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An infinite family of linear codes supporting

4-designs
Chunming Tang, Cunsheng Ding

Abstract—The question as to whether there exists an infinite
family of near MDS codes holding an infinite family of t-designs
for t ≥ 2 was answered in the recent paper [Infinite families of
near MDS codes holding t-designs, IEEE Trans. Inf. Theory 66(9)
(2020)], where an infinite family of near MDS codes holding an
infinite family of 3-designs and an infinite family of near MDS
codes holding an infinite family of 2-designs were presented, but
no infinite family of linear codes holding an infinite family of
4-designs was presented. Hence, the question as to whether there
is an infinite family of linear codes holding an infinite family of
4-designs remains open for 71 years. This paper settles this long-
standing problem by presenting an infinite family of BCH codes
of length 22m+1+1 over GF(22m+1) holding an infinite family of
4-(22m+1+1, 6, 22m−4) designs. This paper also provides another
solution to the first question, as some of the BCH codes presented
in this paper are also near MDS. Moreover, an infinite family of
linear codes holding the spherical geometry design S(3, 5, 4m+1)
is presented. The new direction of searching for t-designs with
elementary symmetric polynomials will be further advanced.

Index Terms—BCH code, cyclic code, linear code, near MDS
code, t-design.

I. INTRODUCTION

Let P be a set of v ≥ 1 elements, where v is an integer,

and let B be a set of k-subsets of P , where k is a positive

integer with 1 ≤ k ≤ v. Let t be a positive integer with t ≤ k.

The pair D := (P ,B) becomes an incidence structure when

the incidence relation is the set membership. The incidence

structure D = (P ,B) is called a t-(v, k, λ) design, or simply

t-design, if every t-subset of P is contained in exactly λ
elements of B. The elements of P are called points, and those

of B are referred to as blocks. The set B is called the block set.

The number of blocks in B is usually denoted by b. Let
(P
k

)

denote the set of all k-subsets of P . Then
(

P ,
(P
k

)

)

is a k-

(v, k, 1) design, which is called a complete design. A t-design

is called simple if B does not contain any repeated blocks.

This paper considers only simple t-designs with v > k > t.
A t-(v, k, λ) design is referred to as a Steiner system if t ≥ 2
and λ = 1, and is denoted by S(t, k, v). From the definition,

it follows that the parameters of a t-(ν, k, λ) design have the
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following relation:
(

ν

t

)

λ =

(

k

t

)

b.

Let C be a [v, κ, d] linear code over GF(q), where κ and

d denote the dimension and minimum distance of C. Let Ai

denote the number of codewords with Hamming weight i in

C for 0 ≤ i ≤ v. The sequence (A0, A1, · · · , Av) of integers

is called the weight distribution of C, and the polynomial
∑v

i=0 Aiz
i is referred to as the weight enumerator of C. In

this paper, C⊥ denotes the dual code of a linear code C, d⊥

denotes the minimum distance of C⊥, and (A⊥
0 , A

⊥
1 , · · · , A⊥

v )
denotes the weight distribution of C⊥.

There are different approaches to constructing t-designs. A

coding-theoretic construction of t-designs is as follows. For

each k with Ak 6= 0, let Bk(C) denote the set of the supports

of all codewords with Hamming weight k in C, where the

coordinates of a codeword are indexed by (p1, . . . , pv). Let

P(C) = {p1, . . . , pv}. The incidence structure (P(C),Bk(C))
may be a t-(v, k, λ) design for some positive integers t and λ,

which is called a support design of the code C, and is denoted

by Dk(C). In such a case, we say that the codewords of weight

k in C support or hold a t-(v, k, λ) design, and for simplicity,

we say that C supports or holds a t-(v, k, λ) design.

There are three sets of sufficient conditions under which

the incidence structure (P(C),Bk(C)) is a t-design for some

positive integer t. The first set of conditions is described in the

Assmus-Mattson Theorem [1]. The second set of conditions is

documented in a generalised Assmus-Mattson Theorem [20].

The third set of conditions is in terms of the automorphism

group of the code C [12, p. 308].

A number of infinite families of t-designs with t ∈ {2, 3}
have been constructed from this coding-theoretic approach

[4]. In [6], the authors solved the 70-year-old open problem

as to whether there exists an infinite family of near MDS

codes supporting an infinite family of t-designs for t ≥ 2
by presenting an infinite family of near MDS codes over

GF(3s) supporting an infinite family of 3-designs and an

infinite family of near MDS codes over GF(22s) supporting

an infinite family of 2-designs. However, no infinite family

of 4-designs has been produced with this coding approach,

though sporadic t-designs with t = 4 and t = 5 have been

obtained from some sporadic linear codes. The first linear code

supporting t-design with t ≥ 4 was the [11, 6, 5] ternary Golay

code discovered in 1949 by Golay [11]. This ternary code

holds 4-designs, and its extended code holds a Steiner system

S(5, 6, 12) having the largest strength known. In the past 71

years, some sporadic linear codes holding 4-designs and 5-
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designs were discovered and many infinite families of linear

codes supporting 3-designs were constructed. However, the

question as to whether there is an infinite family of liner codes

holding an infinite family of 4-designs remains open for 71

years, in spite of the recent breakthrough in [6]. The objective

of this paper is to settle this 71-year-old problem by presenting

an infinite family of near MDS codes over GF(22m+1) holding

an infinite family of 4-(22m+1 + 1, 6, 22m − 4) designs. In

addition, this paper presents an infinite family of linear codes

holding the spherical geometry design S(3, 5, 1 + 4m). The

new direction of searching for t-designs with elementary

symmetric polynomials will be further advanced.

Since a number of infinite families of linear codes support-

ing an infinite family of 2-designs and 3-designs are known

in the literature [4] and the codes presented in [6] support

only 2-designs and 3-designs, the breakthrough made in [6]

is limited to an open question regarding near MDS codes.

The work of this paper is not incremental, as it presents the

first and unique infinite family of linear codes supporting an

infinite family of 4-designs in the literature. This paper also

gives another solution to the problem solved in [6], as the

codes presented in this paper are also near MDS. Both [6]

and this paper consider BCH codes and near MDS codes and

make use of elementary symmetric polynomials.

II. CYCLIC CODES, BCH CODES, AMDS CODES AND

NMDS CODES

In this section, we recall cyclic codes, BCH codes, almost

MDS codes and near MDS codes, as they will be used later

for constructing a family of 4-designs.

A. Cyclic codes and BCH codes

An [n, k, d] code C over GF(q) is said to be

cyclic if the condition (c0, c1, · · · , cn−1) ∈ C implies

(cn−1, c0, c1, · · · , cn−2) ∈ C. In this paper we identify a

vector (c0, c1, · · · , cn−1) ∈ GF(q)n with the polynomial

c0 + c1x+ c2x
2 + · · ·+ cn−1x

n−1 ∈ GF(q)[x]/(xn − 1).

In this way, any code C of length n over GF(q) corresponds

to a subset of the quotient ring GF(q)[x]/(xn − 1). A linear

code C is then cyclic if and only if the corresponding subset in

GF(q)[x]/(xn − 1) is an ideal of the ring GF(q)[x]/(xn − 1).
It is well known that every ideal of GF(q)[x]/(xn − 1) is

principal. Let C = 〈g(x)〉 be a cyclic code, where g(x) is

monic and has the smallest degree among all the generators

of C. Then this g(x) is unique and called the generator

polynomial of C, and h(x) = (xn − 1)/g(x) is called the

parity-check polynomial of C.

We are now ready to recall BCH codes over finite fields.

Let gcd(n, q) = 1. Let m := ordn(q), which is the order of

q modulo n, and let α be a generator of the group GF(qm)∗.

Define β = α(qm−1)/n. Then β is a primitive n-th root of

unity in GF(qm). The minimal polynomial Mβs(x) of βs over

GF(q) is defined to be the monic polynomial of the smallest

degree over GF(q) with βs as a root. It is easy to verify that

this minimal polynomial is given by

Mβs(x) =
∏

i∈Cs

(x− βi) ∈ GF(q)[x], (1)

which is clearly irreducible over GF(q).
Let δ be an integer with 2 ≤ δ ≤ n and let h be an integer.

