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§I Introduction

In this paper we consider many Fermion systems formally characterized by the

effective potential

G(ψe, ψ̄e) = log
1

Z

∫
e−λV(ψ+ψe,ψ̄+ψ̄e)dµC(ψ, ψ̄)

for the external fields ψe, ψ̄e. Here, dµC(ψ, ψ̄) is the fermionic Gaussian measure in the

Grassmann variables {ψ(ξ), ψ̄(ξ) | ξ ∈ IR× IRd × {↑, ↓}} with propagator

C(ξ, ξ̄) = δσ,σ̄

∫
dd+1p

(2π)d+1

ei<p,ξ−ξ̄>−

ip0 − e(p)

where

< p, ξ >−= p · x− p0τ

and

e(p) =
p2

2m
− µ.

The variable ξ = (τ,x, σ) consists of time, space and spin components and the (d + 1)-

momentum p = (p0,p). The interaction is given by

V =
1

2

∫ 4∏

i=1

dξi V (ξ1, ξ2, ξ3, ξ4) ψ̄(ξ1)ψ̄(ξ2)ψ(ξ4)ψ(ξ3)

where the kernel V (ξ1, ξ2, ξ3, ξ4) is translation invariant with V (0, ξ2, ξ3, ξ4) integrable and

∫
dξ =

∑

σ∈{↑,↓}

∫

IR

dτ

∫

IRd

dx.

The partition function

Z =

∫
e−λV(ψ,ψ̄)dµC(ψ, ψ̄)

so that G(0, 0) = 0.

The Euclidean Green’s functions

Gp(ξ1, ξ̄1, . . . , ξp, ξ̄p) =

p∏

i=1

δ2

δψe(ξi)δψ̄e(ξ̄i)
G
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generated by the effective potential are the connected Green’s functions amputated by the

free propagator. By definition, G exists when the norm

|||Gp||| = max
j

sup
ξj

∫ ∏

i6=j

dξi |Gp(ξ1, · · · , ξ2p)|

of each of its moments, Gp, p ≥ 1, is finite. Intuitively, |||Gp||| is the supremum in momentum

space of Gp. In fact, the supremum in momentum space was used as the standard norm on

vertices in [FT2].

Our long term goal is to give a rigorous proof that the standard model for an

interacting system of electrons and phonons has a superconducting ground state at sufficiently

low temperature. Perturbation theory and, in particular, the renormalization of the two point

function was controlled in [FT1]. (See [BG] for related results.) A renormalization group flow

for the four point function was defined and analyzed in [FT2]. Two additional ingredients are

required to complete this program. First an infinite volume expansion that combines power

counting at fixed energy with the exclusion principle and second, control of the Goldstone

boson. This paper provides the first ingredient, in three space-time dimensions. With the

exception of Lemma 3 all components of the expansion apply in all dimensions. We restrict

to d = 2 only when it is necessary to do so.

As in [FT1,2], the model is sliced into energy regimes by decomposing momentum

space into shells around the Fermi surface. The jth slice has covariance

C(j)(ξ, ξ̄) = δσ,σ̄

∫
dd+1p

(2π)d+1

ei<p,ξ−ξ̄>−

ip0 − e(p)
fj(p),

where

fj(p) = f
(
M−2j

(
p20 + e(p)2

))

effectively forces |ip0 − e(p)| ∼ M j . The function f ∈ C∞
0 ([1,M4]). The parameter M is

strictly bigger than one so that the scales near the Fermi surface have j near −∞. The

model is defined in a finite volume Λ of space-time and at fixed scale by the following lemma.

However, the radius of convergence depends on volume and scale in a patently unsatisfactory

way.
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Lemma 1

G
(j)
Λ (ψe, ψ̄e) = log

1

Z
(j)
Λ

∫
e−λVΛ(ψ+ψe,ψ̄+ψ̄e)dµC(j)(ψ, ψ̄)

where

VΛ =
1

2

∫

Λ4

4∏

i=1

dξi V (ξ1, ξ2, ξ3, ξ4) ψ̄(ξ1)ψ̄(ξ2)ψ(ξ4)ψ(ξ3)

and

Z
(j)
Λ =

∫
e−λVΛ(ψ,ψ̄)dµC(j)(ψ, ψ̄)

is analytic in λ in a neighborhood of the origin that includes at least the disk of radius

const
(
M2j |Λ|

)−1
.

Proof: Expand the exponential

Z
(j)
Λ =

∫
e−λVΛ(ψ,ψ̄)dµC(j)(ψ, ψ̄)

=
∞∑

n=0

(−λ)n

n!

∫
VΛ(ψ, ψ̄)

ndµC(j)(ψ, ψ̄)

=

∞∑

n=0

(−λ)n

2nn!

∫

Λ4n




n∏

j=1

2∏

i=1

dξj,idξ̄j,i






n∏

j=1

V (ξ̄j,1, ξ̄j,2, ξj,1, ξj,2)


det

[
C(j)(ξk, ξ̄ℓ)

]

where the indices k and ℓ run over {(j, i) | 1 ≤ j ≤ n , 1 ≤ i ≤ 2}.

The (k, ℓ) matrix element

C(j)(ξk, ξ̄ℓ) = δσk,σ̄ℓ

∫
dd+1p

(2π)d+1

ei<p,ξk−ξ̄ℓ>−

ip0 − e(p)
fj(p)

=
〈
Ak, Āℓ

〉

where

Ak(p, α) := δα,σk

ei<p,ξk>−

[ip0 − e(p)]
1
2

fj(p)
1/2

and

Āℓ(p, ᾱ) := δᾱ,σ̄ℓ

{
e−i<p,ξℓ>−

[ip0 − e(p)]
1
2

}∗

fj(p)
1/2

are in L2
(
IRd+1 × {↑, ↓}

)
. Here, any branch of the square root will do, since ip0 − e(p) does

not vanish on the domain of integration.
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Consequently, by Gram’s inequality,
∣∣∣det

[
C(j)(ξk, ξ̄ℓ)

]∣∣∣ ≤
∏

k

‖Ak‖2 ‖Āk‖2

≤ constn M2jn

since

‖Āk‖
2
2 = ‖Ak‖

2
2 =

∫
dd+1p

(2π)d+1
|ip0 − e(p)|

−1
fj(p)

≤ const M j.

Substituting,

∣∣∣Z(j)
Λ

∣∣∣ ≤
∞∑

n=0

|λ|n

2nn!

∫

Λ4n




n∏

j=1

2∏

i=1

dξj,idξ̄j,i



∣∣∣∣∣∣

n∏

j=1

V (ξ̄j,1, ξ̄j,2, ξj,1, ξj,2)

∣∣∣∣∣∣

∣∣∣det
[
C(j)(ξk, ξ̄ℓ)

]∣∣∣

≤

∞∑

n=0

|const λ|n

n!

