.4, this suffices for (W,,, W,) to be an admissible pair.
Since V®,,|w, satisfies (6.6), it is a proper mapping; cf. [31, Corollary 6.2.2].
Therefore ®,, satisfies (PS) on W,,. In particular, the set A,, is compact. Now it
follows essentially from [10, Theorem II.3.3] that

(6.8) deg(V®,,,int(W) N E,,0) = x(W,, W),

and (i) is satisfied in view of the definition of Degg.

For the reader’s convenience and since the hypotheses in [10] are somewhat
different from ours, we give a proof of (6.8). Since A, is compact, we may find
a é > 0 and a function ¢ € C%(E,,[0,1]) such that e(z) = 1 if x € G := {z €
E, :d(z,A,) <6} and e(x) = 0 if d(x, 0W,,) < . Moreover, we may assume that
|[Ve(z)|| < m and ||e”(x)| < m for some constant m and all . Let M := sup{||z|| :
x € Wy} and

Bi= it IVE.@).

zeWy,
Clearly, 8 > 0. It follows from a version of the Sard-Smale theorem for k-set con-
tractions [44] that we can find an arbitrarily small o € E,, such that (V®,,)~!(z0)N
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W, ={p1,...,ps} C G and @/ (p;) is invertible for all j. Let
Yn(x) := Py (x) + () (z, T0).
For x € W,, — G we have

Vi ()| = [V (@) = [lzoll = IVe(@)|[l|2[[[lzoll >

[ e

provided ||zo]| is small enough. Hence K (1,,) N W,, = {p1,...,ps}. Since ¥, (z) =
D, (x) if d(x,0W,) < 6, (W,, W, ) is an admissible pair for ), and {pi,...,ps}.
Now observe that for x € W,,,

Vipp(x) = x — Tp(x) + (x,20)Ve(x) + e(x)xo,

where T, is a k-set contraction. Since x — (z, z¢)Ve(x)+¢e(x)xo is a Lipschitz con-
tinuous mapping with Lipschitz constant (M +2)m||zo|| which will be less than 1—k
if we choose a sufficiently small z, we obtain that x — T, (x)—(x, 20)Ve(x)—e(x)xo
is a strict set contraction [31, Theorems 6.1.8 and 6.1.9]. Hence deg(V,,U,,0),
where U,, := int(W) N E,,, is well-defined. Since t,, = ®,, on 9U,,,

(6.9) deg(V®,,,U,,0) = deg(Vi,, Uy, 0).
We will apply Theorem 3.1 to ¢y, (W,, W, ) and {p1,...,ps}. Since each p; is
nondegenerate,
ind(Vep, py) = (=1)% =Y (1) dim ¢ (¢bn, py),
q=0

where k; is the Morse index of ¢!/ (p;). For the first equality, see [31, Theorem 8.1.1
and Remark on p. 122]. The second equality is an easy consequence of Theorem
5.3 (recall that ¢? are the critical groups with respect to the trivial filtration of E,,).
By the additivity property of degree,
deg(Vion, Un,0) = Y ind(Vpn,p;) = D _(=1)9_ dim (¢, p;)
j=1 q=0 j=1

=M(-1,W,,W,)
(M is the Morse polynomial). By Theorem 3.1, M (-1, W,,, W, ) = P(-1,W,,, W)
= x(W,, W,7), and (6.8) follows from (6.9).

(ii) This is a direct consequence of (6.7) and (i).

(iii) Let (W;, W) be an admissible pair for ¢ and p;. We may assume that
W; C W for all j and W; "W, =0 if i # j. By the definition of Mg,
k
M5(t7 Wa W_) = Z M5(t7 Wja Wj_)
j=1
Hence, according to (ii) and Theorem 3.1,
k
D Inde(V®,p;) = Me(—1,W,W™) = Pe(=1,W, W) = xe(W,W").
j=1
Alternatively, one can show (cf. the proof of Theorem 3.1) that (W, W ™) is
strongly E-finite if all p; are, and then the conclusion follows from (ii) and the
additivity property of degree. O
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Remark 6.2. If all E,, are finite dimensional, then (6.6) is trivially satisfied and it
suffices to assume that ® € C1(E,R). Indeed, ®,|w, can be approximated in the
C'-topology by a C2-function ®,, such that the degree on U, is unchanged and
(Wy, W,) is admissible for ®,, and K(ff’n) Nnw,.

Remark 6.3. If (W, W) is E-finite, but not strongly, then (ii) and (iii) of Theorem
6.1 need not hold. To see this, let ® and p be as in Theorem 5.3, with m,, :=
M~(P,L|g,) < oo and Mg (L) = +o00 or —oo. If (W,W™) is an admissible pair
for ® and p, then HZ(W, W) = [0] for all ¢. So xe(W, W ™) = [0], while

Indg (V®,p) = Degg (V®, int(W),0) = [((—1)™~%)>" ] #[0].

7. HAMILTONIAN SYSTEMS

r=(§ )

be the standard symplectic matrix and consider the Hamiltonian system of differ-
ential equations

(7.1) 2= JH.(2,1),
where H € C1(R?M x R,R) is 27m-periodic in ¢t. In this section we study the

existence of 27-periodic solutions of (7.1). Let E := H'Y/2(S* R*Y) be the Sobolev
space of 2r-periodic R?"-valued functions

Let

z(t) = ao—i—Zak cos kt + by sin kt, ag, ap, by € RV,
k=1
such that >~ k(lak|*> + |bk|?) < co. Then FE is a Hilbert space with inner product
(.,.) defined by

(z,2) == 2mag - ay + ﬂ'z k(ay - aj, + by, - b,).
k=1
Assume that H, is asymptotically linear at infinity. Then in particular
[H.(z,t)] < C(1+|2])
for some C' > 0 and all (z,t). It is well-known [38] that under this condition z(t) is
a 2m-periodic solution of (7.1) if and only if it is a critical point of the functional

1 2m 2m 1 ~
(7.2) D(z) := 5/ (—Jz-z)dt — H(z,t)dt = §<Lz, z) — (z).

0 0
Moreover, ® € C*(E,R) and V4 is a compact mapping. Sometimes we will make

a stronger assumption that H € C?*(R*¥ x R,R) and

(7.3) [Heo(2, )| < C"(1+ [2]°)
for some C’ > 0, s € (0,00) and all (z,t). Then ® € C%(E,R) [38].

Let

Fy = RQN, Fy, := {ay cos kt + by sinkt : ag, by, € RQN}, where k£ > 1,
and

E, = F, @@Fk ={z€eF:z(t)=ao —i—Zakcoskt—i—bksinkt}.
k=1 k=1
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Then (F,,)22, is a filtration of E. Set

n=1
dp:=N(1+42n) and &:={E,,d,}3>;.
Consider the linear Hamiltonian system
z=JAz,
where A is a symmetric 2N x 2N matrix (with constant entries a;;). Let B: E — E

be the linear operator defined by

27
(Bz,w) := Az - wdt.
0

Then B is compact, and it is easy to see that

=1
(7.4) Bz=Aag+» + (Aay, cos kt + Aby sin kt).
k=1

Following [26], cf. also [1, 2], we now proceed to define the index and the nullity of
A. According to (7.2) and (7.4),

~ 1 1
(L — B)(acoskt + bsinkt) = (—Jb — EAa) coskt + (Ja — EAb) sin kt.

Hence L — B maps Fj into itself and (Z — B)|p,, k > 1, corresponds to a linear
operator on R*V given by the matrix

- (4 32

Since T}, is symmetric, it has only real eigenvalues. For k large enough, M~ (T} (A))
= MT(T,(A)) = 2N and M°(Tx(A)) = 0, cf. [2, Section 2]. As usual, M~ and
M? are the Morse index and the nullity of a corresponding quadratic form, and
M™*(Ty(A)) := M~ (—Tx(A)). Hence the numbers

o0

im(A):==M"(=A)= N+ > (M~ (Ti(A)) — 2N),
k=1

iT(A) = MT(-A) - N+ 3 (Mt (Ty(A)) — 2N),
k=1

and
i%(A) = M°(—A) + i M°(T,(A))
k=1

are well-defined and finite. Moreover, i~(A) + it (A) + i°(A) = 0. Note that the
numbers i*(A) differ by N from those introduced in [26].
Let L =L — B and MF (L) := M (~L).