A BCH code over GF(q) with length n and designed distance

δ, denoted by C(q,n,δ,h), is the cyclic code of length n over

GF(q) with generator polynomial

g(q,n,δ,h) = lcm(Mβh(x),Mβh+1 (x), · · · ,Mβh+δ−2(x)), (2)

where the least common multiple is computed over GF(q).
When h = 1, the code C(q,n,δ,h) with the generator polyno-

mial in (2) is called a narrow-sense BCH code. If n = qm−1,

then C(q,n,δ,h) is referred to as a primitive BCH code.

BCH codes form a subclass of cyclic codes and have nice

properties. It is known that BCH codes are asymptotically bad.

However, in many cases BCH codes are the best linear codes.

For instance, among all binary cyclic codes of odd length at

most 125 the best cyclic code is always a BCH code except

for two special cases [3, Appendix A]. Some BCH codes are

very popular in engineering. As a subclass of BCH codes,

Reed-Solomon codes have been widely used in communication

devices and consumer electronics. In the past ten years, a

lot of progress on the study of BCH codes has been made

(see, for example, [16], [17], [18], [19], [25]). In this paper,

we will investigate an important application of BCH codes in

combinatorial designs.

It is well known that the extended code C(q,qm−1,δ,1) of

the narrow-sense primitive BCH code C(q,qm−1,δ,1) holds

2-designs, as the permutation automorphism group of the

extended code contains the general affine group as a subgroup

(see, for example, [7] and [4, Chapter 8]). However, it is very

rare that an infinite family of cyclic codes hold an infinite

family of 3-designs. In this paper, we will present an infinite

family of BCH codes holding an infinite family of 4-designs,

which makes a breakthrough in 71 years and shows the beauty

of BCH codes in theory.

B. AMDS codes and NMDS codes

An [n, k, n − k + 1] linear code is called an MDS code.

An [n, k, n − k] linear code is said to be almost maximum

distance separable (almost MDS or AMDS for short). A code

is said to be near maximum distance separable (near MDS or

NMDS for short) if the code and its dual code both are almost

maximum distance separable. MDS codes do hold t-designs

with very large t. Unfortunately, all t-designs held in MDS

codes are complete and thus trivial. The first NMDS code was

the [11, 6, 5] ternary Golay code discovered in 1949 by Golay

[11]. This ternary code holds 4-designs, and its extended code

holds a Steiner system S(5, 6, 12) with the largest strength

known. The authors of this paper very recently presented

an infinite family of NMDS codes over GF(3m) holding an

infinite family of 3-designs and an infinite family of NMDS

codes over GF(22m) holding an infinite family of 2-designs

[6]. In this paper, we will present a family of NMDS codes

over GF(22m+1) holding an infinite family of 4-designs, and

a family of NMDS codes over GF(22m) holding an infinite

family of 3-designs.

NMDS codes have nice properties [8], [9], [10], [23]. In

particular, up to a multiple, there is a natural correspondence
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between the minimum weight codewords of an NMDS code

C and its dual C⊥, which follows from the next result [10].

Theorem 1. Let C be an NMDS code. Then for every minimum

weight codeword c in C, there exists, up to a multiple,

a unique minimum weight codeword c
⊥ in C

⊥ such that

suppt(c) ∩ suppt(c⊥) = ∅. In particular, C and C
⊥ have

the same number of minimum weight codewords.

By Theorem 1, if the minimum weight codewords of an

NMDS code support a t-design, so do the minimum weight

codewords of its dual, and the two t-designs are complemen-

tary of each other.

III. COMBINATORIAL t-DESIGNS FROM ELEMENTARY

SYMMETRIC POLYNOMIALS

The objective of this section is to construct 3-designs and 4-

designs from elementary symmetric polynomials. These results

would play a crucial role in proving that the codes constructed

in the next section support 3-designs or 4-designs.

We define [k] := {1, 2, · · · , k}. The elementary symmetric

polynomial (ESP) of degree ℓ in k variables u1, u2, · · · , uk,

written σk,ℓ, is defined by

σk,ℓ(u1, · · · , uk) =
∑

I⊆[k],|I|=ℓ

∏

j∈I

uj . (3)

In commutative algebra, the elementary symmetric polyno-

mials are a type of basic building blocks for symmetric

polynomials, in the sense that any symmetric polynomial can

be expressed as a polynomial in elementary symmetric poly-

nomials. Throughout this section, we use σk,ℓ to abbreviate

σk,ℓ(u1, · · · , uk) when u1, . . . , uk are clear from the context.

Let q = 2m throughout this section. Let Uq+1 be the

subgroup of GF(q2)∗ of order q + 1, that is, Uq+1 = {u ∈
GF(q2)∗ : uq+1 = 1}. For any integer k with 1 ≤ k ≤ q + 1,

let
(Uq+1

k

)

denote the set of all k-subsets of Uq+1. Define

Bσk,ℓ,q+1 =
{

{u1, · · · , uk} ∈
(

Uq+1

k

)

: σk,ℓ(u1, · · · , uk) = 0

}

. (4)

The incidence structure Dσk,ℓ,q+1 = (Uq+1,Bσk,ℓ,q+1) may be

a t-(q + 1, k, λ) design for some λ, where Uq+1 is the point

set, and the incidence relation is the set membership. In this

case, we say that the ESP σk,ℓ supports a t-(q+1, k, λ) design.

The ESP σk,ℓ always supports a 1-design, but may not support

2-designs. Define the block sets B0
σ6,3,q+1 and B1

σ6,3,q+1 by

B0
σ6,3,q+1 =















{u1, u2, u3, u4, u5, u6} ∈ Bσ6,3,q+1 :
{ui1 , ui2 , ui3 , ui4 , ui5} ∈ Bσ5,2,q+1

for some {i1, i2, · · · , i5} with

1 ≤ i1 < i2 < i3 < i4 < i5 ≤ 6















, (5)

and

B1
σ6,3,q+1 = Bσ6,3,q+1 \ B0

σ6,3,q+1. (6)

The following three theorems and corollary are the main

results of this section. They show an interesting application of

ESPs in the theory of combinatorial designs.

Theorem 2. Let m ≥ 5 be odd. Then the incidence structure

(Uq+1,Bσ6,3,q+1) is a 4-
(

q + 1, 6, q−8
2

)

design, where the

block set Bσ6,3,q+1 is given by (4).

Theorem 3. Let m ≥ 4 be even. Then the incidence structure

(Uq+1,Bσ5,2,q+1) is a Steiner system S(3, 5, q+1), where the

block set Bσ5,2,q+1 is given by (4).

Theorem 4. Let m ≥ 4 be even. Then the incidence structure

(Uq+1,B0
σ6,3,q+1) is a 3-(q + 1, 6, 2(q − 4)) design, and the

incidence structure (Uq+1,Bσ6,3,q+1) is a 3-

(

q + 1, 6, (q−4)2

6

)

design.

The following corollary follows immediately from the pre-

vious theorem.

Corollary 5. Let m ≥ 4 be even. Then the incidence structure

(Uq+1,B1
σ6,3,q+1) is a 3-

(

q + 1, 6, (q−4)(q−16)
6

)

design.

From Theorems 2, 3 and 4, one gets

∣

∣Bσ5,2,q+1

∣

∣ =

{

1
10

(

q+1
3

)

, if m is even,

0, if m is odd,

and

∣

∣Bσ6,3,q+1

∣

∣ =

{

(q−4)2

120

(

q+1
3

)

, if m is even,
q−8
30

(

q+1
4

)

, if m is odd.

In general, it is difficult to determine
∣

∣Bσk,ℓ,q+1

∣

∣. It would be

interesting to settle the following problem.

Open Problem 6. Let k, ℓ be two positive integers with ℓ ≤ k
2 .

Determine the cardinality of the block set Bσk,ℓ,q+1 given by

(4) for (k, ℓ) 6= (6, 3) and (5, 2).

To prove Theorems 2, 3, and 4, we need the following

lemmas. The first one is on quadratic equations over finite

fields of characteristic 2 [15], and is documented below.