∫

Λ4n




n∏

j=1

2∏

i=1

dξj,idξ̄j,i



∣∣∣∣∣∣

n∏

j=1

V (ξ̄j,1, ξ̄j,2, ξj,1, ξj,2)

∣∣∣∣∣∣
M2jn

≤

∞∑

n=0

|const λ|n

n!

(
|Λ|M2j|||V |||

)n

= exp
(
const |λ||Λ|M2j|||V |||

)
.

It follows that the partition function is an entire function of λ.

Each Taylor coefficient of the expansion of the numerator
∫
e−λVΛ(ψ+ψe,ψ̄+ψ̄e)dµC(j)(ψ, ψ̄)

in powers of the external fields is of the form
∫
P (ψ, ψ̄)e−λVΛ(ψ,ψ̄)dµC(j)(ψ, ψ̄)

for some polynomial P . It is estimated in exactly the same way and is also an entire function

of λ.

The Green’s functions of G are finite sums of finite products of such numerators

divided by a power of Z
(j)
Λ . Thus they are meromorphic with poles at the zeroes of the

partition function. Therefore the radius of convergence is at least the absolute value of the

smallest root of Z
(j)
Λ .

When λ = 0, the partition function is one. As above
∣∣∣∣
d

dλ
Z

(j)
Λ

∣∣∣∣ ≤ const |Λ|M2j|||V ||| exp
(
const |λ||Λ|M2j|||V |||

)
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so that ∣∣∣Z(j)
Λ (λ)− 1

∣∣∣ ≤ const |λ||Λ|M2j|||V ||| exp
(
const |λ||Λ|M2j|||V |||

)
.

Finally, for |λ||Λ|M2j|||V ||| ≤ const ,

const |λ||Λ|M2j|||V ||| exp
(
const |λ||Λ|M2j|||V |||

)
< 1 .

Let G
(j,Λ)
p be the p-point Green’s function generated by G

(j)
Λ . By the Lemma above

the Taylor series

G(j,Λ)
p =

∞∑

n=0

gn(p, j,Λ)λ
n

has a strictly positive, though possibly j and Λ dependent, radius of convergence. The main

result of this paper is

Theorem 1

Let d = 2. There exists a const , independent of j and Λ, such that

|||gn(p, j,Λ)||| ≤ const n+pM (2−5p/2)j|||V |||n

where

|||gn(p, j,Λ)||| = max
k

sup
ξk

∫ ∏

i6=k

dξi |gn(p, j,Λ)(ξ1, · · · , ξ2p)|.

Furthermore the limits

gn(p, j) = lim
Λ→IR3

gn(p, j,Λ)

exist and the infinite volume Green’s functions at scale j

G(j)
p =

∞∑

n=0

gn(p, j)λ
n

are analytic in |λ| < R = (const |||V |||)−1.

The reader might have expected the perturbative power counting factor M
1
2 (4−2p)j

as in [FT2, Lemma III.1a, (III.16a)] rather than M (2−5p/2)j. However, in this theorem we do
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not try to optimize the analysis with respect to external legs, and we consider only two body

interactions, rather than the general multibody interactions which appear in a multiscale

analysis. A finer, more powerful though more complicated bound, which is operationally

equivalent to the perturbative one is given in Theorem 2 of Section III. By operationally

equivalent we mean, for example, that the bound of Theorem 2 is adapted to a multiscale

analysis and can be iterated in a renormalization group flow. In fact Theorem 2 of Section III

states, morally, that the sum over all “completely convergent” graphs and all scale assignments

to the lines of the graphs is absolutely convergent and analytic for all coupling constants λ

in a fixed disk around zero. Recall that “completely convergent” [Ri] means that there are

neither two nor four point subgraphs with internal scales higher than those of the external legs.

Theorem 2 shows that our single slice analysis is the correct building block for a multiscale

analysis.

A theorem of this kind is usually proven with a standard cluster/Mayer expansion

[GJS,Br,Ri]. Space-time, IRd+1, is paved by cubes ∆ of side M−j dual to the decay rate

M j of the propagator. The decay rate is primarily determined by the thickness of the shell

in momentum space. Then one expands in coupling constants that control the interaction

between boxes. One essential prerequisite for the convergence of such expansions is the j

independent estimate |Z(∆) − 1| ≤ const < 1. For our models, one can see in perturbation

theory that this estimate fails.

The logarithm of the partition function is given perturbatively by the sum of all

connected vacuum graphs. In evaluating a connected vacuum graph at scale j, each propa-

gator contributes (ip0 − e(p))−1 ∼ M−j and the volume of integration for each momentum

loop is ∼ M2j. Hence the value of a vacuum graph, of order n, with the position of one

vertex held fixed is ∼ M−j(2n)M2j(n+1) ∼ M2j. Integrating the fixed vertex over ∆ gives

|∆|M2j = M−(d−1)j . The Pauli exclusion principle also suggests that |Z(∆)| ∼ M−(d−1)j .

The shell in momentum space about the Fermi surface has volume M2j , while the position

space volume of the “dual” box ∆ is M−(d+1)j . The Pauli exclusion principle now permits

M−(d−1)j electrons to be located in ∆ with momentum restricted to the shell. For d = 1

there is no true Fermi surface and consequently one electron in ∆. As d grows the Pauli

exclusion principle becomes progressively weaker and the estimate on the partition function

7



in ∆ becomes more and more j dependent.

There are three naive ways to force the volume in phase space to be independent

of j. One either makes the box ∆ smaller, or decomposes the shell into sufficiently small

sectors, or both. In each case, the number of electrons in such a constrained region would be

of order one, achieving duality in the sense of the exclusion principle. The first alternative,

however, violates duality in the sense of decay of the propagator.

Let us decompose the shell into M−(d−1)j sectors of side M j , by constructing a

smooth partition of unity

1 =
M−(d−1)j∑

m=1

ηm(p), ηm(p) = ηm

(
p

|p|
kF

)

of the Fermi surface, where ηm is supported on the union of the mth sector, Sm, and its

neighbors, whose number is at most 3d−1 − 1. There is a corresponding decomposition of the

covariance

C(j) =
M−(d−1)j∑

m=1

C(j,m)

where

C(j,m)(ξ, ξ̄) = δσ,σ̄

∫
dd+1p

(2π)d+1

ei<p,ξ−ξ̄>−

ip0 − e(p)
fj(p) ηm(p)

and of the fields

ψ =
M−(d−1)j∑

m=1

ψ(m), ψ̄ =
M−(d−1)j∑

m=1

ψ̄(m).