Proposition 7.1. i%(A) = M°(L), i~(A) = M7 (L) = M; (L) and it(A) =
M (L) = M{(L).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3214 WOJCIECH KRYSZEWSKI AND ANDRZEJ SZULKIN

Proof. Clearly, M°(L) = dim N(L) = i°(A). Since L maps each F, k > 0, into
itself, N(L) C E, for some n and P,L|g, = L|g,. Therefore Mg (L) = Mg (L)
according to Remark 5.1 and

M~ (PaLls,) —dy = M~(—4) — N+ S (M~ (Ti(4)) — 2N).
k=1

Invoking (5.2) we see that i~ (A) = M (L). Similarly, it (4) = MJ(L). O

Suppose now that A(t) is a symmetric 2N X 2N-matrix with continuous 27-
periodic entries a;;(t). Then i~ (A) and i*(A) are no longer defined. Since the
operator B given by the formula

27
(Bz,w) = A(t)z - wdt
0
is compact, it follows from Proposition 5.2 that L := L—Bis A-proper and Mg (L)
is well-defined and finite. Furthermore, M°(L) is the number of linearly indepen-
dent 27-periodic solutions of the linear system

z=JA(t)z,
and therefore 0 < M°(L) < 2N. Denote
iT(A) =Mz (L), jT(A):=MI(L) and j;°(A):=M"(L).

Since M~ (QnL|rr)nE, ) + M (QnL|r(1)nE,)+MO(L) = dim E,, = 2d,, for almost
all n (cf. Lemma 4.2 and the beginning of Section 5), 77 (A) + j7(4) + j°(4) =
0. Although we will only be concerned with the numbers j*(A4) and j°(A), the
following remark is in order:

Remark 7.2. To each matrix A(t) as above there corresponds a unique solution
~(t) of the initial value problem 4 = JA(t)y, v(0) = I (the fundamental solution),
and ~(t) is a path in the space of symplectic matrices. If j°(A) = 0, it is possible
to introduce an equivalence relation for these paths and show that there exists
a constant matrix A; such that the corresponding fundamental solution ~;(t) is
equivalent to v(¢). Now one can define the Maslov index of v by setting j(v) :=
17 (A7). See [13, 33] for more details. To be more precise, the definition of j(v) in
[13, 33] differs from ours. However, it follows from [33, Theorems 2.1, 3.1], cf. also
[10, Theorems IV.1.1, IV.1.2] and [13, Theorem 1 and Lemma 2.4], that j~(4) =
i(v) = j(v1) = 77 (A1). Since i~ (A1) = j~ (A1) according to Proposition 7.1, the
two definitions of j(y) are equivalent. If jO(A) # 0, one can still define a Maslov-
type index (j(v),n(v)) as has been shown by Long [32]. Moreover, j(v) = j~ (4)
and n(y) = j°(A) [32, Theorem 6.

In what follows we assume that there exist two symmetric 2N x 2N matrices
A(t) and Ag(t) with 27-periodic entries such that

H(z,t) = %A(t)z -2+ G(z,1),

(7.5)
where G,(z,t) = o(|z|) uniformly in¢ as |z] — o0
and
1
H(z,t) = =Ag(t)z -
(76) (z,t) 5 o(t)z -z 4+ Go(z, 1),

where (Go).(z,t) = o(]z|) uniformly in ¢ as |z| — 0.
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We will use the notation

(7.7)
1 2 ] 2 1
D(z) = 3 /0 (=Jz—A(t)z) - zdt — ; G(z,t)dt =: §<Lz, zy — (2)
2m 2
= %/0 (=Jz = Ap(t)z) - zdt — ; Go(z,t) dt =: %(Loz,z) — o(2).

It is well-known (cf. e.g. [26] or [38]) that Vy(z) = o(||z]|]) as ||z|]] — oo and
Veo(z) = o(]|z]]) as 2 — 0. Indeed, for each ¢ > 0 there is a C(e) such that
|G.(z,t)] < e|z| + C(e). Hence

2m
(7.8) [(Ve(2), )| < /O (elzl + C(e))lyldt < (ellz]l + C" () llyl

for all y € E. Taking the supremum over |ly|] < 1, dividing by ||z|| and letting
||z]] — oo, we see that Vip(z) = of||z]|). Similarly, for each e > 0 there is a C(e)
such that [(Gy).(z,t)| < e|z| + C(e)|z|?. Hence

[{(Vo(2), 9] < (ellll + C'()lIz1*) Iyl
and Vo(z) = o(]|z||]) as z — 0.

Lemma 7.3. Suppose that H satisfies (7.5). Then ® satisfies (PS)* (with respect
to any filtration) in each of the following two cases:

(i) j°(A) = 0;
(i) G, is bounded and G(z,t) — oo (or G(z,t) — —o0) uniformly in t as
|z| — oo.

Moreover, under these hypotheses ®|g, satisfies (PS) for each n.

Proof. (i) Let (z;) be a (PS)*-sequence. Then P,,,V®(z;) = P,;Lzj—P,,;V(z;) —
0. Since V(z) = o(||z||) as ||z]| = oo and || P, Lz;|| > c||2;]| according to Theorem
4.5, (#;) is bounded and it follows from the compactness of Vi that (z;) has a
convergent subsequence.

(ii) Assume G(z,t) — oo (the other case is similar). Let (z;) be a (PS)*-sequence
and let z; = y;+w; € R(L)DN(L). Since P, Ly;—P,,;V(z;) — 0and || Py, Ly;|| >
c|ly;l|, the sequence (y;) is bounded. Hence ¢(z;) is bounded (because ®(z;) is).
By the mean value theorem,

lp(y; + wj) — p(w;)| < sup Vo) lly;ll-
So p(wj) is bounded as well. On the other hand, ¢(w;) = 0% G(w;(t),t)dt — oo
if [|w;|| — oo (recall that N (L) is finite dimensional). Hence (w;) has a convergent
subsequence, and the same is true for (y;) because V¢ is compact.
Since E, is finite dimensional, it is clear that ®|g, satisfies (PS). O

Theorem 7.4. Suppose that H satisfies (7.5) and (7.6). If j°(A) = j%(4o) = 0
and j~(A) # j~(Ao), then (7.1) has a nontrivial 2w-periodic solution.

Proof. Tt follows immediately from (7.6) that (7.1) has the trivial solution z = 0.
Let ®5(z) := $(Lz,2) — (1 — A)e(z), 0 < A < 1. It follows from Lemma 7.3
that all @y satisfy (PS)*. Since L is invertible and Vp(z) = o(]|z]) as ||z|| — oo,
there is a bounded set N such that K(®)) C N and supy |®x| < C for some
C > 0 and all XA € [0,1]. So according to Propositions 2.12 and 2.14, the critical
groups cg (P, K (®)) are well-defined and ¢ (®, K(®)) = ¢ (@1, K(P1)) = c£(®1,0).
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By Theorem 5.3, c£(®1,0) = [F] if ¢ = j7(A) and ¢%(P1,0) = [0] otherwise.
Since Vo (z) = o(||z]]) as z — 0, we obtain—invoking Theorem 5.3 again—that
ct(®,0) # [0] if and only if ¢ = j~(Ap). So ct(P, K) # c:(®,0), and & must have
a critical point z # 0. |

Theorem 7.5. Suppose that H € C*(R*N x R, R) satisfies (7.3), (7.5) and (7.6).
If G, is bounded, then (7.1) has a nontrivial 27-periodic solution in each of the
following two cases:

(i) G(z,t) — —o0 uniformly in t as |z| — oo and

J7(A) € 157 (Ao), 57 (Ao) +5°(Ao)l;
(i) G(z,t) — oo uniformly in t as |z| — oo and
7T(A) ¢ 17 (Ao), 57 (Ao) +5°(Ao)].