Lemma 7. Let f(T ) = T 2 + aT + b ∈ GF(q)[T ] be a

polynomial of degree 2. Then

1) f has exactly one root in GF(q) if and only if a = 0;

2) f has exactly two roots in GF(q) if and only if a 6= 0
and Trq/2

(

b
a2

)

= 0; and

3) f has exactly two roots in GF(q2) \GF(q) if and only

if a 6= 0 and Trq/2
(

b
a2

)

= 1.

Lemma 8. Let {u1, u2} ∈
(

Uq+1

2

)

. Then u1u2

u2
1
+u2

2

∈ GF(q) and

Trq/2

(

u1u2

u2
1
+u2

2

)

= 1.

Proof. Let a = u1u2

u2
1
+u2

2

. Then aq =
u−1

1
u−1

2

u−2

1
+u−2

2

= a. Thus a ∈
GF(q). Note that 1

a = u+ 1
u , where u = u1

u2
∈ Uq+1. One has

(au)2 + (au) + a2 = 0, (7)

where au ∈ GF(q2) \GF(q). Hence, the equation T 2 + T +
a2 = 0 has two roots in GF(q2)\GF(q). It then follows from

Lemma 7 that Trq/2(a) = Trq/2(a
2) = 1. This completes the

proof.

Lemma 9. Let {u1, u2, u3, u4} ∈
(

Uq+1

4

)

. Then we have the

following.

1) u1 + u2 + u3 + u4 6= 0.
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2) If m is even, then u1 + u2 + u3 6= 0.

Proof. Suppose that u1 + u2 + u3 + u4 = 0. We have then

1

u1
+

1

u2
+

1

u3
+

1

u4
= (u1 + u2 + u3 + u4)

q = 0.

It follows from u4 = u1 + u2 + u3 that

1

u1
+

1

u2
+

1

u3
+

1

u1 + u2 + u3
= 0.

Multiplying both sides of the previous equation by

u1u2u3(u1 + u2 + u3) yields

(u1 + u2 + u3)(u1u2 + u2u3 + u3u1) + u1u2u3 = 0,

which is the same as

(u1 + u2)(u2 + u3)(u3 + u1) = 0,

which is contrary to our assumption that u1, u2, u3 are pair-

wise distinct. Thus, u1 + u2 + u3 + u4 6= 0.

Let m be even. Suppose that u1 + u2 + u3 = 0. Then
1

u1+u2
= 1

u3
= 1

u1
+ 1

u2
= u1+u2

u1u2
. We then have u2

1 + u1u2 +

u2
2 = 0. Thus, u3

1 = u3
2. Since m is even , gcd(3, q+1) = 1. It

then follows from u3
1 = u3

2 that u1 = u2, which is contrary to

our assumption that u1 6= u2. This completes the proof.

Lemma 10. Let σ3,1, σ3,2, σ3,3 be the ESPs given by (3) with

{u1, u2, u3} ∈
(

Uq+1

3

)

. Then

1) σ3,1σ3,2 + σ3,3 = (u1 + u2)(u2 + u3)(u3 + u1).
2) σ3,1σ3,2 + σ3,3 6= 0.

3) σ2
3,2 + σ3,1σ3,3 = σ2

3,3

(

σ2
3,1 + σ3,2

)q
.

Proof. The proofs are straightforward and omitted.

Lemma 11. Let m be even. Let σ3,1, σ3,2, σ3,3 be the ESPs

given by (3) with {u1, u2, u3} ∈
(

Uq+1

3

)

. Then

1) σ2
3,1 + σ3,2 6= 0; and

2) σ2
3,2 + σ3,1σ3,3 6= 0.

Proof. Suppose that σ2
3,1 + σ3,2 = 0, that is

u2
1 + u2

2 + u2
3 + u1u2 + u2u3 + u3u1 = 0.

Multiplying both sides of the previous equation by u1+u2+u3

yields

u3
1 + u3

2 + u3
3 + u1u2u3 = 0.

It then follows that |{u3
1, u

3
2, u

3
3, u1u2u3}| = 3 from Lemma 9,

which is contrary to the assumption that m is even. Combining

Part 1 and Lemma 10 gives Part 2. This completes the proof.

Lemma 12. Let uj ∈ Uq+1 such that σ5,2 = 0, where j ∈
{1, 2, 3, 4, 5}. Then

{

(σ2
3,1 + σ3,2)(u4 + u5) = σ3,1σ3,2 + σ3,3,

(σ2
3,1 + σ3,2)u4u5 = σ2

3,2 + σ3,1σ3,3,

where σ3,1, σ3,2, σ3,3 and σ5,2 are the ESPs given by (3).

Proof. Observe first that

u4u5 + σ3,1(u4 + u5) + σ3,2 = 0. (8)

Raising to the q-th power both sides of Equation (8) yields

u−1
4 u−1

5 + σq
3,1(u

−1
4 + u−1

5 ) + σq
3,2 = 0,

which is the same as

σ3,1u4u5 + σ3,2(u4 + u5) + σ3,3 = 0. (9)

The desired conclusion then follows from Equations (8) and

(9). This completes the proof.

Lemma 13. Let m be even and {u1, u2, u3, u4, u5, u6} ∈
B0
σ6,3,q+1. Let A and A′ be two 5-subsets of

{u1, u2, u3, u4, u5, u6} such that A,A′ ∈ Bσ5,2,q+1. Then

A = A′.

Proof. Suppose that A 6= A′. Due to symmetry, let

A = {u1, u2, u3, u4, u5} ∈ Bσ5,2,q+1 and A′ =
{u1, u2, u3, u4, u6} ∈ Bσ5,2,q+1. It then follows from Lemma

12 that

(σ2
3,1+σ3,2)(u4+u5) = σ3,1σ3,2+σ3,3 = (σ2

3,1+σ3,2)(u4+u6),

which gives

(σ2
3,1 + σ3,2)(u5 + u6) = 0.

It then follows from Lemma 11 that u5 + u6 = 0, which is

contrary to the assumption that u5 6= u6.

The following result is an immediate consequence of Lem-

mas 10, 11 and 12.

Lemma 14. Let {u1, u2, u3} ∈
(

Uq+1

3

)

and u4, u5 ∈ Uq+1

such that σ5,2 = 0. Then none of σ2
3,1 + σ3,2, σ3,1σ3,2 + σ3,3

and σ2
3,2 + σ3,1σ3,3 equals zero, and u4 6= u5.

Lemma 15. Let {u1, u2, u3} ∈
(

Uq+1

3

)

such that (σ2
3,1 +

σ3,2)(σ3,1σ3,2 + σ3,3)(σ
2
3,2 + σ3,1σ3,3) 6= 0. Put a =

σ3,1σ3,2+σ3,3

σ2
3,1+σ3,2

and b =
σ2
3,2+σ3,1σ3,3

σ2
3,1+σ3,2

. Then b ∈ Uq+1,
b
a2 ∈

GF(q) and Trq/2
(

b
a2

)

≡ 1 +m (mod 2).

Proof. First, it follows from Part 3 of Lemma 10 that b ∈
Uq+1. Next, observe that

b

a2
=

u1u2

(u1 + u2)2
+

u2u3

(u2 + u3)2
+

u3u1

(u3 + u1)2
+ 1. (10)

The desired conclusion then follows from Lemma 8 and

Equation (10). This completes the proof.

Lemma 16. Let the notation and assumption be the same as in

Lemma 15. Let f(u) be the quadratic polynomial u2+au+b ∈
GF(q)[u]. Then we have the following.

1) If m is odd, then f has no root in Uq+1 \
{√

b
}

.

2) If m is even, then f has exactly two roots in Uq+1.

Proof. Let m be odd. Suppose that there exists an u ∈ Uq+1 \
{√

b
}

such that f(u) = 0. Then

(

u√
b

)2

+
a√
b

(

u√
b

)

+ 1 = 0.

From Lemma 7 and u√
b
∈ Uq+1 \ {1} ⊆ GF(q2) \GF(q), we

have that Trq/2
(

b
a2

)

= 1, which is contrary to the result of

Lemma 15.
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Let m be even. By Lemmas 7 and 15, there exists u′ ∈
GF(q2)\GF(q) such that u′, u′q are exactly the two solutions

of the quadratic equation T 2+ a√
b
T+1 = 0. It’s easily checked

that u4 =
√
bu′ and u5 =

√
bu′q are the two roots of f .