The standard power counting bound for an individual graph is still easy to prove

when there are sectors. First, one selects a spanning tree for the graph. To each line not

in the tree there is a corresponding momentum loop, obtained by joining its ends through a

path in the tree. This construction produces a complete set of independent loops. Ignoring

unimportant constants, each propagator is bounded by its supremum M−j . The volume of

integration for each loop is now M (d+1)j . A priori, there is one sector sum with M−(d−1)j

terms for each line. But, by conservation of momentum, there is only one sector sum per

loop. Thus, if there are n vertices and E external lines, the supremum in momentum space

of the graph is bounded by
∏

lines

M−j
∏

loops

M (d+1)jM−(d−1)j =M−j(4n−E)/2M2j[(4n−E)/2−(n−1)]

=M
1
2 (4−E)j .
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In the course of a non-perturbative construction, estimates cannot be made graph by

graph because there are too many of them. Rather, the perturbation series must be blocked

and the blocks estimated as units. The blocks are estimated using the exclusion principle to

implement strong cancellations between the roughly n!2 graphs of order n. However, once the

series is blocked, momentum loops can’t be defined and the argument leading to the estimate

above cannot be made. Conservation of momentum has to be implemented at each vertex,

rather than through loops. Even though the volume cutoff Λ breaks exact conservation of

momentum, many of the M−2ℓ(d−1)j terms in the sector sums for a general 2ℓ-legged vertex

must be zero.

Lemma 2

Fix m ∈ IRd+1 and ℓ ≥ 2 . Then, the number of 2ℓ-tuples

{S1, · · · S2ℓ}

of sectors for which there exist ki ∈ IRd, i = 1, · · · , 2ℓ satisfying

k′
i ∈ Si, |ki − k′

i| ≤ const M j , i = 1, · · · , 2ℓ

and

|k1 + · · · + k2ℓ| ≤ const (1 + |m|)M j

is bounded by

const ℓ(1 + |m|)dM−(2ℓ−1)(d−1)jM j {1 + |j|δd,2δℓ,2} .

In particular, for a four legged vertex, the number of 4-tuples is at most

const (1 + |m|)dM (−3d+4)j {1 + |j|δd,2} .

Here, k′ = k
|k| denotes the projection of k onto the Fermi surface.

Lemma 2 is proved in the next section. Specializing to two space dimensions, the

number of active sector 4-tuples at a vertex is of order |j|M−2j . Four planar vectors of

equal length whose sum is zero form a parallelogram. The factor M−2j is natural since a
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parallelogram is determined by two of its sides. The logarithmic factor |j| is not an artifact

of our bounds. It arises from the degenerate situation in which all four vectors are roughly

collinear. One of the main technical difficulties of the paper is to overcome the logarithm.

Note that in three dimensions, the parallelogram is hinged and the logarithm |j| jumps to

the power M−j/2. This is the source of the restriction to d = 2 in Theorem 1.

To circumvent the logarithm in two dimensions we divide the Fermi circle into sectors

of length M j/2 rather than M j through a smooth partition of unity

1 =

M−j/2∑

ℓ=1

ζℓ(p), ζℓ(p) = ζℓ

(
p

|p|
kF

)

where ζℓ is supported on the ℓth sector, Σℓ, and its 2 neighbors. We denote by rℓ the center

of Σℓ. The new sectors are long and skinny since they are still M j thick. We shall show in a

moment that the sector propagator

C(j,ℓ)(ξ, ξ̄) = δσ,σ̄

∫
d3p

(2π)d+1

ei<p,ξ−ξ̄>−

ip0 − e(p)
fj(p) ζℓ(p)

decays anisotropically. To accommodate the anisotropy, we will introduce a different lattice

of dual boxes for each sector. The boxes will be short in the direction perpendicular to rℓ

and long in the direction of rℓ.

The reason that approximately collinear configurations generate a logarithm for

sectors of length M j, but not for sectors of length M j/2, may be seen in the proof (§II) of

Lemma 3

Let d = 2 and divide the Fermi circle into sectors Σℓ, ℓ = 1, · · · ,M−j/2 of width

M j/2. Fix m ∈ Z3 and any sector Σℓ1 . The number of sector quadruples {Σℓ1 ,Σℓ2 ,Σℓ3 ,Σℓ4}

for which there exist ki ∈ IR2, i = 1, · · · , 4 satisfying

k′
i ∈ Σℓi , |ki − k′

i| ≤ constM j , i = 1, · · · , 4

and

|k1 + · · · + k4| ≤ const (1 + |m|)M j

is bounded by

const (1 + |m|2)M−j/2.
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The anisotropic decay of the covariance is given in

Lemma 4

(a) Let

ρ(j,ℓ)(ξ, ξ̄)
def
= 1 +M j|ξ0 − ξ̄0|+M j |ξ‖ − ξ̄‖|+M j/2|ξ⊥ − ξ̄⊥|

where ξ‖ is the component of ξ parallel to rℓ and ξ⊥ is the component orthogonal to rℓ. The

same notation is used for ξ̄. Then, for any γ > 0,

|C(j,ℓ)(ξ, ξ̄)| ≤ const M3j/2ρ(j,ℓ)(ξ, ξ̄)−γ .

(b)

∣∣∣Dn0
0 Dn1

‖ Dn2

⊥

(
e−i<rℓ,ξ−ξ̄>−C(j,ℓ)(ξ, ξ̄)

)∣∣∣ ≤ const M ( 3
2+n0+n1+

n2
2 )jρ(j,ℓ)(ξ, ξ̄)−γ .

Here D0 = ∂
∂ξ0

, D‖ = rℓ
|rℓ|

· ∇ξ and D⊥ = π̂ℓ · ∇ξ where π̂ℓ is any unit vector perpendicular to

rℓ.

Proof: (a) A pointwise bound on

C(j,ℓ)(ξ, ξ̄) = δσ,σ̄

∫
d3p

(2π)3
ei<p,ξ−ξ̄>−

ip0 − e(p)
fj(p) ζℓ(p)

is obtained by observing that the integrand is bounded by M−j and that the volume of

integration is M
5
2 j . Multiplying C(j,ℓ) by ρ(j,ℓ)(ξ, ξ̄)γ is converted, by integration by parts,

into p-derivatives acting on
1

ip0 − e(p)
fj(p) ζℓ(p) .

A derivative acting on ζ(ℓ) produces an M− 1
2 j while one acting on f produces an M−j .

However, the directional derivative π̂ℓ ·∇p acting on fj(p) = f
(
M−2j

(
p20 + e(p)2

))
produces

M−2j2e(p)
1

2m
2p · π̂ℓ

which is bounded by const M−2jM jM j/2|π̂ℓ| = const M−j/2 on the support of the integrand.
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(b) Each derivative, with respect to ξ or ξ̄, of

e−i<rℓ,ξ−ξ̄>−C(j,ℓ)(ξ, ξ̄) = δσ,σ̄

∫
d3p

(2π)3
ei<p−rℓ,ξ−ξ̄>−

ip0 − e(p)
fj(p) ζℓ(p)

brings down a factor of p− rℓ. On the domain of integration, the components of this vector

kF −O(M j)
p− rℓ

θ
rℓ

in the time, rℓ and π̂ℓ directions are bounded by M j ,M j and M j/2 respectively. This is

obvious except for the rℓ component. For it we have

∣∣(p− rℓ)‖
∣∣ ≤ kF −

(
kF −O(M j)

)
cos θ

≤ kF −
(
kF −O(M j)

)(
1−O(M j/2)2

)

≤ O(M j)

since θ ≤ O(M j/2).