Proof. (i) Introduce a new filtration & := {E/,, d, }2,, where E!, := (R(L)NE,)®
N(L) and d,, = N(1 + 2n) as before. According to Lemma 7.3, ® satisfies (PS)*
with respect to £'. Since R(L) N E;, = R(L)NE,,, Mg, (L) = Mz (L) =j (A). It
is easy to see that L and Lg (cf. (7.7)) are A-proper with respect to £ (because
they are with respect to £). Furthermore, F,, = (R(L)NE,,) ® P, N(L) by Lemma
42, E!, = (R(L)N E,) ® N(L) and

(7.9) |Pnz — z|| <enllz]| for all z € N(L),

where €,, — 0 as n — oo. Let Q{))n be the orthogonal projector of R(Lg) onto
R(Lo) N E},. Tt follows from Theorem 4.5 and Proposition 4.3 that there is a ¢ > 0
such that ||Q) ,Loz| > c||z|| for almost all n and all z € R(Lo) N E,,. Using this
and (7.9) we see that the quadratic form z — (Lgz, z) is nondegenerate and has
the same Morse index on R(Lg) N E,, and on R(Lg) N E},, provided n is sufficiently
1arge. So M_/(L()) = Mg_ (LO) = ]_(A())

In Lemma 7.6 below we will show that if ® has finitely many critical points, then
(7.5), (i) and the boundedness of G, imply that

[F] if g =j—(A),

[0] otherwise.

(7.10) L (®,K) = {

On the other hand, if 0 is an isolated critical point of ®, it follows from Theorem
5.4 that
¢t (@,0) = [c77 “4o)(o,0)],

where @ is defined on a subset of N(Lg). So the right-hand side above can be
nonzero only if 0 < g—57(Ap) < 7°(Ap). Since j=(A) & [17(Ao), 57 (Ao)+5°(Ao)],
C;T(A)(q), 0)=1[0] # cg(A)(q), K). Hence (7.1) must have a nonzero solution.

(ii) This follows by the same argument applied to —®. (An alternative proof
may be obtained by working with ®, using (i) of Lemma 7.6 and the fact that
37 (A) +51(A4) +5°(4) = 0.) O

Observe that if the matrix A is ¢t-independent, then N(L) C E,, for some ng
and F,, = E] for almost all n. So in this case we can use the filtration £.

Lemma 7.6. Suppose that ® € C'(R?N x R, R) satisfies (7.5), G is bounded and
the critical set K = K(®) is finite.
(1) If G(z,t) — —oo uniformly int as |z| — oo, then ¢t (@, K) is given by (7.10).
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(i) If G(z,t) — oo uniformly in t as |z| — oo, then

(7] if a=35"(A) +5°(A),
[0] otherwise.

ng/((l),K) = {

Proof. (i) Let @, be the orthogonal projector of R(L) onto R(L) N E,. Find
¢ > 0 and ng such that |@Q,Lz| > ¢||z|| for all z € R(L) N E,, and n > ng. Let
El, = (R(L)NE)® N(L) = E} ® E;, ® N(L) be the decomposition (into L-
invariant subspaces) corresponding to the positive, the negative and the zero part
of the quadratic form z +— (Lz,2) on El,. If 2 =27+ 27 +2° € Ef o E, ® N(L),
then (LzT,2%) > ¢||z*]|? and (Lz~,27) < —¢||27||?>. Therefore

(VO(2),27) = (Lz7,27) = (Vep(2),27) < —c[l7|I> + Coll=~ I,
where Cy := supg ||Ve(2)||. Hence there is an R > 0 such that setting
Uw={z€E, ||| <R}
we obtain
(7.11) (V®(2),27) <0 for all z€ E/, —U and n > ny.
In particular, ®|g; has no critical points in F;, — U. For z € U we have
1 1

(7.12) D(z) = §<Lz+,z+> + §<Lz_,z_> —¢(2)
> el SILIR® — o) — ((2) — 9(=")

1 1
> sellst 2= SIIR? - (%) — Co(R+ |7,

Since p(2%) — —oo as [|2°]| — oo, it follows that
B(z) — oo as ||zt 4+ 20 — oo,

and the convergence is uniform with respect to the choice of n > ng and 2z~ €
E. N B(0,R). Hence we can find 0 < a < b and Ry > 0 such that K C {z € E :
|®(2)| < a}, and for each n > ng,

O NE,CE,-U and ®*NUCD:={2cU:|z"+2°| <R} cdnU.

It is easy to see that there exists a strong deformation retraction v of E/, onto
D uU9U. Using (7.11) we may construct a pseudogradient vector field V' for &
on E! in such a way that (V(z),z7) < 0 whenever ||z7|| > R. It follows from
(PS)* that if n is large enough, then ®|g; has no critical values in [a,b]. So
K(®|g ) C U—® *([a,b]). Since ®|p, satisfies (PS), the flow of —V induces a
strong deformation retraction n of (E;, —U)UD onto ®*NE),. Indeed, if z € E/, U,
then n(\, z) € E!, — U (because (V(z),27) < 0) and if z € D, then n()\,2) € ®*NU
(because D C ®* N U). So n may be constructed in such a way that it is a
deformation onto ®* N E!,. Now we see that the mapping 1 * v given by

v(2), 2) for 0 <\ < 3,

(7% 2) = {77(2/\ —1,~7(1,2)) for % <A<,

is a strong deformation retraction of E/ onto ®* N E/.. Since ®"*NE! C E/, — U
and (V(z),27) < 0 as ||z7|| > R, one can use the flow of —V again in order to
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construct a strong deformation retraction of E/ — U onto ®~* N E/. Therefore

if g=757(A) + dp,
Hq((paﬂE;l,(I)_aﬂE;l)qu(E;L,E;L—U): F ifgq .7. ( )+
0 otherwise,

provided n is large enough. Since Hz (9%, ®7%) = HS, (27 ([—a,a]), @~ (—a)) (by
excision) and the second pair is admissible for ® and K, the conclusion follows.
(ii) Here we have
(V(2),2%) = c7||* = Coll2 ]I,
and we may choose R such that if
M:={z€E, ||| <R},
then
(V®(2),2%T) >0 for all z € E/, —int(M) and n > no.
As in (7.12), we obtain

1 1, _ _
8(2) < ILIR? — Gell=" I ~ ola0) + Co(R + 1271)
for all z € M. Therefore
P(z) — —oo as ||z7 4+ 2°|| — oo,
and the convergence is uniform with respect to the choice of n > ng and 2T e
E N B(0,R). Hence we can find 0 < a < b and 0 < Ry < Ry such that K C {z €
E:|®(2)] <a}, M C®*NE! and
Dy:={zeM:||z7+2° >R }Ccd’nM
CDy:={z€M:||z7 +2° >R} C® "N M.
Obviously, there exists a strong deformation retraction v of Dy onto D1. By (PS)*,
we may assume that K(®|g, ) € M — &' ([—b, —a]). Using the flow of —V, where
V is a pseudogradient vector field on E!, satisfying (V(2),2z%) > 0 for ||z"| > R, it
is easy to construct a strong deformation retraction  of ®~¢ N M onto ®~° N M.
Hence v * 7 is a strong deformation retraction of ®~*N M onto D;. Using the flow

of —V once again, we also obtain a strong deformation retraction of ®* N E/ onto
(P~*NE})U M. Hence
H*(®*NE,, @ “NE,)XH" (P *NE,)UM,® *“NE))
Y (M, 700 M) = H* (M, Dy).
Since for all n large enough,
if g=7"(A4)+5%A n
fospy — {F 0= () + 104+ d,
0 otherwise,

we obtain the conclusion. O

It is clear that if j0(A4g) = 0, then it suffices to assume that H € C! in Theorem
7.5, and if j9(A) = 0, G, need not be bounded and G need not tend to infinity.

Suppose now that H € C2(R?Y x R, R) satisfies (7.5) and z¢ is a 27-periodic
solution of (7.1). Then 2, is continuous (and therefore bounded). Hence for each
€ > 0 there is a constant C(e) such that

|G (20(t) + w,t) — G.(20(t),t) — G..(20(t), )yw| < e|w| + C(e)|w|?
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for all t € R and w € R?N. So
27

[(Vep(z0 +v) = Vp(20), ) — | Gz (20,t)v -y dt| < (ellvll + C" () 0]*) Iy

for all v,y € E. Dividing by ||v| and letting v — 0, we see that Vi is Fréchet
differentiable at zy and

Bap +v) = B(zo) + 5(8" (z0)0,0) + Y(a0 + v),

where V(2o + v) = o(||v||) as v — 0. Note that we made no assumption that H
satisfies (7.3), and therefore ® may not be of class C?. We will call the solution 2o
nondegenerate if ®”(zp) is invertible.