Then the result follows from u′q+1 = 1. This completes the

proof.

Combining Lemmas 14, 12, and 16 gives the following.

Lemma 17. Let m be odd and {u1, u2, u3, u4, u5} ∈
(

Uq+1

5

)

.

Then σ5,2 6= 0.

Lemma 18. Let m be even and {u1, u2, u3} ∈
(

Uq+1

3

)

. Let

u4, u5 be the two solutions of the quadratic equation u2 +

au + b = 0, where a =
σ3,1σ3,2+σ3,3

σ2
3,1+σ3,2

and b =
σ2
3,2+σ3,1σ3,3

σ2
3,1+σ3,2

.

Then

{u1, u2, u3, u4, u5} ∈ Bσ5,2,q+1.

Proof. First, employing Lemmas 10, 11, and 16, we have that

u4, u5 ∈ Uq+1 and u4 6= u5. Using σ5,2 = u4u5 + (u4 +
u5)σ3,1 + σ3,2 and Vieta’s formulas yields

σ5,2 =
σ2
3,2 + σ3,1σ3,3

σ2
3,1 + σ3,2

+
σ3,1σ3,2 + σ3,3

σ2
3,1 + σ3,2

σ3,1 + σ3,2 = 0.

Suppose that u4 = ui and u5 = uj for some i, j ∈ {1, 2, 3}.

By symmetry, let (i, j) = (3, 2). Then

σ5,2 = u3u4 + u2u5 = u2
2 + u2

3 = 0,

which is contrary to the condition u2 6= u3. Thus,

|{u1, u2, u3} ∩ {u4, u5}| 6= 2.

Suppose that |{u1, u2, u3} ∩ {u4, u5}| = 1. By the sym-

metry of u1, u2, u3, let u5 = u3 and u4 6∈ {u1, u2, u3}.

Then σ5,2(u1, u2, u4, u5, u3) = 0. Note that {u1, u2, u4} ∈
(

Uq+1

3

)

and u5 = u3, which is contrary to Lemma 14. Thus,

|{u1, u2, u3} ∩ {u4, u5}| 6= 1. Hence, {u1, u2, u3, u4, u5} ∈
(

Uq+1

5

)

. This completes the proof.

Lemma 19. Let {u1, u2, u3, u4} ∈
(

Uq+1

4

)

. Then σ4,3σ4,1 6= 0
and (σ4,3+uiσ4,2)(σ4,2+uiσ4,1) 6= 0, where i ∈ {1, 2, 3, 4}.
Proof. Note that

σ4,3σ4,1 = σ4,4σ
q+1
4,1 .

By Part 1 of Lemma 9, we have σ4,3σ4,1 6= 0.

Note that (σ4,3 + uiσ4,2)(σ4,2 + uiσ4,1) = uiσ4,4(σ4,2 +
uiσ4,1)

q+1. We only need to prove that σ4,2 + uiσ4,1 6= 0.

On the contrary, suppose that σ4,2 + uiσ4,1 = 0. Using

the symmetry of u1, u2, u3, u4, choose ui = u4. Then

σ3,2 + u2
4 = u1u2 + u2u3 + u3u1 + u2

4 = 0, which is

contrary to Part 1 of Lemma 9 if u2
4 6∈ {u1u2, u2u3, u3u1}.

If u2
4 ∈ {u1u2, u2u3, u3u1}, due to symmetry suppose that

u2
4 = u1u2. It then follows from u1u2+u2u3+u3u1+u2

4 = 0
that u1 = u2, which contradicts the assumption that u1 6= u2.

This completes the proof.

The following result is a direct consequence of Lemma 19.

Lemma 20. Let {u1, u2, u3, u4} ∈
(

Uq+1

4

)

. Then
√

σ4,3

σ4,1
,
σ4,3+uiσ4,2

σ4,2+uiσ4,1
∈ Uq+1, where i ∈ {1, 2, 3, 4}.

Lemma 21. Let {u1, u2, u3, u4} ∈
(

Uq+1

4

)

. Then

σ6,3

(

u1, u2, u3, u4,
√

σ4,3

σ4,1
,
√

σ4,3

σ4,1

)

= 0 and

σ6,3

(

u1, u2, u3, u4,
σ4,3 + uiσ4,2

σ4,2 + uiσ4,1
, ui

)

= 0,

where i ∈ {1, 2, 3, 4}.

Proof. Set u5 = u6 =
√

σ4,3

σ4,1
. Then

σ6,3 (u1, u2, u3, u4, u5, u6)

= σ4,3 + (u5 + u6)σ4,2 + u5u6σ4,1

= σ4,3 + u2
5σ4,1

= 0.

Thus, σ6,3

(

u1, u2, u3, u4,
√

σ4,3

σ4,1
,
√

σ4,3

σ4,1

)

= 0.

Choose σ5 =
σ4,3+uiσ4,2

σ4,2+uiσ4,1
and σ6 = ui. Then

σ6,3

= σ4,3 + (u5 + u6)σ4,2 + u5u6σ4,1

= σ4,3 +

(

σ4,3 + uiσ4,2

σ4,2 + uiσ4,1
+ ui

)

σ4,2 +
σ4,3 + uiσ4,2

σ4,2 + uiσ4,1
uiσ4,1

= 0.

This completes the proof.

Lemma 22. Let {u1, u2, u3, u4} ∈
(

Uq+1

4

)

such that

σ5,2(u1, u2, u3, u4, u5) 6= 0 for any u5 ∈ Uq+1 \
{u1, u2, u3, u4}. Let S be the subset of Uq+1 given by

{

σ4,3 + uiσ4,2

σ4,2 + uiσ4,1
: i = 1, 2, 3, 4

}

⋃

{ui : i = 1, 2, 3, 4}
⋃

{
√

σ4,3

σ4,1

}

.

Then |S| = 9.

Proof. First, we prove that
√

σ4,3

σ4,1
6= u4. On the contrary,

suppose that
√

σ4,3

σ4,1
= u4. Then

σ4,1u
2
4 + σ4,3 = 0,

which is the same as

u3
4 + σ3,1u

2
4 + σ3,2u4 + σ3,3 = 0.

Then,

(u4 + u1)(u4 + u2)(u4 + u3) = 0,

which is contrary to the assumption that {u1, u2, u3, u4} ∈
(

Uq+1

4

)

. Thus
√

σ4,3

σ4,1
6= u4. By the symmetry of u1, u2, u3, u4,

√

σ4,3

σ4,1
6= ui for all i. (11)

Suppose that
σ4,3+u4σ4,2

σ4,2+u4σ4,1
= u4. Then u4 =

√

σ4,3

σ4,1
, which

is contrary to Inequality (11). Thus,
σ4,3+u4σ4,2

σ4,2+u4σ4,1
6= u4. By the

symmetry of u1, u2, u3, u4,

σ4,3 + uiσ4,2

σ4,2 + uiσ4,1
6= ui for all i. (12)
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Suppose that
σ4,3+u4σ4,2

σ4,2+u4σ4,1
= u3. Then σ4,3 + u4σ4,2 +

u3(σ4,2 + u4σ4,1) = 0, which is the same as (u3 +
u4)

2(u1 + u2) = 0. This is contrary to our assumption that

{u1, u2, u3, u4} ∈
(

Uq+1

4

)

. Thus,
σ4,3+u4σ4,2

σ4,2+u4σ4,1
6= u3. By the

symmetry of u1, u2, u3, u4,

σ4,3 + uiσ4,2

σ4,2 + uiσ4,1
6= uj for all i 6= j. (13)

Suppose that
σ4,3+uiσ4,2

σ4,2+uiσ4,1
=

√

σ4,3

σ4,1
for some i ∈ {1, 2, 3, 4}.

Put u5 =
√

σ4,3

σ4,1
. It follows from Inequality (11) that u5 6∈

{u1, u2, u3, u4}. By Lemma 21, we have
{

σ6,3 (u1, u2, u3, u4, u5, ui) = 0,

σ6,3

(

u1, u2, u3, u4, u5,
√

σ4,3

σ4,1

)

= 0.