We now give a rough description of the expansion. In perturbation theory, gn(p, j,Λ)

is written as 1
n! times the sum of approximately n!2 connected Feynman diagrams of order

n. Every connected diagram is spanned by a connected tree. By Cayley’s Theorem there are

nn−2 labeled trees of order n. The number of trees can be compensated for by the 1
n! . The

expansion starts with trees and inductively builds graphs from them by joining the remaining

4n−2p−2(n−1) legs. However, for each fixed tree, these legs may be joined in ∼ n! ways to

form connected graphs. As in the standard cluster expansion, part of this n! will be cancelled

using the decay of the propagator. We now review this procedure.
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Pretend that the propagator decays like (1+M j |ξ− ξ̄|)−γ. Introduce a lattice, Kj ,

of cubes of side M−j that paves space-time. If we are in the midst of the inductive process,

some, but not all, legs of the tree have been joined to form lines. At the next step we select

any leg, say in ∆ ∈ Kj , that has not yet been contracted and sum over all possible ways of

connecting it to another uncontracted leg τ . Block the sum
∑

target legs τ

=
∑

∆′∈Kj

∑

target legs

in ∆′

.

Ultimately we must estimate such blocked sums. This is done by
∣∣∣∣∣∣∣

∑

∆′∈Kj

∑

target legs

in ∆′

F (τ)

∣∣∣∣∣∣∣
≤


 ∑

∆′∈Kj

(
1 +M jdist(∆,∆′)

)−d−2




× sup
∆′∈Kj

∣∣∣∣∣∣∣

∑

target legs

in ∆′

(
1 +M jdist(∆,∆′)

)d+2
F (τ)

∣∣∣∣∣∣∣
.

(I.1)

The factor
(
1 +M jdist(∆,∆′)

)d+2
is balanced by the decay of the propagator. Now the

number of terms in the sum
∑

target legs

in ∆′
is the number of target legs in ∆′ rather than the

total number of target legs. When applied to all contractions, this technique converts “global

n!’s” to “local n!’s”. For a local n! to be large, there must be many fields of the same

momentum slice in a single dual cube. This is prevented by the Pauli exclusion principle.

To see how the combinatorial analysis suggested in the last two paragraphs may be

carried out in a manner suitable for the proof of Theorem 1, we develop a complete expansion

for a toy model with a simplified propagator and a local interaction. All the complications

due to the presence of the Fermi surface are removed, by hand. The proof of Theorem 1 for

the true propagator and full interaction is presented in §III.

Let the dimension d be arbitrary and let C(j) be any propagator obeying the bounds
∣∣∣∇nC(j)(ξ, ξ̄)

∣∣∣ ≤ const M (d+1
2 +n)j

(
1 +M j(|ξ − ξ̄|

)−γ
. (I.2)

for some large γ and all n ≤ N , which are typical for strictly renormalizable field theories.

For example the propagator for the Gross-Neveu model [FMRS], [GK] in two space-time

dimensions is of this type. The interaction of the toy model is

VΛ =
1

2

∑

{↑,↓}

∫

Λ

dτdx ψ̄(τ,x, σ)ψ̄(τ,x, σ′)ψ(τ,x, σ′)ψ(τ,x, σ).
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We now expand

〈A〉 =
1

ZΛ

∫
Ae−λVΛ(ψ,ψ̄)dµC(j)(ψ, ψ̄)

where

A =

∫ 2p∏

j=1

dξj A(ξ1, · · · , ξ2p)

2p∏

j=1

( )

ψ(ξj)

is an arbitrary monomial.

Just as in the proof of Lemma 1, Gram’s inequality (or, in the unlikely event that

C(j) does not factorize suitably, Hadamard’s inequality) implies that both the numerator and

denominator of 〈A〉 are entire functions of λ. The denominator Z can have many j and Λ

dependent zeros. But when λ = 0, Z = 1 so that 〈A〉 is meromorphic on all of C and analytic

at zero. We shall develop a formal power series expansion for 〈A〉 with the property that for

every N

〈A〉 =
N∑

n=0

an(j,Λ)λ
n +O

(
λN+1

)
.

A priori we do not claim that the tail O
(
λN+1

)
is uniform in j or Λ. Nevertheless, since 〈A〉

is analytic at zero we must have

〈A〉 =
∞∑

n=0

an(j,Λ)λ
n (I.3)

in some, possibly j and Λ dependent, neighborhood of zero. Observe that an(j,Λ) must be

the sum of all connected Feynman diagrams of order n with 2p external legs, since (I.3) is an

asymptotic expansion.

We shall also show that there exists a const , independent of j and Λ, such that

|an(j,Λ)| ≤ const n+pM (d+1)pj/2‖A‖1.

As a consequence, equation (I.3) applies for all |λ| < R = const−1. Any zeroes of Z that

appear in this disk must be cancelled by zeroes of the numerator. Finally, we shall show that

the limits an(j) = limΛ→IRd+1 an(j,Λ) exist. This will prove

lim
Λ→IRd+1

〈A〉 =
∞∑

n=0

an(j)λ
n

for all |λ| < R, the analog of Theorem 1 for the toy model.
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The expansion is developed inductively. At the end of step s we have a sum over a

set Ts of terms

〈A〉 =
∑

T∈Ts

∫
A(T, s,Λ)e−λVΛ(ψ,ψ̄)dµC(j)∫

e−λVΛ(ψ,ψ̄)dµC(j)

. (I.4)

Each A(T, s,Λ) is a monomial in the fields ψ, ψ̄ of degree 2π(T, s). In the event that π(T, s) =

0 the ratio of integrals simplifies to the number A(T, s,Λ). Thus

〈A〉 =
∑

T∈Ts
π(T,s)=0

A(T, s,Λ) +
∑

T∈Ts
π(T,s) 6=0

∫
A(T, s,Λ)e−λVΛ(ψ,ψ̄)dµC(j)∫

e−λVΛ(ψ,ψ̄)dµC(j)

. (I.5)

The numbers in the first sum are not touched in subsequent steps of the expansion. We shall

show that each ratio in the second sum is O (λs).

During step s + 1, two operations are performed. The first is integration by parts.

We apply the integration by parts formulae
∫
ψ(ξ)F (ψ, ψ̄)dµC(j)(ψ, ψ̄) =

∫
dξ̄ C(j)(ξ, ξ̄)

∫
δ

δψ̄(ξ̄)
F (ψ, ψ̄)dµC(j)(ψ, ψ̄)

∫
ψ̄(ξ̄)F (ψ, ψ̄)dµC(j)(ψ, ψ̄) = −

∫
dξ C(j)(ξ, ξ̄)

∫
δ

δψ(ξ)
F (ψ, ψ̄)dµC(j)(ψ, ψ̄)

(I.6)

to each of the fields appearing in the monomial A(T, s,Λ). The order is chosen arbitrarily.