Remark 7.7. Suppose that H € C?(R?Y x R, R) satisfies the hypotheses of The-
orem 7.4. If the nontrivial solution zg of (7.1) is nondegenerate, then (7.1) has a
second nontrivial solution. Indeed, suppose 0 and zg are the only solutions. Ac-
cording to Theorem 5.3, their contribution to the Morse polynomial is respectively
7~ (40) and t% where gy € Z. So the Morse inequalities give

7 (Ao) 4 a0 — a7 (A) 4 (1+6H)Q(1),

a contradiction upon setting ¢ = 1. In the framework of Theorem 7.5 the above
conclusion remains valid if °(A4g) = 0 (note that (7.3) is not needed here).

The nondegeneracy condition for zy in Remark 7.7 is in general not easy to verify.
However, if the difference between the indices 5~ (A) and j~ (Ap) is sufficiently large,
this condition can be avoided.

Theorem 7.8. Suppose that H € C*(R* x R, R) satisfies (7.3), (7.5), (7.6) and
j9(A0) = 0. Then (7.1) has at least two nontrivial 27-periodic solutions in each of
the following cases:

(i) 17 (A) = j~ (Ao)| > 2N and j°(A) = 0;

(ii) |7~ (A) — i~ (Ao)| > 2N, G, is bounded and G(z,t) — —oo uniformly int as
|z| — oo;

(iii) |77 (A) — jT(Ag)| > 2N, G, is bounded and G(z,t) — oo uniformly int as
|z| — oo.

Proof. Assume that (i) or (ii) is satisfied. Let zp be the nontrivial solution we

already know exists, and suppose there are no other ones. According to Theorem
5.4,

g (®,20) = [¢" " (1ho, 0)]
for some rg € Z and some functional 1;0 defined on a space Z of dimension < 2N.
So cg,(fD, 2p) can be nonzero only for 0 < ¢ — rop < dimZ < 2N. Moreover, if 7:[;0
has a local minimum at 0, then ¢4~ ({/JVQ, 0) # 0 if and only if g — rq = 0; if it has
a local maximum, then ¢~ ({/;0, 0) # 0 if and only if ¢ — 7o = dim Z; and in other
cases (1hy, 0) = ¢dmZ (¢, 0) = 0 (see [15] or [34, Theorem 8.6 and Corollary 8.4]).
Consequently, the Morse inequalities give

IN—2

A0 N bt = ) 4 (14 1)Q(),
i=0

where b; € [Z] and some (or all) b; may be zero and o € Z. Since there is an
exponent j~(A) on the right-hand side above, a + i = j(A) for some i. The
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left-hand side contains the exponent j~(Ag). Therefore Q(¢) must have a nonzero
term with exponent j~(A4p) or j~(Ap) — 1, and it follows that there is a nonzero
term with exponent j~(Ag) — 1 or j7(Ap) + 1 on the left-hand side. Hence there
exists j, 0 < j < 2N — 2, such that a +j = j7(4g) + 1 or 5 (4p) — 1. So
77 (A) — 7 (Ap)| =i —j £ 1| < 2N — 1, a contradiction.

Finally, if (iii) is satisfied, the conclusion is obtained by applying the same ar-
gument to —P. O

Corollary 7.9. Suppose that H € C*(R*N x R, R) satisfies (7.3), H, is bounded
and H,(z,t) = o(2) uniformly in t as z — 0. Then (7.1) has at least two nontrivial
2m-periodic solutions in each of the following two cases:

(i) H(z,t) — —oo uniformly in t as |z| — oo and there is a 6 > 0 such that
H(z,t) > 0 whenever |z| < 6;

(i) H(z,t) — oo uniformly in ¢t as |z| — oo and there is a & > 0 such that
H(z,t) <0 whenever |z| < 6.

Proof. (i) Note that H satisfies (7.5) and (7.6) with A = Ay = 0. Suppose that zg
is the only nontrivial solution of (7.1). Since j~(0) =i~ (0) = —N, it follows from
(7.10) (with & = &) that ¢Z(®, K) = [F] if ¢ = —N and [0] otherwise. Furthermore,
7°(0) = 2N, so according to Corollary 5.5, ¢Z(®,0) = [F] if ¢ = N and [0] otherwise
(observe that ¢ in Corollary 5.5 corresponds to — here, cf. (7.2)). Hence we obtain
from the Morse inequalities that

2N -2
N T bt =N+ (14 1)Q(1),
1=0

which leads to a contradiction in the same way as in the proof of Theorem 7.8.
(ii) The argument is similar except that now ¢ (®, K) = [F] and ¢ ¥ (9, 0) = [F]
according to (ii) of Lemma 7.6 and Corollary 5.5. |

If G has constant sign for z in a neighbourhood of the origin in R?V, a better
result than Theorem 7.5 can be obtained.

Theorem 7.10. Suppose that H satisfies (7.5) and (7.6) with A and Ao indepen-
dent of t and either j°(A) = 0 or G, is bounded and G(z,t) — —oo uniformly
int as |z| — oco. Then (7.1) has a nontrivial 2m-periodic solution in each of the
following two cases:

(i) 57 (A) # j=(Ag)+j°(Ao) and there is a § > 0 such that Go(z,t) > 0 whenever
2] < 6;

(ii) 5~ (A) # 7 (Ao) and there is a § > 0 such that Go(z,t) < 0 whenever |z| < 6.

If A, Ag are t-dependent, the same conclusion remains valid provided H €
C?(R?N x R,R) and satisfies (7.3).

Proof. (1) Suppose that 0 is the only critical point of ® and let £ =Y & Z be
the decomposition corresponding to the nonpositive and the positive part of the
spectrum of Lg. It has been shown in [26], cf. also [28, 29], that ® satisfies the local
linking condition at 0 with Y and Z as above. Moreover, since Ag is independent
of t, Lo(Fy) C Fy, for each k and therefore E,, = (Y N E,) ® (Z N E,). Also, since
N(Lg) C E,, it is easy to see that dim(Y N E,) = j~(A4o) + j°(Ao) + dy, for almost
all n. Hence in view of Theorem 5.6, ¢ (AO)JF]O(AO)(@, 0) # [0]. On the other hand,
ct(®,K) # [0] if and only if ¢ = 5~ (A) (this follows from the proof of Theorem 7.4
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if j(A) = 0 and from (7.10) otherwise). Since j~(A) # 7~ (Ag) + 7°(Ag), ® must
have a nontrivial critical point.
If A, Ag are t-dependent and H satisfies (7.3), we use the filtration £’ and obtain
7~ (Ao)+3"(Ao)

from Corollary 5.5 that cg, (®,0) = [F] (v in corollary 5.5 corresponds
to —¢o here). This contradicts the fact that ¢, (®,0) = c&,(®, K) # [0] if and only
if ¢ =j~(A).

(ii) The proof is the same except that now Y corresponds to the negative and Z
to the nonnegative part of the spectrum of Lg. So dim(Y N E,,) = j~(Ap) + d,, for
almost all n. |

If G(z2,t) — oo as |z| — oo, a similar result can be formulated in terms of 5 (A)
and j+ (A())
Suppose now that

(7.13) H(zt) = %A(t)p p+G(z,1),

where G, (z,t) = o(|z|) uniformly int as |z| — oo,

z=(p,q) € RV x RN, A(t) is a symmetric N x N matrix with 27-periodic entries
and G is 27-periodic in ¢ and ¢. If z is a 27-periodic solution of (7.1), so are all
Z = (p, q) with ¢ = ¢ (mod 27). Hence to each solution z there corresponds an orbit
O(z) := {z + (0,27Z")}. Two solutions z1, 2o are called geometrically distinct if
O(z1) N O(z3) = 0. Let E = E® N, where N := {(p,q) : p =0, ¢ € R} and
E = N-=. So N is the subspace of constant functions (p, q) such that p = 0 and E
is the subspace of functions in £ whose g-coordinates have mean value zero. Let
z=x+v € E®N and define (cf. (7.7))

1 2m 2T 1
O(z,v) = —/ (=J&-x—A(t)p-p)dt — G(z,t)dt = =
2 Jo 0 2
Then ® : E x N — R. Since ®(z,v) = ®(z,7) if ¥ = v (mod 27), v may be
regarded as an element of the torus 7V := RY /27Z" and ® maps M := E x TV
into R. Moreover, distinct critical points of ® on M correspond to geometrically
distinct 27-periodic solutions of (7.1).