By the assumption of this lemma, σ5,2(u1, u2, u3, u4, u5) 6= 0.

Thus,
{

ui =
σ5,3

σ5,2
,

√

σ4,3

σ4,1
=

σ5,3

σ5,2
,

which is contrary to Inequality (11). Hence,

σ4,3 + uiσ4,2

σ4,2 + uiσ4,1
6=

√

σ4,3

σ4,1
. (14)

Assume that
σ4,3+uiσ4,2

σ4,2+uiσ4,1
=

σ4,3+ujσ4,2

σ4,2+ujσ4,1
for some i, j ∈

{1, 2, 3, 4}. Put u5 =
σ4,3+uiσ4,2

σ4,2+uiσ4,1
. It follows from Inequalities

(12) and (13) that u5 6∈ {u1, u2, u3, u4}. By Lemma 21, we

have
{

σ6,3 (u1, u2, u3, u4, u5, ui) = 0,
σ6,3 (u1, u2, u3, u4, u5, uj) = 0.

By the assumption of this lemma, σ5,2(u1, u2, u3, u4, u5) 6= 0.

Thus,
{

ui =
σ5,3

σ5,2
,

uj =
σ5,3

σ5,2
.

Then i = j. Hence,

σ4,3 + uiσ4,2

σ4,2 + uiσ4,1
6= σ4,3 + ujσ4,2

σ4,2 + ujσ4,1
, for i 6= j. (15)

The desired conclusion then follows from Inequalities (11),

(12), (13), (14) and (15). This completes the proof.

Lemma 23. Let m be even, and let {u′
1, u

′
2, u

′
3, u

′
4, u

′
5} ∈

Bσ5,2,q+1 and u5, u6 ∈ Uq+1 such that

σ6,3(u
′
1, u

′
2, u

′
3, u

′
4, u5, u6) = 0. Then u′

5 ∈ {u5, u6}.

Proof. Suppose that u′
5 6∈ {u5, u6}. By Lemmas 11 and 12,

σ5,2(u
′
1, u

′
2, u

′
3, u

′
4, u5) 6= 0. One has

{

σ6,3 (u
′
1, u

′
2, u

′
3, u

′
4, u5, u

′
5) = 0,

σ6,3 (u
′
1, u

′
2, u

′
3, u

′
4, u5, u6) = 0,

which is the same as
{

u′
5 =

σ5,3(u
′
1,u

′
2,u

′
3,u

′
4,u5)

σ5,2(u′
1
,u′

2
,u′

3
,u′

4
,u5)

,

u6 =
σ5,3(u

′
1,u

′
2,u

′
3,u

′
4,u5)

σ5,2(u′
1
,u′

2
,u′

3
,u′

4
,u5)

.

This is contrary to our assumption that u′
5 6∈ {u5, u6}. This

completes the proof.

Lemma 24. Let {u1, u2, u3, u4} ∈
(

Uq+1

4

)

such that

σ5,2(u1, u2, u3, u4, u5) 6= 0 for any u5 ∈ Uq+1 \
{u1, u2, u3, u4}. Then

σ5,3

(

u1, u2, u3, u4,
√

σ4,3

σ4,1

)

σ5,2

(

u1, u2, u3, u4,
√

σ4,3

σ4,1

) =

√

σ4,3

σ4,1
,

and

σ5,3

(

u1, u2, u3, u4,
σ4,3+uiσ4,2

σ4,2+uiσ4,1

)

σ5,2

(

u1, u2, u3, u4,
σ4,3+uiσ4,2

σ4,2+uiσ4,1

) = ui,

where i ∈ {1, 2, 3, 4}.

Proof. The claim follows from Lemma 21.

We will need the following lemma whose proof is straight-

forward.

Lemma 25. Let {u1, u2, u3, u4} ∈
(

Uq+1

4

)

and u5 ∈
Uq+1 such that σ5,2 (u1, u2, u3, u4, u5) 6= 0. Let u6 =
σ5,3(u1,u2,u3,u4,u5)
σ5,2(u1,u2,u3,u4,u5)

. Then we have the following.

1) If u6 = u5, then u5 =
√

σ4,3

σ4,1
.

2) If u6 = ui, then u5 =
σ4,3+uiσ4,2

σ4,2+uiσ4,1
, where i ∈ {1, 2, 3, 4}.

Lemma 26. Let m be even and {u1, u2, u3, u4} ∈
(

Uq+1

4

)

such that σ5,2(u1, u2, u3, u4, u5) 6= 0 for any u5 ∈ Uq+1 \
{u1, u2, u3, u4}. Let S be the subset of Uq+1 given by

{

σ4,3 + uiσ4,2

σ4,2 + uiσ4,1
: i = 1, 2, 3, 4

}

⋃

{ui : i = 1, 2, 3, 4}
⋃

{
√

σ4,3

σ4,1

}

.

Let ũ4 and ũ5 be the two solutions of the quadratic equation

u2+au+b = 0, where a =
σ3,1σ3,2+σ3,3

σ2
3,1+σ3,2

and b =
σ2
3,2+σ3,1σ3,3

σ2
3,1+σ3,2

.

Then ũ4 6∈ S and ũ5 6∈ S.

Proof. By the definition of ũ4, ũ5 and Lemma 12, u4 6∈
{ũ4, ũ5}. Suppose that ũ4 =

√

σ4,3

σ4,1
. From Lemma 21 or 24,

one gets

σ6,3

(

u1, u2, u3, u4, ũ4,

√

σ4,3

σ4,1

)

= 0.

From Lemma 23 and ũ5 6= u4, it follows that ũ5 =
√

σ4,3

σ4,1
=

ũ4, which is contrary to a 6= 0. Thus, ũ4 6=
√

σ4,3

σ4,1
. By the

symmetry of ũ4 and ũ5, ũ5 6=
√

σ4,3

σ4,1
.

Suppose that ũ4 =
σ4,3+uiσ4,2

σ4,2+uiσ4,1
. From Lemma 21 or 24, one

gets

σ6,3 (u1, u2, u3, u4, ui, ũ4) = 0.

From Lemma 23 and ũ5 6= u4, it follows that ũ5 = ui, which

is contrary to the definition of ũ5. Thus, ũ4 6= σ4,3+uiσ4,2

σ4,2+uiσ4,1
. By

the symmetry of ũ4 and ũ5, ũ5 6= σ4,3+uiσ4,2

σ4,2+uiσ4,1
. This completes

the proof.
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Proof of Theorem 2. Recall Theorem 2 first. Let

{u1, u2, u3, u4} be a fixed 4-subset of Uq+1. Set

S =

{

σ4,3 + uiσ4,2

σ4,2 + uiσ4,1
: i = 1, 2, 3, 4

}

⋃

{ui : i = 1, 2, 3, 4}
⋃

{
√

σ4,3

σ4,1

}

.

For any u5 6∈ {ui : i = 1, 2, 3, 4}, σ5,2(u1, u2, u3, u4, u5) 6= 0
from Lemma 17. Define

T =

{{

u5,
σ5,3(u1, u2, u3, u4, u5)

σ5,2(u1, u2, u3, u4, u5)

}

: u5 ∈ Uq+1 \ S
}

.

From Lemmas 24 and 25, it follows that
σ5,3(u1,u2,u3,u4,u5)
σ5,2(u1,u2,u3,u4,u5)

6∈
S if u5 6∈ S. By Lemma 22, |T | = (q+1−9)

2 . From

Lemma 25 and
σ5,3(u1,u2,u3,u4,u5)
σ5,2(u1,u2,u3,u4,u5)

∈ Uq+1, we deduce that

{u1, u2, u3, u4, u5, u6} ∈ Bσ6,3,q+1 for any {u5, u6} ∈ T .

On the other hand, let {u1, u2, u3, u4, u5, u6} ∈
Bσ6,3,q+1. Employing Lemma 24, {u5, u6} ∈ T . Thus,

{u1, u2, u3, u4, u5, u6} ∈ Bσ6,3,q+1 if and only if {u5, u6} ∈
T . Hence, (Uq+1,Bσ6,3,q+1) is a 4-

(

q + 1, 6, q−8
2

)

design.