Of course if a derivative δ

δ
( )

ψ(
( )

ξ )
acts on a field in A(T, s,Λ), the field disappears. Thus we

need not apply the integration by parts formulae to eliminate it. If no derivative acts on the

exponential, all fields downstairs disappear, producing a term of degree zero. (We use the

expression “downstairs” to identify fields multiplying the exponential.) Each time a derivative

δ

δ
( )

ψ(
( )

ξ )
acts on the exponential a new vertex and new fields are brought downstairs. Since

the new vertex comes with a λ we see that, by the end of step s + 1 all terms with degree

2π(T, s,Λ) different from zero are O
(
λs+1

)
.

We interpret this construction in terms of graphs. Each integration by parts adds a

line, that is, a propagator to the graph. The lines produced by differentiating the exponential

form a spanning tree. The terms A(T, s,Λ) of degree zero are values of completely formed

graphs. The other terms are gestating and will at some later stage become the values of full

graphs.

Fix any T ∈ Ts. When all fields of A(T, s,Λ) have been eliminated by partial

integration, we apply the second operation. It implements the Pauli exclusion principle. At
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this point there are still fields downstairs that were generated by derivatives acting on the

exponential. They will be eliminated by partial integration in step s+2. As in the appendix

of [IM], we expand each of these fields in a Taylor polynomial of degree t around cδ, both to

be determined:

( )

ψ(ξ) =
( )

ψ(cδ) + · · · +
1

t!

(
(ξ − cδ) · ∇ξ

)t ( )

ψ(cδ)

+
1

t!

∫ 1

0

dw(1− w)t
(
(ξ − cδ) · ∇ξ

)t+1 ( )

ψ(cδ + w(ξ − cδ)).

When, in step s+2 a field is eliminated by integration by parts, we obtain a Taylor expansion

of the corresponding propagator. Thus lines in graphs carry these more general propagators.

Note that the Taylor expansion contains

1 + (d+ 1) + (d+ 1)2 + · · ·+ (d+ 1)t + (d+ 1)t+1 ≤ 2(d+ 1)t+1

terms.

We now describe how the (field dependent) expansion point cδ is determined. Recall

that Kj is a paving of IRd+1 by cubes of side M−j . Each interaction vertex downstairs is

rewritten as the sum

VΛ =
1

2

∑

{↑,↓}

∑

∆∈Kj

∫

Λ∩∆

dτdx ψ̄(τ,x, σ)ψ̄(τ,x, σ′)ψ(τ,x, σ′)ψ(τ,x, σ). (I.7)

In the s = 0 step the only fields downstairs belong to the monomial A. They are also

expanded in terms of the paving. Multiple applications of (I.6) and (I.7) have generated from

A(T, s,Λ) a sum of terms. Pick a term. Each field of this term is localized in a cube ∆ ∈ Kj .

Let π(s+1,∆, σ, b) be the number of fields that have the specified values of ∆, σ and b. Here

s+ 1 reminds us that we are in the midst of step s+ 1 and b distinguishes between ψ’s and

ψ̄’s. For each σ, b and ∆ ∈ Kj we divide ∆ into π(s+1,∆, σ, b)ǫ identical cubes δ each of side

π(s+1,∆, σ, b)−
ǫ

d+1M−j. The value of ǫ will be picked later. The center of δ is called cδ and

the number of fields in δ with specified values of σ and b is called π(s+1, δ, σ, b). The δ in the

above Taylor expansion is, of course, that containing ξ. In particular the Taylor expansion

must be done inside the ξ integrals. Note that, by the hypothesis (I.2) on the behavior of the

propagator, each (ξ − cδ) · ∇ξ that acts on a ψ produces a factor of

π(s+ 1,∆, σ, b)−
ǫ

d+1M−j ·M j. (I.8)
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Since the fields anticommute, any nonzero integral may contain at most one field

having any given value of σ, b at any cδ. The same is true for each derivative of the fields.

Thus, for each σ, b, δ, all but 2(d+ 1)t of the fields having this σ, b and located in δ must be

Taylor remainders. That is, there are at least π(s+ 1, δ, σ, b)− 2(d+ 1)t Taylor remainders.

This completes the description of the expansion. We now prove

Lemma5

Let the propagator C(j) obey (I.2). Then there exists a const , independent of j

and Λ, such that

|an(j,Λ)| ≤ const n+pM (d+1)pj/2‖A‖1.

Furthermore the limits

an(j) = lim
Λ→IRd+1

an(j,Λ)

exist and obey the same bounds.

Proof: We use the “method of combinatorial factors” to keep track of the many sums in

the expansion. This technique uses the elementary estimate

κi > 0 ,
∑

i

κ−1
i ≤ 1 ⇒

∣∣∣∣∣
∑

i

Ui

∣∣∣∣∣ ≤ sup
i

|κiUi| . (I.9)

to replace each sum by a supremum. To help remember the combinatorial factor κi multi-

plying the value Ui of a given diagram, the factor is assigned to a specific line or vertex of

the diagram.

Here are the combinatorial factors used to control each of the operations.

(1)Integration by parts.

- A factor of two, assigned to the leg initiating the integration by parts suffices to

decide whether or not the leg brings down a new vertex from the exponent.

When it does,

- a factor of two, assigned to the target leg, counts the number of possible target legs.

When it doesn’t, we need to work harder. Vertices are continuously being added downstairs

from the exponent during the (s+ 1)st step. Thus the set of possible target legs both grows
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and shrinks as the stage progresses. On the other hand, all source legs must come from the

set of legs downstairs at the beginning of the stage. So it is easier to count the number of

contractions by labeling each target leg with the name of the source leg that contracted to it

rather than use the usual procedure, which is to label each source leg with the name of the

target leg to which it contracts.

- A factor of two per leg suffices to decide whether or not the leg is a target leg.

For each target leg, we organize the sum over source legs according first, to the cube ∆ ∈ Kj

of the source and second, to which leg in ∆ is the source. As in (I.1)

- a factor of const
(
1 +M jdist(∆,∆′)

)d+2
, assigned to the line generated, suffices

to control the sum over ∆.

- A factor π(s+ 1,∆, σ, b), assigned to the source leg, counts the number of possible

source legs within ∆.

(2)Implementation of the Pauli exclusion principle.

- a factor of const
(
1 +M jdist(∆,∆′)

)d+2
assigned to the propagator that brought

a vertex down from the exponent, will control the sum over localization cubes of the

vertex.

The sum over localization cubes for the fields of A is not controlled using combinatorial

factors. It will shortly be performed explicitly.

- The Taylor expansion splits each leg into at most 2(d+ 1)t+1 pieces.