One sees that Lz = 0 if and only if p = 0 and ¢ = A(t)p. So N(L) consists
of (p,q) € E such that p € RN, ¢ = A(t)p and A(t)p has mean value zero. In
what follows we assume for simplicity that L is invertible on E. As in [41], this
assumption may be relaxed by requiring that if N(L) is nontrivial, then G, is
bounded and G(p,¢q,t) — oo (or —oo) uniformly in (g,t) as |p| — oo, p € PyN(L)
(P, is the projector onto the first component of z = (p, q)).

(Lz,x) — o(z,v).

Theorem 7.11. Suppose that H € C?*(R?N x R,R) is 2n-periodic in q,t and
satisfies (7.13). If L is invertible on E and all 27-periodic solutions of (7.1) are
nondegenerate, then the number of geometrically distinct ones is at least 2V .

Proof. Let € := {M,,d,}, where M, := (ENE,)x TN (cf. Remark 2.15). Suppose
that ® has finitely many critical points (otherwise there is nothing to prove). Using
Propositions 2.12 and 2.14 in the same way as in the proof of Theorem 7.4, we
see that cz(®, K(®)) = c3(®1,K(P1)), where ®y(z,v) := i(Lz,z). Moreover,
if (W,W~) is a bounded admissible pair for z +— 1(Lz,z) and 0 on E, then
(W, W) := (W,W~)xTV is admissible for ®; and K (®;). Since L is invertible on
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E, there exists a unique go such that for almost all n, H+d» (WﬁEn, W- NE,) =F
if ¢ = go and = 0 otherwise. So it follows from the Kiinneth formula [17, Proposition
VI1.12.16], [39, Theorem 5.6.1] that

HOt i (WAE,, W™ NE,) = {H*(WNE,, W NE,)®@H*(TN)}atdn = ga—aw TN,
Hence

e (@, K(®)) = HE(W,W~) = [H*®(TN)],
and since H*(TN) = H*(SY) ® --- ® H*(S') (N times),

N

Bg(W, W™) =dimg Hg(W, W™) = K
q — qo

)} forgo<g<q+N

and SZ(W, W) = [0] otherwise. We have assumed that all critical points of ® are
nondegenerate. Locally we may identify ® on M = Ex T with the same functional
on E. It follows therefore as in Remark 7.7 that each critical point (x;,v;) of ® on
M contributes with a term t% to the Morse polynomial. Since all coefficients a,

in the polynomial @ in the Morse inequalities are nonnegative (in the sense that
aq € [Z4]), it follows from Theorem 3.1 that

MEW,W™) = BEW, W),

where the relation > has the obvious meaning and (W, W ™) is a (globally) admis-
sible pair for ® and K(®). So if m is the number of critical points of ®, then

= 3wz vy = o) = [( V)] = e o

q€EZ q€Z 9=qo 4= 40

Remark 7.12. (i) Theorems 7.4, 7.5 and 7.10 extend different results contained in
[1, 2, 13, 26, 32, 41]. In [1, 2] it was assumed that H,, is bounded, A, Ay are time-
independent and j°(A) = 0, in [13] H,. is bounded and j°(A) = j°(Ap) = 0, in [26]
A, Ap are time-independent and j(A) = 0, in [32] H,, is bounded and j°(A4) = 0,
and in [41] A, Ap are time-independent. Theorem 7.4, with a different proof, may
also be found in [10, p. 186]. Theorem 7.8 extends a result by Bertotti [7], where
it was assumed that H,, is bounded and j°(A4) = 0 (see also [32]), and Theorem
7.11 is a generalization of a result in [19] and [41] (in [19] H.. is bounded and A
time-independent, and in [41] A is time-independent).

The assumption that H,, is bounded—which has been made in some of the work
mentioned above—was needed in order to reduce the problem to a finite dimensional
one. After this reduction the usual Morse theory was employed.

(ii) If A = 0, G is 2m-periodic in all variables and all solutions of (7.1) are
nondegenerate, then the number of geometrically distinct ones is at least 22V. This
follows by an easy modification of the proof of Theorem 7.11. Thus we recover the
celebrated result by Conley and Zehnder on Arnold’s conjecture [12], see also [10].

(iii) If the nondegeneracy assumption in Theorem 7.11 is removed and if H €
CHR*N x R,R), then (7.1) has at least N + 1 geometrically distinct 27-periodic
solutions [18, 30, 40].
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8. WAVE EQUATION

In this section we are concerned with the existence of nontrivial solutions of the
wave equation (0.3) satisfying the boundary and the periodicity conditions (0.4).
More precisely, we consider the problem

Oui=up — uge = flz,t,u), 0<z<mteR,
(8.1) u(0,t) = u(m,t) =0, teR,
u(x,t 4 27) = u(x, t), 0<z<mteR,
with f satisfying the following hypotheses:
(8.2) fec(o,n] x RLR), and f(z,t+2m, &) = f(x,t,€)
for all z,t,¢&,
(8.3) There exists an e >0 such that (f(z,t,&) — f(z,t,n)(E —n)
> (& —n)? for all z,t,&,m,
(8.4) fla,t,8) = b+ g(x,¢,€), where g(,t,€) = o([¢])
uniformly in (z,t) as |¢{| — oo,
(85) f(xvtu 5) = bOé- + go($7t7f), where gO(xvtu 5) = O(|§|)
uniformly in (z,t) as { — 0.
It follows from (8.2)—(8.5) that the constants bg,b are positive and v = 0 is a

solution of (8.1) (the trivial solution).
Let 2 := (0, 7) x (0,27) and let E be the space of functions

oo o0
(8.6) u(z,t) = Z Z ¢k sin jo e™*t, Cj—k = Cjk,

j=1k=—cc
such that 3=, 172 — k| [ejul® + 30,4 lejul* < oo Then E is a Hilbert space

with inner product

(u, v’y := 72 Z 3 — k?|ejn €y, + 7 Z Cjk Ci,-

3#|k| j=lk|
Observe that the basis {sinjze**} for E consists of eigenfunctions of the wave
operator 0. In what follows || || will denote the norm in E and || ||, the norm in
LrP(Q), 1 <p < 0.
Let

N:={u€E:u(zt)= Z cji sin ja ™}
J=lkl

and denote the orthogonal complement of N in E by Nt. Let u € E. Then Ou = 0
(in the sense of distributions) if and only if w € N. So N is the (generalized)
nullspace of the operator [ subject to our boundary and periodicity conditions. It
follows from the Fourier series representation (8.6) that for each h € L%(Q) such
that h is L2-orthogonal to N there exists a unique v € N+ satisfying v = h.
Moreover [8, 9],

(8.7) [vlloe < ClRll2,

where the constant C' is independent of h. Since the quotient of the norms of
sinjz e in F and in L?() is |52 — k2| and since |j2? — k?| — oo as j2 + k% — oo,
j # |k|, it follows from a standard argument that the embedding N+ — L?(Q) is
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compact. On the other hand, for each v € N, ||u|| = |Ju||2. So N is not compactly
embedded in L%(Q).
A function w is said to be a weak solution of (8.1) if u € E and

/ulﬂnpdxdtz/f(a:,t,u)cpda:dt
Q Q

for all smooth ¢ € E. If f is sufficiently smooth and satisfies (8.3), then weak
solutions of (8.1) are known to be classical ones [9, 37].
Let

13
F(x,t,§) ::/O flz,t,s)ds,

where f satisfies (8.2)—(8.5), and consider the functional

(8.8) O(u) := %/(uf —u?) dadt +/ F(z,t,u)dxdt.
Q Q

It is easy to see [38, Appendix B] that ® € C'(E,R) and critical points of ® are
weak solutions of (8.1). Since the E- and the L?-norm coincide on N, we cannot
expect ® to be of class C? even if f is smooth (the second term of the right-hand
side of (8.8) is in fact in C?(L?(Q2),R) if and only if F is quadratic with respect
to &, cf. [3, Example 1.4.6]). Therefore Theorem 5.4 and Corollary 5.5 cannot be
applied to the study of (8.1).