This completes the proof.

Proof of Theorem 3. Recall Theorem 3 first. Let {u1, u2, u3}
be a fixed 3-subset of Uq+1. By Lemmas 12 and 18,

{u1, u2, u3, u4, u5} ∈ Bσ6,3,q+1 if and only if u4 and u5 are

the two solutions of the quadratic equation u2 + au + b = 0

in Uq+1, where a =
σ3,1σ3,2+σ3,3

σ2
3,1+σ3,2

and b =
σ2
3,2+σ3,1σ3,3

σ2
3,1+σ3,2

.

Hence, (Uq+1,Bσ5,2,q+1) is a Steiner System S(3, 5, q + 1).
This completes the proof.

Proof of Theorem 4. Recall Theorem 4 first. For any 3-

subset {u1, u2, u3} of Uq+1, let Q(u1, u2, u3) denote

the 2-subset
{

u ∈ Uq+1 : u2 + au+ b = 0
}

, where a =
σ3,1σ3,2+σ3,3

σ2
3,1+σ3,2

and b =
σ2
3,2+σ3,1σ3,3

σ2
3,1+σ3,2

. Next, let {u1, u2, u3} be

fixed. Set

T 0
1 =

{

S0 ∪ {u6} : u6 ∈ Uq+1 \ S0
}

,

and

T 0
i,j =

{

{u1, u2, u3, u4} ∪Q(ui, uj, u4) : u4 ∈ Uq+1 \ S0
}

,

where 1 ≤ i < j ≤ 3 and S0 = {u1, u2, u3} ∪Q(u1, u2, u3).
Let T 0 = T 0

1 ∪ T 0
1,2 ∪ T 0

1,3 ∪ T 0
2,3. It is easily checked

that {u1, u2, u3, u4, u5, u6} ∈ B0
σ6,3,q+1 if and only if

{u1, u2, u3, u4, u5, u6} ∈ T 0. Note that |T 0
1 | = q − 4 and

|T 0
i,i| = q−4

3 , where 1 ≤ i < j ≤ 3. From Lemma 13, it

follows that T 0
1 , T 0

1,2, T 0
1,3 and T 0

2,3 are pairwise disjoint. Then

(Uq+1,B0
σ6,3,q+1) is a 3-(q + 1, 6, 2(q − 4)) design.

Let {u1, u2, u3} be a fixed 3-subset of Uq+1. Define

T 1 =

{

{u1, u2, u3, u4, u5, u6} :
u4 ∈ Uq+1 \ S0, u5 ∈ Uq+1 \ (S0 ∪ S1)

}

,

where S0 = {u1, u2, u3} ∪ Q(u1, u2, u3), S1 =
{

σ4,3+uiσ4,2

σ4,2+uiσ4,1
: 1 ≤ i ≤ 4

}

⋃

{
√

σ4,3

σ4,1

}

, and

u6 =
σ5,3(u1, u2, u3, u4, u5)

σ5,2(u1, u2, u3, u4, u5)
.

Let T = T 0
1 ∪ T 1. It is easily checked that B ∈ Bσ6,3,q+1

if and only if B ∈ T . Note that |T 0
1 | = q − 4 and

|T 1| = (q+1−|S0|)(q+1−|S0∪S1|)
6 . By Lemmas 22 and 26,

|S0 ∪ S1| = 11. From Lemma 13, T 0
1 and T 1 are disjoint.

Then (Uq+1,Bσ6,3,q+1) is a 3-
(

q + 1, 6, (q−4)2

6

)

design. This

completes the proof.

IV. INFINITE FAMILIES OF BCH CODES SUPPORTING

t-DESIGNS FOR t = 3, 4

Throughout this section, let q = 2m, where m is a positive

integer. We consider the narrow-sense BCH code C(q,q+1,4,1)

over GF(q) and its dual, and prove that they are almost MDS,

and support 4-designs when m ≥ 5 is odd and 3-designs when

m ≥ 4 is even.

For a positive integer ℓ, define a 6× ℓ matrix Mℓ by
















u−3
1 u−3

2 · · · u−3
ℓ

u−2
1 u−2

2 · · · u−2
ℓ

u−1
1 u−1

2 · · · u−1
ℓ

u+1
1 u+1

2 · · · u+1
ℓ

u+2
1 u+2

2 · · · u+2
ℓ

u+3
1 u+3

2 · · · u+3
ℓ

















, (16)

where u1, · · · , uℓ ∈ Uq+1. For r1, · · · , ri ∈ {±1,±2,±3},

let Mℓ[r1, · · · , ri] denote the submatrix of Mℓ obtained by

deleting the rows (ur1
1 , ur1

2 , · · · , ur1
ℓ ), · · · , (uri

1 , uri
2 , · · · , uri

ℓ )
of the matrix Mℓ.

Lemma 27. Let Mℓ be the matrix given by (16) with

{u1, · · · , uℓ} ∈
(

Uq+1

ℓ

)

. Consider the system of homogeneous

linear equations defined by

Mℓ(x1, · · · , xℓ)
T = 0. (17)

Then (17) has a nonzero solution (x1, · · · , xℓ) in GF(q)ℓ if

and only if rank(Mℓ) < ℓ, where rank(Mℓ) denotes the rank

of the matrix Mℓ.

Proof. It is obvious that rank(Mℓ) < ℓ if (17) has a nonzero

solution (x1, · · · , xℓ) in GF(q)ℓ.
Conversely, assume that rank(Mℓ) < ℓ. Then there exists

a nonzero vector x
′ = (x′

1, · · · , x′
ℓ) ∈ GF(q2)ℓ such that

Mℓx
′T = 0. Choose an i0 ∈ {1, · · · , ℓ} such that x′

i0 6= 0.

Put

x = (x′′
1 + x′′q

1 , · · · , x′′
i0 + x′′q

i0
, · · · , x′′

ℓ + x′′q
ℓ ),

where (x′′
1 , · · · , x′′

ℓ ) = α
x′
i0

x
′ and α is a primitive element

of GF(q2). It is easily checked that Mℓx
T = 0 and x ∈

GF(q)ℓ \ {0}. This completes the proof.

Lemma 28. Let M4 be the matrix given by (16) with

{u1, u2, u3, u4} ∈
(

Uq+1

4

)

. Then rank(M4) = 4.

Proof. Suppose that rank(M4) < 4. Then det(M4[2, 3]) =∏
1≤i<j≤4

(ui+uj)

σ3
4,4

(u1 + u2 + u3 + u4)=0, which is contrary to

Lemma 9. This completes the proof.

Lemma 29. Let M5 be the matrix given by (16) with

{u1, · · · , u5} ∈
(

Uq+1

5

)

. Then rank(M5) = 4 if and only if

σ5,2(u1, · · · , u5) = 0.
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Proof. First, note that






















































det(M5[3]) =
∏

1≤i<j≤5
(ui+uj)

σ3
5,5

σ5,2,

det(M5[2]) =
∏

1≤i<j≤5
(ui+uj)

σ3
5,5

(

σ5,1σ5,2 + σ5,5σ
q
5,2

)

,

det(M5[1]) =
∏

1≤i<j≤5
(ui+uj)

σ3
5,5

(

σ5,1σ5,5σ
q
5,2 + σ2

5,2

)

,

det(M5[−3]) =
∏

1≤i<j≤5
(ui+uj)

σ5,5
σq
5,2,

det(M5[−2]) =
∏

1≤i<j≤5
(ui+uj)

σ5,5

(

σq
5,1σ

q
5,2 + σq

5,5σ5,2

)

,

det(M5[−1]) =
∏

1≤i<j≤5
(ui+uj)

σ5,5

(

σq
5,1σ

q
5,5σ5,2 + σ2q

5,2

)

.

The desired conclusion then follows from Lemma 28. This

completes the proof.

Lemma 30. Let M6 be the matrix given by (16) with

{u1, · · · , u6} ∈
(

Uq+1

6

)

. Then rank(M6) < 6 if and only if

σ6,3(u1, · · · , u6) = 0.

Proof. Note that

det(M6) =

∏

1≤i<j≤6(ui + uj)

σ3
6,6

σ6,3,

which completes the proof.