It remains only to bound an integral. The integration variables are the positions of

the fields of A. The integrand is the supremum, over positions and diagrams, of the product

of

- the above combinatorial factors

- const
(
1 +M jdist(∆,∆′)

)−γ
per line of the diagram

- |λ|
∫
∆
dd+1ξ 1 ≤ |λ|M−j(d+1) per vertex of the diagram

- |A(ξ1, · · · , ξ2p)|

- and the factors that come from the Taylor expansions used to implement the Pauli

exclusion principle.
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The latter are

∏

s

∏

σ,b

∏

∆∈Kj

∏

δ∈∆

[
π(s,∆, σ, b)−

ǫ
d+1
](t+1)

(
π(s,δ,σ,b)−2(d+1)t

)

≤
∏

s

∏

σ,b

∏

∆∈Kj

[
π(s,∆, σ, b)−

ǫ
d+1
](t+1)

(
π(s,∆,σ,b)−2(d+1)tπ(s,∆,σ,b)ǫ

)
.

(I.10)

Pick any ζ > 0. It is possible to choose ǫ and t, depending only on d and ζ so that

(I.10) ≤
∏

s

∏

σ,b

∏

∆∈Kj

const π(s,∆, σ, b)−ζπ(s,∆,σ,b).

Altogether

|an(j,Λ)| ≤ const n+pM
d+1
2 j 4n+2p

2 M−(d+1)jn‖A‖1

= const n+pM
d+1
2 pj‖A‖1

The first power of M j came from covariance bounds and the second from integration over

the positions of the interaction vertices. When the Λ constraint is removed, an is expressed

as an absolutely convergent series obeying the same bound.

Our discussion of the toy model is now complete. The rest of the paper is devoted

to the full model.

§II Sector Counting Lemmas

In this section we prove Lemmas 2 and 3 formulated in the introduction.

Lemma 2

Fix m ∈ ZZ
d+1 and ℓ ≥ 2 . Then, the number of 2ℓ-tuples

{S1, · · · S2ℓ}

of sectors of side M j on the Fermi sphere for which there exist ki ∈ IRd, i = 1, · · · , 2ℓ

satisfying

k′
i ∈ Si, |ki − k′

i| ≤ constM j , i = 1, · · · , 2ℓ

and

|k1 + · · · + k2ℓ| ≤ const (1 + |m|)M j
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is bounded by

const ℓ(1 + |m|)dM−(2ℓ−1)(d−1)jM j {1 + |j|δd,2δℓ,2} .

Here, k′ = k
|k| denotes the projection of k onto the Fermi surface.

Proof: For any fixed ki, i = 1, · · · , 2ℓ − 1 there are at most O(1 + |m|)d−1 sectors

within O
(
(1 + |m|)M j

)
of k1+ · · · +k2ℓ−1 . Thus, the problem is reduced to determining

the number of (2ℓ − 1)-tuples {S1, · · · , S2ℓ−1} of sectors for which there exist momenta

ki ∈ IRd, i = 1, · · · , 2ℓ−1 with k′
i ∈ Si, |ki−k′

i| ≤ constM j , such that k1+ · · · +k2ℓ−1

is within O
(
(1 + |m|)M j

)
of the Fermi surface.

Since |ki−k′
i| ≤ constM j there must exist k′

i ∈ Si such that k′
1+ · · · +k′

2ℓ−1 is

within O
(
(1 + |m|+ ℓ)M j

)
of the Fermi surface. As the projections k′

i , 1 ≤ i ≤ 2ℓ − 1 ,

vary independently over their sectors, the sum k′
1+ · · · +k′

2ℓ−1 varies by O(ℓM j) . Thus, the

problem is further reduced to counting the number Nℓ of (2ℓ− 1)-tuples {S1, · · · , S2ℓ−1}

of sectors such that for all k′
i ∈ Si the sum k′

1+ · · · +k′
2ℓ−1 is within O

(
(1 + |m|+ ℓ)M j

)

of the Fermi surface. Observe that, if the volume of every sector is at least const M (d−1)j ,

Nℓ ≤ const−(2ℓ−1)M−(2ℓ−1)(d−1)j
2ℓ−1∏

i=1

(∫

kFSd−1

dk′
i

)
f
(
k′
1 + · · · + k′

2ℓ−1

)

where f is a smooth function that is one when k′
1 + · · · + k′

2ℓ−1 is within

O
(
(1 + |m|+ ℓ)M j

)
of the Fermi surface and is zero when it is at least a distance

2O
(
(1 + |m|+ ℓ)M j

)
from the Fermi surface.

Rewriting, and recalling that the Fourier transform of the (d−1)-sphere δ(|k|−kF )

is

const (kF |p|)
1− d

2 J d
2−1(kF |p|)

we have

2ℓ−1∏

i=1

(∫

kF Sd−1

dk′
i

)
f
(
k′
1 + · · · + k′

2ℓ−1

)

= const2ℓ−1

∫ 2ℓ−1∏

i=1

ddki

2ℓ−1∏

i=1

δ(|ki| − kF ) f (k1 + · · · + k2ℓ−1)
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= const2ℓ−1

∫
ddt

2ℓ−1∏

i=1

ddki

2ℓ−1∏

i=1

ddpi

2ℓ−1∏

i=1

(kF |pi|)
1− d

2 J d
2−1(kF |pi|)

2ℓ−1∏

i=1

ei<ki,pi> f̂(t) ei<t,k1+ ··· +k2ℓ−1>

= const2ℓ−1

∫
ddt

2ℓ−1∏

i=1

ddpi

2ℓ−1∏

i=1

(kF |pi|)
1− d

2 J d
2−1(kF |pi|)

2ℓ−1∏

i=1

δ(pi + t) f̂(t)

= const2ℓ−1

∫
ddt

{
(kF |t|)

1− d
2 J d

2−1(kF |t|)
}2ℓ−1

f̂(t) .

The classical estimates

Jα(r) ∼ const rα , r → 0

Jα(r) = O
(
r−

1
2

)
, r → ∞

imply that

(kF |t|)
1− d

2 J d
2−1(kF |t|) =

{
O(1) for small |t|

O
(
|t|

1−d
2

)
for large |t|

Consequently,

f̂(t) = const

∫
ddp e−i<p,t> f(|p|) = const

∫ ∞

0

dr rd−1

∫

Sd−1

dp′ e−i<rp
′,t> f(r)

= const

∫ ∞

0

dr rd−1 (r|t|)
1− d

2 J d
2−1(r|t|) f(r)

= const (1 + |m|+ ℓ) M j

∫ ∞

0

dr rd−1 (r|t|)
1− d

2 J d
2−1(r|t|)

f(r)

‖f‖1

=

{
O
(
(1 + |m|+ ℓ)M j|t|

1−d
2

)
for |t| ≥ 1

O
(
(1 + |m|+ ℓ)M j

)
for |t| ≤ 1

We now obtain

Nℓ ≤ constℓ M−(2ℓ−1)(d−1)j

∫
ddt

{
(kF |t|)