Let 0 < A1 < Ay < ... be the positive eigenvalues of [ and let eq,eo,... be
the corresponding eigenfunctions chosen in such a way that e, = sinjx coskt or

en = sinjzsinkt for some j,k with j2 — k% = \,. Then (e,,e,) = 0 if m # n.
Define
(8.9) Ey:={ue E:uxt) = Z cji, sin jx e**}
k2 —52>0
and

E, := Eg @ span{ey,...,e, }.

Note that the first term on the right-hand side of (8.8) is positive semidefinite on Ey
and negative definite on span{ey, ..., e, }. Clearly, (F,)52, is a filtration of E. Let

n=1
E:={FE,,n}>,. We will show that ® satisfies (PS)* under suitable assumptions
on f. Since E = N @ N+, each u € E has the representation v = z + v, where
z€ Nandv e N+t

Lemma 8.1. (i) For each fized v € N+,
inf / F(z,t,z +v)dzdt
zEN Q

is attained at a unique z := z(v).
(ii) z(vj) — z(D) (in E) whenever v; — U in L*(52).

Proof. (i) Since F(x,t,£) > e£%/2 according to (8.3),
(8.10) /F(x,t,z+v) dedt > S]lz + vl
Q

Hence the functional z — [, F(z,t, 2 +v) dzdt is coercive (recall that ||z]| = ||z]|2).
Since it is also strictly convex, the conclusion follows.
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(ii) Let v; — v in L?(2) and let (v,,) be a subsequence of (v;). Since
/ F(z,t,z(vm) + vm) dzdt < / F(z,t,vy) drdt,
Q Q

it follows from (8.10) that z(v,,) is bounded. We may assume (taking a subsequence
if necessary) that z(v,,) — Z weakly. Since z(v) is a critical point of the functional
2z [o(F(z,t,z +v) dad,

(8.11) / fz t,z(v) +v)pdadt =0 for all ¢ € N.
Q
This and (8.3) imply

ez = z(vm)|3 < /Q(f(a:,tj—l— vm) — f(x,t, 2(Um) + vm))(Z — 2(v)) dedt

/ f(2,6,Z + vm)(Z — 2(v)) dadt.
Q

Since f(z,t,Z +vm) — f(z,t,Z+70) in L2(Q) and 2(v,,) — Z weakly in L?(2), the
second integral above tends to zero. So z(v,,) — Z strongly. Moreover,

/ F(x,t,2(0) + vy,) dxdt > / F(x,t,2(vm) + vp,) dadt
Q Q
according to the minimizing property of z(v). Passing to the limit we obtain
/ Fla,t, 2(5) + 7) dwdt > / Fla,t,% + ) dadt.
Q Q

Hence 7z = 2(7).
We have shown that each subsequence of (z(v;)) contains a subsequence con-
verging to z(7). It follows that z(v;) — 2(7). O

A similar result, for superlinear f, has been obtained by Tanaka [43, Lemma
1.1].

Denote the spectrum of the operator [ subject to the boundary and the period-
icity conditions in (8.1) by o(O). Let

€
G(z,t,€) ::/0 g(z,t,s)ds.

Proposition 8.2. The functional ® (given by (8.8)) satisfies (PS)* if either b ¢
o(0) or g is bounded and G(x,t,§) — oo (or G(x,t,£) — —o0) uniformly in (x,t)
as || — oo. Moreover, under these conditions ®|g, satisfies (PS) for each n.

Proof. Let (uj) be a (PS)*-sequence. Since F(,t,&) = $b&? + G(x,t,€),
(8.12)

O(u) = - /Q(uf —u? + bu?) dedt + /Q G(z,t,u) dxdt =: =(Lu,u) + 9 (u).

N~
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Suppose b € o(0). Let

ti={ueFE:u(z,t) = Z cji, sin jo e}
k2—3524b>0

E-={ue B :u(zx,t)= Z cji, sin jo ey
k2 —3j24b<0

E’ :={uc E:u(x,t)= Z cjrsin jz e},
k2—3524b=0

and write u = vt + v’ + v~ € ET @ E° @ E~. Note that L(E*) ¢ E* and
L(E,) C E,. Since the quadratic form u +— (Lu,u) is positive definite on E*,
negative definite on £~ and since

(8.13) P, V®(u;) = Luj + Luj + Po,Vip(u;) — 0

and Vi (E) is bounded (because g is), it follows that the sequence (u;|r + uy) is
bounded, and so is ¥ (u;). By the mean value theorem,

[(ug) —(uy)] < sup IV ()l + uy |l

Hence
/ G(z,t, u ) dzxdt

is bounded. Since EY is finite dimensional and G(x,t,£) — oo (or —o0) as |£| — oo,
the sequence (u)), and therefore also (u;), is bounded.

Let u; = z; +v;, where z; € N and v; € N+. We may assume after passing to a
subsequence that v; — T weakly in N+ and strongly in L?(Q2). Since P,,, V®(u;) —
0 and N C E,; (cf. (8.9)),

/ [z, t, 2 +v) (2 — 2(v))) dedt = (VP (uj),z; — z(vj)) — 0.
By (8.3) and (8.11),

llzs — 203 < / (Pt 25+ v5) — £t 2(05) + 7)) (25 — 2(0;)) dadt
/ [z, t, 2 +v)(z; — 2(vj)) dedt — 0.

So zj — z(v;) — 0in E. Since z(vj) — z(v) according to Lemma 8.1, z; — z(7)
in E. Consequently, u; = z; + v; — 2z(7) + v in L*(Q2) and therefore Vi) (u;) —
Vi (2(v) + v). Since L is invertible on ET @ E~, (8.13) shows that u; — z(v) + T
in E.

Suppose now that b ¢ o(0J). Then E° = {0}. By (8.4), for each ¢’ > 0 there is
a constant C' = C'(&) such that |g(z,t,&)| < &'|¢| + C(¢’). Hence Vip(u) = o(||Ju|))
as |lu]| — oo (cf. (7.8) and the following lines). Since L is now invertible, it follows
from (8.13) that (u;) is a bounded sequence. The remaining part of the proof is
the same as above.

Finally, since N C E,, an obvious modification of the above argument shows
that ®|g, satisfies (PS). |

Let .
Go(z,1,€) ::/ go(z,t,s)ds
0
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and
(8.14)

1 1
O(u) = 3 /Q(uf —u2 4 bou?) dxdt + /Q Go(z,t,u) dzdt =: §<L0u,u> + Yo(u).

Then
Ft = {ueE:u(z,t)= Z ¢k sin jz e}
k2 —;j2+bo>0
F~ = {u€FE:u(zt)= Z cjr sinjz e}
k2—3j24bp<0
FO = {u € E:u(x,t)= Z cjk sinja eikt}
k2 —j2+bo=0

are the subspaces on which (Lou, u) is positive definite, negative definite and zero.

Proposition 8.3. ® satisfies the local linking condition at 0 in each of the following
cases:
(Z) bo ¢ U(D);
(i1) bg € o(O) and there is a § > 0 such that Go(z,t,£) > 0 whenever |§] < §;
(i) bo € o(O) and there is a § > 0 such that Go(z,t,£) < 0 whenever || < 6.
Moreover, cz%(®,0) # [0], where qo is the number of eigenvalues of O in the
interval (0,bo] (counted with their multiplicity) if (i) or (%) is satisfied, and in the
interval (0,bo) if (#3) holds.

Proof. Let E =Y & Z. If (i) is satisfied, we take Y = F~ and Z = F7, if (ii)
holds, Y = F~ and Z = F* @ F°, and in the remaining case Y = F° @ F~ and
7 = FT. We will show that ® <0 on Y N B(0,p) and ® > 0 on Z N B(0,p) if p
is small enough. Assuming this, it is easy to obtain the second conclusion. Indeed,
suppose that (i) or (ii) is satisfied. Then Y = F~. Since E, is the subspace of
E obtained by taking the sums in (8.6) over all j,k with j2 — k? < )\, and Y
is obtained by summing over j, k with j2 — k? > by, Y N E,, is spanned by the
eigenfunctions e,, such that by < A, < A,. Therefore dim(Y N E,,) = n — qo for all
n > qo. If (iii) is satisfied, then Y = FO@® F~ and Y N E,, is spanned by all e,, such
that by < A\ < Ap. So again dim(Y N E,) = n — qo for n > go. Since obviously
E,=XYNE,) ®(ZNE,), c:*(®,0) # [0] according to Theorem 5.6.