Lemma 31. Let m be even and M6 be the matrix given by (16)

with {u1, · · · , u6} ∈
(

Uq+1

6

)

. Let {u1, · · · , u6} ∈ B1
σ6,3,q+1,

where B1
σ6,3,q+1 was defined by (6). Then the set of all

solutions of the system M6(x1, · · · , x6)
T = 0 over GF(q)6

is

{(ax1, · · · , ax6) : a ∈ GF(q)} ,
where (x1, · · · , x6) is a vector in (GF(q)∗)6.

Proof. Let {u1, · · · , u6} ∈ B1
σ6,3,q+1. By Lemma 30,

rank(M6) < 6. By Lemma 27, there exists a nonzero

(x1, · · · , x6) ∈ GF(q)6 such that M6(x1, · · · , x6)
T = 0.

Suppose that there is an i (1 ≤ i ≤ 6) such that xi = 0. Then

the submatrix of the matrix M6 obtained by deleting the i-th
column has rank less than 5, which is contrary to Lemma 29

and the definition of B1
σ6,3,q+1. Thus, for any nonzero solution

(x1, · · · , x6) ∈ GF(q)6, we have xi 6= 0, where 1 ≤ i ≤ 6.

The desired conclusion then follows. This completes the proof.

Lemma 32. Let m be even and M6 be the matrix given

by (16) with {u1, · · · , u6} ∈
(

Uq+1

6

)

. If there exists a vector

(x1, · · · , x6) ∈ (GF(q)∗)6 such that M6(x1, · · · , x6)
T = 0,

then {u1, · · · , u6} ∈ B1
σ6,3,q+1, where B1

σ6,3,q+1 was defined

by (6).

Proof. By Lemma 30, {u1, · · · , u6} ∈ Bσ6,3,q+1. Suppose

that {u1, · · · , u6} ∈ B0
σ6,3,q+1. Without loss of general-

ity, let σ5,2(u1, · · · , u5) = 0. By Lemmas 27 and 29,

there exists a nonzero (x′
1, · · · , x′

5) ∈ GF(q)5 such that

M5(x
′
1, · · · , x′

5)
T = 0, that is, M6(x

′
1, · · · , x′

5, 0)
T = 0. Note

that

M6

(

x1 +
x1

x′
1

x′
1, · · · , x5 +

x1

x′
1

x′
5, x6 +

x1

x′
1

0

)T

= 0.

Applying Lemma 29, σ5,2(u2, · · · , u6) = 0, which is contrary

to Lemma 13 and σ5,2(u1, · · · , u5) = 0. This completes the

proof.

Lemma 33. Let f(u) = Trq2/q
(

au3 + bu2 + cu
)

where (a, b, c) ∈ GF(q2)3 \ {0}. Define zero(f) =
{u ∈ Uq+1 : f(u) = 0}. Then |zero(f)| ≤ 6. Moreover,

|zero(f)| = 6 if and only if a = τ√
σ6,6

, b =
τσ6,1√
σ6,6

and

c =
τσ6,2√
σ6,6

, where {u1, · · · , u6} ∈ Bσ6,3,q+1 and τ ∈ GF(q)∗.

Proof. When u ∈ Uq+1, one has

f(u) =
1

u3

(

au6 + bu5 + cu4 + cqu2 + bqu+ aq
)

. (18)

Thus, |zero(f)| ≤ 6.

Assume that |zero(f)| = 6. From (18), there exists

{u1, · · · , u6} ∈ Uq+1 such that f(u) =
a
∏

6
i=1

(u+ui)

u3 . By Vi-

eta’s formula, b = aσ6,1, c = aσ6,2, 0 = σ6,3, cq = aσ6,6σ
q
6,2,

bq = aσ6,6σ
q
6,1 and aq = aσ6,6. One obtains a = τ√

σ6,6

from aq−1 = σ6,6, where τ ∈ GF(q)∗. Then b =
τσ6,1√
σ6,6

and

c =
τσ6,2√
σ6,6

.

Conversely, assume that a = τ√
σ6,6

, b =
τσ6,1√
σ6,6

and

c =
τσ6,2√
σ6,6

, where {u1, · · · , u6} ∈ Bσ6,3,q+1 and τ ∈ GF(q)∗.

Then f(u) =
a
∏

6

i=1
(u+ui)

u3 . Thus, zero(f) = {u1, · · · , u6}
and |zero(f)| = 6.

A. A class of narrow-sense BCH codes with length 2m + 1

We are now ready to prove the following result about the

code C(q,q+1,4,1).

Theorem 34. Let m ≥ 4 be an integer. Then the narrow-sense

BCH code C(q,q+1,4,1) over GF(q) has parameters [q+1, q−
5, d], where d = 6 if m is odd and d = 5 if m is even.

Proof. Put n = q + 1. Let α be a generator of GF(q2)∗

and β = αq−1. Then β is a primitive n-th root of unity in

GF(q2), that is, β is a generator of the cyclic group Uq+1. Let

gi(x) denote the minimal polynomial of βi over GF(q), where

i ∈ {1, 2, 3}. Note that gi(x) has only the roots βi and β−i.

One deduces that g1(x), g2(x) and g3(x) are pairwise distinct

irreducible polynomials of degree 2. By definition, g(x) :=
g1(x)g2(x)g3(x) is the generator polynomial of C(q,q+1,4,1).

Therefore, the dimension of C(q,q+1,4,1) is q+1−6. Note that

g(x) has only the roots β−3, β−2, β−1, β, β2 and β3. By the

BCH bound, the minimum weight of C(q,q+1,4,1) is at least 4.

Put γ = β−1. Then γq+1 = β−(q+1) = 1. It then follows from

Delsarte’s theorem that the trace expression of C⊥
(q,q+1,4,1) is

given by

C
⊥
(q,q+1,4,1) = {c(a,b,c) : a, b, c ∈ GF(q2)}, (19)

where c(a,b,c) = (Trq2/q(aγ
i + bγ2i + cγ3i))qi=0.

Define

H =

















1 γ−3 γ−6 γ−9 · · · γ−3q

1 γ−2 γ−4 γ−6 · · · γ−2q

1 γ−1 γ−2 γ−3 · · · γ−q

1 γ+1 γ+2 γ+3 · · · γ+q

1 γ+2 γ+4 γ+6 · · · γ+2q

1 γ+3 γ+6 γ+9 · · · γ+3q

















. (20)
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It is easily seen that H is a parity-check matrix of C(q,q+1,4,1),

i.e.,

C(q,q+1,4,1) = {c ∈ GF(q)q+1 : cHT = 0}. (21)

Let m be odd. Note that d ≥ 4. Suppose that

d = 4. Then there exist {u1, · · · , u4} ∈
(

Uq+1

4

)

and

(x1, · · · , x4) ∈ (GF(q)∗)4 such that M4(x1, · · · , x4)
T = 0.

Thus rank(M4) < 4, which is contrary to Lemma 28. Suppose

that d = 5. Then there exist {u1, · · · , u5} ∈
(

Uq+1

5

)

and

(x1, · · · , x5) ∈ (GF(q)∗)5 such that M5(x1, · · · , x5)
T = 0.

By Lemma 29, rank(M5) < 5 and σ5,2 = 0, which is contrary

to Lemma 17. Thus, d ≥ 6. By Theorem 2, Bσ6,3,q+1 6= ∅.

Choose {u1, · · · , u6} ∈ Bσ6,3,q+1. By Lemma 27, there exists

(x1, · · · , x6) ∈ (GF(q)∗)6 such that M6(x1, · · · , x6)
T = 0.

Set c = (c1, · · · , cq+1) where

ci =

{

xj , if i = ij ,
0, otherwise,

(22)

where γij is given by uj = γij (j ∈ {1, · · · , 6}). By (21),

c ∈ C(q,q+1,4,1) and wt(c) = 6. Thus, d = 6.

The proof for the even m case is similar to that for the odd

m case and the detail is omitted. This completes the proof.

Theorem 35. Let m ≥ 4 and C
⊥
(q,q+1,4,1) be the dual of

the narrow-sense BCH code C(q,q+1,4,1) over GF(q). Then

C
⊥
(q,q+1,4,1) has parameters [q + 1, 6, q − 5]. In particular,

C(q,q+1,4,1) is a near MDS code if m is odd.