1− d
2 J d

2−1(kF |t|)
}2ℓ−1

f̂(t)

≤ constℓ (1 + |m|) M−(2ℓ−1)(d−1)jM j

{∫

|t| ≥ 1

ddt |t|−ℓ(d−1) +

∫

|t| ≤ 1

ddt

}

≤

{
constℓ (1 + |m|) M−(2ℓ−1)(d−1)jM j for ℓ(d− 1) > d
logarithmically divergent for ℓ(d− 1) = d
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If ℓ(d− 1) = d , then ℓ = d = 2 and we consider the integral
∫
ddt

{
(kF |t|)

1− d
2 J d

2−1(kF |t|)
}3

f̂(t)

Of course f(t) is Schwartz class and hence so is f̂ . The convergence of the integral is not in

question. However each derivative of f produces a factor of M−j . Thus, we may gain a

power of |t|−2 in our estimate of f̂(t) only at the cost of one M−2j . Taking the geometric

mean between

|f̂(t)| ≤ const (1 + |m|) M j |t|−
1
2

and

|f̂(t)| ≤ const (1 + |m|) M−j |t|−
5
2

one obtains for every ǫ > 0

|f̂(t)| ≤ const (1 + |m|) M (1−2ǫ)j |t|−( 1
2+2ǫ) .

The constant in the last line is independent of ǫ . Finally, for d = 2

N2 ≤ const (1 + |m|) M−3j M j

{
M (−2ǫ)j

∫

|t| ≥ 1

d2t |t|−(2+2ǫ) + 1

}

= const (1 + |m|) M−3j M j
{
M (−2ǫ)j const ǫ−1 + 1

}
.

Taking the limit ǫ→ 0 gives the desired result.

We now turn to the proof of Lemma 3. Actually we shall prove the stronger

Lemma 3′

Let d = 2 and ℓ ≥ 4. Let Ω2, . . . ,Ωℓ be intervals on the Fermi circle each of length

Ω ≥M j/2. Let Σ1 be a fixed sector. The number of (ℓ− 1)-tuples of sectors {Σ2, · · · ,Σℓ} for

which there exist ki ∈ IR2, i = 1, · · · , ℓ satisfying

k′
i ∈ Σi ∩ Ωi, |ki − k′

i| ≤ constM j , i = 1, · · · , ℓ

and

|k1 + · · · + k2ℓ| ≤ const (1 + |m|)M j

is bounded by

const ℓ (1 + |m|)2
(
ΩM−j/2

)ℓ−3

.
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Proof: Denote by rn the center of the sector containing kn. Renumber k2, · · · ,kℓ so that

|rℓ · rℓ−1| is minimal amongst all
{
|rn · rp|

∣∣ n, p 6= 1
}
. In other words φ = 6 (k′

ℓ−1,k
′
ℓ) is as

close to π/2 as possible. All other 6 (k′
n,k

′
p)’s with n, p ≥ 2 must be within φ+O(M j/2) of

either 0 or π.

WhenM i ≤ φ ≤M i+1 orM i ≤ π−φ ≤M i+1 the number of accessible (ℓ−1)-tuples

of sectors is bounded by

Nℓ

ℓ−2∏

i=2

min
{
Ω,M i

}
M−j/2

whereNℓ is the number of sectors accessible to the last two k’s once the sectors for k2, · · · ,kℓ−2

have been fixed. We shall shortly show that Nℓ ≤ const ℓ (1 + |m|)2. The sum over those i’s

with M i ≤ Ω is bounded by

const ℓ
∑

i
Mi≤Ω

(1 + |m|)2M i(ℓ−3)M−j(ℓ−3)/2 ≤ const ℓ (1 + |m|)2
(
ΩM−j/2

)ℓ−3

provided ℓ ≥ 4. Now consider M i > Ω. Once the sectors of all the ki’s except the ℓth have

been selected there can be at most one i consistent with kℓ falling in Ωℓ. For this one value

of i

Nℓ

ℓ−2∏

i=2

min
{
Ω,M i

}
M−j/2 ≤ const ℓ (1 + |m|)2

(
ΩM−j/2

)ℓ−3

It suffices to consider i obeying M i > const ℓ(1 + |m|)M j/2 so fix any such i and

Σ1, · · · ,Σℓ−2. We now compute a and ǫ, defined by

a = −r1 − · · · − rℓ−2

a+ ǫ = k′
ℓ−1 + k′

ℓ

= −k1 − · · · − kℓ−2 +O
(
(1 + |m|)M j

)
.

Chose a coordinate system in which r2 = (kF , 0) . Then, since θn = 6 (r2, rn), is within

2M i+1 of 0 or π the x and y coordinates of every rn and kn, 2 ≤ n ≤ ℓ, obey

xn = ±[kF +O
(
M j
)
] cosO

(
M i
)
= ±kF +O

(
M2i

)

yn = [kF +O
(
M j
)
] sinO

(
M i
)
= O

(
M i
)

respectively. Consequently k1 = −k2 − · · · − kℓ and hence r1 obey

x1 = ±kF +O
(
(|m|+ ℓ)M2i

)

y1 = O
(
(|m|+ ℓ)M i

)
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We need to know with greater precision how much kn can wiggle.

kn − rn = k′
n − rn +O

(
M j
)

= kF

(
cos
(
θn +O(M j/2)

)
, sin

(
θn +O(M j/2)

))
− kF

(
cos θn, sin θn

)
+O

(
M j
)

= O
(
(M iM j/2,M j/2)

)
.

Summing the individual wiggles yields

ǫ =

ℓ−2∑

n=1

(rn − kn) +O
(
(1 + |m|)M j

)

= (|m|+ ℓ)O
(
(M iM j/2,M j/2)

)

and
a = −r1 − · · · − rℓ−2

= kℓ−1 + kℓ −
ℓ∑

n=1

kn +
ℓ−2∑

n=1

(kn − rn)

= N(2kF , 0) +O
(
(M2i,M i)

)
+O

(
(1 + |m|)M j)

)
+ ℓO

(
(M iM j/2,M j/2)

)

= N(2kF , 0) +O
(
(M2i,M i)

)

where N ∈ {1, 0,−1} .

We are now in a position to bound Nℓ. There are two cases to be considered. First,

suppose |N | = 1. Rotate the coordinate system by πδN,−1 + O
(
M i
)

to make a run along

the positive x axis. In the new coordinates,

ǫ = (|m|+ ℓ)O
(
(M iM j/2,M j/2)

)
.

is still obeyed.

a

θ

φ

ǫ

k′
ℓk′

ℓ−1

Then the two components of

kF
(
cosα, sinα

)
+ kF

(
cos(φ− α),− sin(φ− α)

)
= a+ ǫ
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are

cosα + cos(φ− α) =
|a|

kF
+ (|m|+ ℓ)O

(
M iM j/2

)

sinα − sin(φ− α) = (|m|+ ℓ)O
(
M j/2

)
.