We verify the local linking condition only in case (iii) (and make comments on
other cases when suitable). Let u € Z = FT and write u = v+ 2, v € Nt N F+,
z € N. First we show that there is an r > 0 such that if D, :={u € Z : |Jul]2 < r},
then infp ® > 0. Let (u;) C D, be a sequence such that ®(u;) tends to the
infimum. Since the quadratic form in (8.14) is positive definite on F¥ and t)q is
bounded on D,., ®(u;) — oo if ||u;|| — oo in E. Hence (u;) is bounded in E and we
may assume taking a subsequence that u; — u weakly in F (and v; — v strongly
in L2(2)). Furthermore, the function ¢ — F(x,t,&) is convex and the quadratic
form in (8.8) is positive semidefinite except on the finite dimensional subspace of
F* on which —by < k% — j2 < 0. Therefore ® is weakly lower semicontinuous on
F* and ®(u) = infp, ® (in particular, the infimum is a finite number). It follows
that

(8.15) (VO (@), 0) = A /Q i dadt
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for some A < 0 and all ¢ € F* (A is a Lagrange multiplier which takes into account
the fact that @ may be on the boundary of D,.). Choosing ¢ = u, we obtain

(8.16) A||ﬂ||§:/(ﬂt —ag)dde/ Flo.t, i) dudt.
Q Q

Below ¢, ¢a, ... will denote different positive constants. Recall that the quadratic
form above is negative definite on the finite dimensional subspace on which —by <
k? — j? < 0 and positive semidefinite otherwise. Thus [, (uf —u2) dedt > —c1||ulf3.
Since f(z,t,£)§ > 0 for all z,¢,£, we have

M[al3 = —edllal3
and |A| < ¢ (if w =0, then A\ = 0 because u ¢ 9D,.). It follows from (8.15) that
Ov = Pf(x,t,u) — A\u = P(f(z,t,0) — \u)

in the sense of distributions, where

P(Z ;. sinj:z:eikt) = Z ;. sinj:z:eikt
Jk

k2 —j24bo>0
is a bounded projector in L?(2). Employing (8.7) and (8.4), (8.5) we obtain
[0llce < c2l P(f(,t,u) — Au)l2 < csllulls-

It has been shown in [27, Lemma 4.3], cf. also [37, Lemma 3.7], that if a function
h satisfies (8.3) and

Ov = Ph(z,t,u),
where u = v + z, then [|2]loc0 < ca]|v||oo (in [27] the setup is slightly different but
our conclusion here remains true with the same proof). Since A <0, f(x,t,£) — A
satisfies (8.3). Consequently, ||u|loc < cs||ull2. It follows therefore from (8.5) that

(8.17) ®(@) = %<L0a, 0+ / Gola,t, @) dadt > 0
Q

whenever r is sufficiently small. Note that in case (ii) Z = F™ @ F°, the quadratic
form above is positive semidefinite on Z, and Go(z,t,%) > 0 if ||[u]e < c57 < 6.
Hence (8.17) still holds.

We have shown that infp,_® > 0. Since the embedding E — L?(Q) is continuous,
B(0, p) C D, for some p and ® > 0 on Z N B(0, p).

Now let u = u® +u~ € FO@® F~ =Y. It suffices to show that there is an r > 0
such that supy, ® < 0, where C, := {u € Y : ||lul|2 < r} (note that cases (i) and
(ii) are simpler because F = {0}). Let (u;) C C, be a maximizing sequence for ®.
Since

(8.18) D (u) = %(Lou_,u_> + /Q Go(z,t,u) dzdt,

the first term on the right-hand side above is negative definite on '~ and the second
one is bounded on C., it follows that ®(u;) — —o00 as |lu; || — co in E. So we may
assume that u; — U weakly in E and strongly in L?(£2) (we have used that Y ¢ N+
and the embedding N+ — L2(f) is compact). Since negative definite quadratic
forms are weakly upper semicontinuous, lim; ., ®(u;) < ®(u). So ®(u) = supg,
and

(8.19) Ot = Qf (z,t,7) — A\a = Q(f(x, t,7) — M)
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in the sense of distributions, where A > 0 and @ is the projector onto the subspace
of L?(2) on which k2 — j2 4+ by < 0. The quadratic form on the right-hand side of
(8.16) is now negative definite, so

0 < A2 < / Fot, @)t dudt < co[il]2
Q

and 0 < X < ¢g. By (8.7) and (8.19), [[u]lec < c7]|tl|2. If 7 is small enough, then
[|E]lco < 6, and it follows from (8.18) that ®(u) < 0. |

Theorem 8.4. Suppose that [ satisfies (8.2)—(8.5) and either b ¢ o(0O) or g is
bounded and G(x,t,&) — oo uniformly in (x,t) as || — co. Then the wave equation
(8.1) has a nontrivial weak solution in each of the following cases:

(i) bo ¢ o(0) and (0,b] N o(O) # (0,5 No(O);

(i1) by € o(0), (0,bo] No(O) # (0,0] No(0) and there is a & > 0 such that
Go(z,t,£) > 0 whenever |€| < 6;

(iii) by € o(0), (0,b9) No(d) # (0,b] N o(0) and there is a & > 0 such that
Go(z,t,£) <0 whenever [£] < 6.

Proof. Suppose that 0 is the only critical point of ®. If b ¢ o(0), let x(u) =
L(Lu,u) 4+ (1 = N)Y(u) (cf. (8.12)). Since Vio(u) = o([[u])) as |lul| — oo, it follows
from Propositions 2.12 and 2.14 that ¢£(®,0) = c5(®, K(®)) = c&(P1,0) (cf. the
proof of Theorem 7.4). Since E~ N E,, is spanned by the eigenfunctions e,, such
that b < Ay < A, we see that dim(E~ N E,) = n — geo if n > goo, Where ¢o, is the
number of eigenvalues of O in the interval (0,b] (counted with their multiplicity).
Hence M; (L) = —¢o and

(8.20) ce(®,0) = cg(®, K(®)) = {[0] otherwise.

Now let b € o(0J). Since ®|g, satisfies (PS), we may proceed as in the proof of
Lemma 7.6(i) and we obtain (8.20) again (note that here N(L) C E,, for almost all
n, so P,N(L) = N(L) and E], = E,). According to Proposition 8.3, ¢z (®,0) #
[0]. So go = geo- On the other hand, it follows from the definitions of gy and ¢
and from our hypotheses on the intersection with o(0dJ) that gy # G- O

Theorem 8.5. Suppose that f satisfies (8.2)—(8.5) and either b ¢ o(0) or g is
bounded and G(x,t,£) — —oo uniformly in (x,t) as [§] — oco. Then the wave
equation (8.1) has a nontrivial weak solution if the interval (0, b] in the assumptions
(i)—(#3) of Theorem 8.4 is replaced by (0,b).

Proof. The only difference compared to the proof of the preceding theorem is that
if b € ¢(0), we now use the argument of Lemma 7.6(ii) and obtain c¢Z(®,0) = [F]
for ¢ = Mz (L) + M°(L) and [0] otherwise. So (8.20) holds with g = —M (L) —
MPO(L), and it follows that in the present case ¢ is the number of eigenvalues of
O in the interval (0, b). |

Remark 8.6. If b ¢ o(0J), then (8.4) may be replaced by the slightly weaker hy-
pothesis that |g(x,t,&)| < €]+ 3, where « is less than the distance from b to o(0J)
[27, Corollary 5.2].

Remark 8.7. Theorems 8.4 and 8.5 extend some results of [1, 27]. In [1] it was
assumed that f € C!, the derivative f¢ is bounded, bounded away from zero and
b ¢ o(0) (on the other hand, if by € o(0O), our hypothesis at £ = 0 is different—and
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rather more restrictive—than the corresponding one in [1]). Theorem 8.4 is a slight
generalization of the main result of [27] (in [27] the sign conditions (ii) and (iii) are
for go(x,t,&)E; here they are for Go(z,t,£)). Theorem 8.5 is new.