Proof. From Theorems 2 and 4, Bσ6,3,q+1 6= ∅. The desired

conclusion then follows from Lemma 33 and Equation (19).

This completes the proof.

B. An infinite class of near MDS codes supporting 4-designs

Theorem 36. Let m ≥ 5 be odd. Then the incidence structure

(

P
(

C(q,q+1,4,1)

)

,B6

(

C(q,q+1,4,1)

))

of the minimum weight codewords in C(q,q+1,4,1) is isomorphic

to (Uq+1,Bσ6,3,q+1).

Proof. Using Lemma 30, the desired conclusion then follows

by a similar discussion as in the proof of Theorem 34. This

completes the proof.

The theorem below makes a breakthrough in 71 years in

the sense that it presents the first family of linear codes

supporting an infinite family of 4-designs since the first linear

code holding a 4-design was discovered 71 years ago by Golay

[11].

Theorem 37. Let m ≥ 5 be odd. Then the minimum weight

codewords in C(q,q+1,4,1) support a 4-(q + 1, 6, (q − 8)/2)
design and the minimum weight codewords in C

⊥
(q,q+1,4,1)

support a 4-(q + 1, q − 5, λ) design with

λ =
q − 8

30

(

q − 5

4

)

.

Proof. The desired conclusion follows from Theorems 36, 2

and 1. This completes the proof.

Example 38. Let m = 5. Then C(q,q+1,4,1) has parameters

[33, 27, 6]. The dual C⊥
(q,q+1,4,1) has parameters [33, 6, 27] and

weight distribution

1 + 1014816z27 + 1268520z28 + 20296320z29 + 64609952z30

+ 210132384z31+ 399584823z32 + 376835008z33.

The codewords of weight 6 in C(q,q+1,4,1) supports a 4-

(33, 6, 12) design, and the codewords of weight 27 in

C
⊥
(q,q+1,4,1) support a 4-(33, 27, 14040) design.

In Example 38, the code C(q,q+1,4,1) has a codeword of

weight i for all i with 6 ≤ i ≤ 33. Hence, the Assmus-

Mattson Theorem cannot prove that the codes in Theorem

37 support 4-designs. It is an open problem whether the

generalised Assmus-Mattson theorem in [20] can prove that

the codes in Theorem 37 support 4-designs. It looks impossible

to prove that the codes in Theorem 37 support 4-designs with

the automorphism groups of the codes due to the following:

1) Except the Mathieu groups M11, M12, M23, M24, the

alternating group An and the symmetric group Sn, no

finite permutation groups are more than 3-transitive [2].

2) No infinite family of 4-homogeneous permutation

groups is known.

It would be a very interesting problem to determine the

automorphism groups of the codes in Theorem 37.

C. An infinite class of linear codes supporting Steiner systems

S(3, 5, 4m + 1)

Theorem 39. Let m ≥ 4 be even. Then the incidence structure
(

P
(

C(q,q+1,4,1)

)

,B5

(

C(q,q+1,4,1)

))

of the minimum weight codewords in C(q,q+1,4,1) is isomorphic

to (Uq+1,Bσ5,2,q+1), and the incidence structure
(

P
(

C(q,q+1,4,1)

)

,B6

(

C(q,q+1,4,1)

))

is isomorphic to (Uq+1,B1
σ6,3,q+1). Moreover, the incidence

structure
(

P
(

C
⊥
(q,q+1,4,1)

)

,Bq−5

(

C
⊥
(q,q+1,4,1)

))

is isomorphic to the complementary incidence structure of

(Uq+1,Bσ6,3,q+1).

Proof. Using Lemma 29, by a similar discussion as in the

proof of Theorem 34, we can prove that the incidence structure
(

P
(

C(q,q+1,4,1)

)

,B5

(

C(q,q+1,4,1)

))

is isomorphic to (Uq+1,Bσ5,2,q+1). Employing Lemma 32, we

can prove that
(

P
(

C(q,q+1,4,1)

)

,B6

(

C(q,q+1,4,1)

))

is isomorphic to (Uq+1,B1
σ6,3,q+1). The last statement then

follows from Equation (19) and Lemma 33. This completes

the proof.

Theorem 40. Let m ≥ 4 be even. Then the minimum weight

codewords in C(q,q+1,4,1) support a 3-(q + 1, 5, 1) design,

i.e., a Steiner system S(3, 5, q + 1), and the minimum weight
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codewords in C
⊥
(q,q+1,4,1) support a 3-(q+1, q− 5, λ) design

with

λ =
(q − 4)2

120

(

q − 5

3

)

.

Furthermore, the codewords of weight 6 in C(q,q+1,4,1) support

a 3-
(

q + 1, 6, (q−4)(q−16)
6

)

design if m ≥ 6.

Proof. The desired conclusion follows from Theorems 39, 3,

4 and Corollary 5. This completes the proof.

There are two different constructions of an infinite fam-

ily of Steiner systems S(3, r + 1, rm + 1) for r being a

prime power and m ≥ 2. The first produces the spherical

geometry designs due to [24], which is based on the action

of PGL2(GF(rm)) on the base block GF(r) ∪ {∞}. The

automorphism group of the spherical geometry design con-

tains the group PΓL2(GF(rm)). The second construction was

proposed in [13], and is based on affine spaces. The Steiner

systems S(3, r+1, rm+1) from the two constructions are not

isomorphic [13].

When m ∈ {2, 3}, the Steiner system S(3, 5, 4m + 1) of

Theorem 40 is isomorphic to the spherical geometry design

with the same parameters. We conjecture that they are isomor-

phic in general, but do not have a proof. The contribution of

Theorem 40 is a coding-theoretic construction of the spherical

geometry design S(3, 5, 4m + 1) if this conjecture is true. .

Example 41. Let m = 4. Then C(q,q+1,4,1) has parameters

[17, 11, 5] and weight distribution

1 + 1020z5 + 224400z7 + 3730650z8 + 55370700z9

+ 669519840z10+ 6378704640z11+ 47857084200z12

+ 276083558100z13+ 1183224112800z14

+ 3549668972400z15+ 6655630071165z16

+ 5872614694500z17.

The codewords of weight 5 in C(q,q+1,4,1) support a Steiner

system S(3, 5, 17).
The dual C⊥

(q,q+1,4,1) has parameters [17, 6, 11] and weight

distribution

1 + 12240z11 + 35700z12 + 244800z13 + 1203600z14

+ 3292560z15 + 6398715z16 + 5589600z17.

The codewords of weight 11 in C
⊥
(q,q+1,4,1) support a 3-

(17, 11, 198) design.

This example shows that the Assmus-Mattson Theorem can-

not prove that the codes C(q,q+1,4,1) and C
⊥
(q,q+1,4,1) support

3-designs. It is an open question if the generalised Assmus-

Mattson theorem in [20] can prove that the codes in Theorem

40 support 4-designs. It is also an open question if the

automorphism groups of the codes can prove that the codes

support 3-designs.

V. SUMMARY AND CONCLUDING REMARKS

This paper settled the 71-year-old open problem by pre-

senting an infinite family of near MDS codes of length

22m+1 + 1 over GF(22m+1) holding an infinite family of 4-

(22m+1+1, 6, 22m−4) designs [14, Table 4.37]. Hence, these

codes have nice applications in combinatorics. It would be

nice if the automorphism groups of the linear codes could

be determined. It is noticed that the novelty of this paper

and [6] is that elementary symmetric polynomials and their

properties were used to prove the design property of the

incidence structures from special near MDS codes. This opens

a new direction of searching for t-designs from elementary

symmetric polynomials.

A coding-theoretic construction of a Steiner system S(3, r+
1, rm + 1) was given in [6] for r = 3 and in this paper for

r = 4. Whether there exists an infinite family of linear codes

holding a Steiner system S(3, r + 1, rm + 1) for r ≥ 5 being

a prime power is yet unknown.

An interesting open problem is whether there exists an

infinite family of linear codes holding an infinite family of

t-designs for t ≥ 5. Another open problem is whether there is

a specific linear code supporting a nontrivial 6-design.
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