9. ELLIPTIC SYSTEM

Let © € RN be a bounded domain with smooth boundary, let FF € C*(Q2xR? R)
and consider the Dirichlet problem

—Au = Fy(z,u,v) in Q,
(9.1) —Av = F,(z,u,v) in Q,
u=v=0 on 0f).
Problems of this type have been studied recently in [14] for subquadratic F', in

[16, 23] for superquadratic F', and in [42] a bifurcation problem for (9.1) has been
considered. Here we assume that F' is asymptotically quadratic, or more precisely,

that
(9.2)
F(z,u,v) = %au2 + buv + %cv2 + G(z,u,v), where |Gy (z,u,v)| + |Gy(x,u,v)]|
= o(|u| + |v]) uniformly in z as |u|+ |v| — oo
and
(9.3)

1 1
F(z,u,v) = §a0u2 + bouv + 5001)2 + Go(z,u,v),

where [(Go)y (2, u,v)| + |(Go)w(x, u, v)]|

= o(|u| + |v]) uniformly in z as |u|+ |v| — 0.

For simplicity a, b, c and ag, by, co are assumed to be constant, though xz-dependence
could be admitted.

Let Hg(€2) be the usual Sobolev space (of real-valued functions) and set E :=
H}(Q2) x H}(Q). Then E is a Hilbert space with inner product given by

{(u,v), (u',v")) = /Q(Vu -Vu' + Vo - V') dz.

It is easily seen from [38, Appendix B] and (9.2) that the functional ® : E — R
defined by

D(u,v) ::/Vu-Vvdx—/F(x,u,v)da:
Q Q

is of class C! and critical points of ® correspond to weak solutions of (9.1). More-
over, weak solutions are classical ones if either N =1 or N > 2 and F,, F,, are
locally Hélder continuous.

Let 0 < A1 < A2 < A3 < ... be the eigenvalues of —A in H{ () and let (e,)2>,
be the corresponding orthonormal basis of eigenfunctions. Define

F,, :=span{(en,0),(0,e,)}, E, :=span{(e;,0),(0,e;):1<1,j<n}
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and &€ := {E,,n}>2 ;. Furthermore, set

1 1
D(u,v) = / (Vu - Vv — §au2 — buv — 50112) dx — / G(z,u,v)dz
Q Q

= (L), (0,0)) - $(u,v)
and

1 1
b(u,v) = /Q(Vu Vv — §aou2 — bouv — §cov2) dx — /Q Go(z,u,v)dzx

= S {Lo(w,0), (u,0)) — po(u,v).

N

be the matrix representing the quadratic form in (9.2). Since (en)S2; is an or-
thonormal basis of eigenfunctions, fQ emendr=0ifm=#nand 1= fQ |Ven|? dx =
An fQ e2 dz. Using this it is easy to see that L(F,) C F,, L(E,) C E, and the
same is true for Lg. Moreover, if (u,v) = (ae,, Be,) € F,, then

%(L(u, v), (u,v)) = aff — % (%aoz2 + baf + %CBQ).

Hence the linear mapping L|p, : F,, — F), is represented by the matrix

—_a  1_ b
Tn(A) = <1 _)\l A") .
An

Let

%
Let
iT(A) = ) (MT(Tu(4)) - 1),
it(A) = (MH(T,(4)) - 1)
n=1
and -
0A) =) MOTL(A))
n=1

Since A\, — oo as n — 00, iT(A) and i°(A) are well-defined and finite. Moreover,
N(L) C E, for some n, dim N(L) = i°(A), Q,L = L (because L(E,) C E,) and
i~ (A) = Mg (L). It is also easy to see that i~ (A) + it (A4) +i°(4) = 0.

Lemma 9.1. Suppose that F satisfies (9.2). Then ® satisfies (PS)* in each of the
following two cases:

(i) i°(A) = 0;

(it) Gy, G, are bounded and G(x,u,v) — oo (or G(x,u,v) — —o0) uniformly in
x as |u] + Jv] = oo.

Moreover, under the above assumptions ®|g, satisfies (PS) for each n.

The proof uses the same argument as that of Lemma 7.3 and is therefore omitted
(note that Vo is compact according to [38, Appendix B]).
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Let F' € C?(Q2 x R%,R) and denote the Hessian of F' with respect to u,v by D?.
Suppose that there is a constant C such that

(9-4) ID?F (2, u,v)|| < C(1+ [ul + [o))P 7,

where 1 <p < (N+2)/(N—-2)if N>2and 1 <p<ooif N=2({if N =1, no
growth restriction (9.4) is necessary). Then ® € C?(E,R) [38, Appendix B].

Denote by A the matrix which represents the quadratic form in (9.3). Below
we formulate two sufficient conditions for the existence of a nontrivial solution to
(9.1). The proofs are omitted because they are obtained by an easy modification
of the arguments in Theorems 7.4 and 7.5 (here in fact the situation is somewhat
simpler: since P,N(L) C N(L) for some n, it is not necessary to introduce a
modified filtration £ as in Theorem 7.5).

Theorem 9.2. Suppose that F satisfies (9.2) and (9.3). If i°(A) = i°(Ag) = 0
and i~ (A) # i~ (Ao), then (9.1) has a nontrivial weak solution.

Theorem 9.3. Suppose that F € C?(Q x R, R) satisfies (9.2), (9.3) and (9.4)
((9.4) may be omitted if N =1). If Gy, G, are bounded, then (9.1) has a nontrivial
weak solution in each of the following two cases:

(1) G(z,u,v) — —oo uniformly in x as |u| + |v| — oo and

i (A) ¢ [i7 (Ao), i~ (Ao) +1°(Ao)];
(11) G(z,u,v) — oo uniformly in = as |u| + |v| — oo and
i (A) ¢ [ (Ao),i" (Ap) +i°(4o)].

If i%(Ag) = 0, it is not necessary to assume that F € C?, and if i%(A) = 0,
G, Gy need not be bounded and G need not tend to infinity.

Also Theorem 7.10 has a counterpart here. We leave the formulation to the
reader and observe only that the local linking condition may be verified e.g. by
adapting the argument of [29, Theorem 4].

Suppose that N = 1, Q = (a,b) and F € C?([a,b] x R?,R). If (ug,vp) is a
solution of (9.1), then (u,v) € E is in the nullspace of ®”(ug, vo) if and only if

—u"’ = Fuv(x, ’U,O(CL'), ’Uo(l’))u + F’uv (xu UO(x)v ’UO(:E))U7
—v" = Fyu(x,u0(x), v0(x))u + Fup(z, uo(x), vo())0,
u(a) = v(a) = u(b) = v(b) = 0.

It is well-known that such systems can have at most two linearly independent
solutions, so dim N (®”(ug, vg)) < 2 (this is no longer true if N > 2). Using the
argument of Theorem 7.8, we therefore obtain

Theorem 9.4. Suppose that N = 1, F € C?([a,b] x R* R) satisfies (9.2), (9.5)
and i°(Ag) = 0. Then (9.1) has at least two nontrivial solutions in each of the
following cases:

(i) li7 (A) — i (Ao)| = 2 and i°(A) = 0;

(ii) |i=(A) — i~ (Ao)| > 2, Gu, G,y are bounded and G(x,u,v) — —oo uniformly
inx as |ul + |v| — oo;

(iii) |it(A) —it(Ao)| > 2, Gu, Gy are bounded and G(z,u,v) — oo uniformly in
x as |u] + Jv] = oo.
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Remark 9.5. Similar results remain valid for the Neumann problem

—Au = F,(z,u,v) in Q,
—Av = Fy(x,u,v) in Q,
Ou/On=0v/On=0 on ON.

The appropriate choice of the space is then E = H(2) x H*(Q2) (the inner product
and the indices i (A), i°(A) need to be modified in a rather obvious way). Since the
null space of the quadratic form (u,v) — [, Vu-Vodz in H'(Q) x H'(Q) consists
of constant functions, it is easy to see that also results analogous to Corollary 7.9
(for N = 1) and Theorem 7.10 (for N > 1) are true here (in the latter case we
assume F' is periodic in one or both variables u, v).
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