The y component implies that

|2α− φ| = (|m|+ ℓ)O
(
M j/2

)

so that there are const (|m|+ ℓ) sectors accessible to kℓ (once rℓ−1 has been fixed) and

α =
1

2
φ+ (|m|+ ℓ)O

(
M j/2

)
.

is bounded above and below by const M i. Since

cosα+ cos(φ− α) = cosα+ cosα cos(φ− 2α)− sinα sin(φ− 2α)

=
[
2 + (|m|+ ℓ)2O

(
M j
)]

cosα+ (|m|+ ℓ)O
(
M iM j/2

)

the x component gives

α = cos−1

(
|a|

2kF

)
+ (|m|+ ℓ)O

(
M iM j/2

M i

)

Thus, there are const (|m|+ ℓ) sectors accessible to kℓ−1 as well.

Finally, suppose that N = 0. This time rotate the coordinate system by O
(
M i
)

or

π +O
(
M i
)
so that kℓ−1 runs along the negative x axis.

k′
ℓ−1

π − φ

ǫ
k′
ℓ

θ a

The angle φ is determined by

sin

(
π − φ

2

)
=

|a+ ǫ|

2kF

=
|a|

2kF
+ (|m|+ ℓ)O

(
M j/2

)
.

Thus

φ = π − 2 sin−1

(
|a|

2kF

)
+ (|m|+ ℓ)O

(
M j/2

)
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and kℓ has access to O
(
|m|+ ℓ

)
sectors when rℓ−1 is held fixed. The angle θ is determined by

∣∣∣∣sin
(
θ −

φ

2

)∣∣∣∣ =

∣∣∣ǫ ·
(
cos
(
π−φ
2

)
, sin

(
π−φ
2

))∣∣∣
|a|

≤
(|m|+ ℓ)O

(
M iM j/2

)

M i − (|m|+ ℓ)O
(
M j/2

)

≤ (|m|+ ℓ)O
(
M j/2

)
.

In the second last line we used the hypothesis that M i ≤ φ ≤M i+1 . This forces

|a+ ǫ| = 2kF sin

(
π − φ

2

)

≥ const M i .

Once again there are at most O
(
|m|+ ℓ

)
sectors accessible to kℓ−1.

§III The Full Expansion

In this Section we elaborate on the expansion presented in the introduction to prove

a lemma and the two theorems. All are of the form of Lemma 5, but treat the true propagator

and interaction. They are restricted to three space-time dimensions. In Lemma 6, we bound

Schwinger functions. Theorem 1 constructs the effective potential. Finally in Theorem 2, we

generalize the expansion to accommodate ν-body interactions, ν ≥ 2, of the type generated

by the renormalization group flow of [FT2].

Throughout this section we expand the true propagator

C(j) =

M−j/2∑

ℓ=1

C(j,ℓ)

where

C(j,ℓ)(ξ, ξ̄) = δσ,σ̄

∫
d3p

(2π)d+1

ei<p,ξ−ξ̄>−

ip0 − e(p)
fj(p) ζℓ(p) .

The partition of unity

1 =
M−j/2∑

ℓ=1

ζℓ(p), ζℓ(p) = ζℓ

(
p

|p|
kF

)
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divides the Fermi circle into long sectors Σℓ. We denote by rℓ the center of Σℓ. Recall that

< p, ξ >−= p · x− p0τ ,

e(p) =
p2

2m
− µ.

and

fj(p) = f
(
M−2j

(
p20 + e(p)2

))
.

The corresponding decomposition of the fields is

ψ(ξ) =
M−j/2∑

ℓ=1

ψ(ℓ)(ξ) ψ̄(ξ) =
M−j/2∑

ℓ=1

ψ̄(ℓ)(ξ) .

For each sector Σℓ we introduce a lattice Dℓ of rectangular parallelepipeds (called

boxes for short) that pave IR3. These boxes have three axes. One axis is the fixed time

direction and the length of any box in that direction is M−j . In the orthogonal IR2 plane,

one of the axes is rℓ, the center of Σℓ, and the length in this direction is M−j . The third axis

is orthogonal to rℓ and has length M−j/2.

Finally, the two-body interaction in volume Λ ⊂ IR3 is

VΛ =
1

2

∫
d3ξ

4∏

i=1

d3ηi χΛ(ξ)V (η1, η2, η3, η4)δ(η1+η2+η3+η4)ψ̄(ξ+η1)ψ(ξ+η3)ψ̄(ξ+η2)ψ(ξ+η4).

It is convenient for us to restrict only the center of mass ξ to Λ.

Lemma 6

Let

A =

∫ 2p∏

j=1

dξj A(ξ1, · · · , ξ2p)

2p∏

j=1

( )

ψ(ξj)

be a monomial of degree 2p. Define

〈A〉 =
1

ZΛ

∫
Ae−λVΛ(ψ,ψ̄)dµC(j)(ψ, ψ̄)

where

ZΛ =

∫
e−λVΛ(ψ,ψ̄)dµC(j)(ψ, ψ̄) .
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Then, there exists a const , independent of j and Λ, such that the perturbation series

〈A〉 =
∞∑

n=0

an(j,Λ)λ
n

converges for all |λ| < R = (const |||V |||)−1 and the coefficients satisfy

|an(j,Λ)| ≤ const n+pMpj/2‖A‖1|||V |||n .

Furthermore the limits

an(j) = lim
Λ→IR3

an(j,Λ)

exist.

In particular the infinite volume single slice Schwinger functions exist and obey good

j-dependent bounds.

Proof: As in the introduction our expansion is developed inductively. Once again, at the

end of step s we have a sum over a set Ts of terms

〈A〉 =
∑

T∈Ts

∫
A(T, s,Λ)e−λVΛ(ψ,ψ̄)dµC(j)∫

e−λVΛ(ψ,ψ̄)dµC(j)

=
∑

T∈Ts
π(T,s)=0

A(T, s,Λ) +
∑

T∈Ts
π(T,s) 6=0

∫
A(T, s,Λ)e−λVΛ(ψ,ψ̄)dµC(j)∫

e−λVΛ(ψ,ψ̄)dµC(j)

.

(III.1)

Recall that each A(T, s,Λ) is a monomial in the fields ψ, ψ̄ of degree 2π(T, s). We used the

fact that the ratio of integrals simplifies to the number A(T, s,Λ) when π(T, s) = 0. Each

ratio in the second sum will be O (λs).

We now outline the (s + 1)th step in the induction. The details will be presented

shortly. First pick any field of A(T, s,Λ). Apply the integration by parts formula (I.6). In

the event that the derivative brings a new vertex down from the exponent, expand the new

vertex as a sum over momentum sectors ℓ and position space boxes ∆ ∈ Dℓ. Here, this

step is considerably more complicated than (I.7). Next, pick any other field of the original

monomial A(T, s,Λ) and repeat the construction. When all the fields of A(T, s,Λ) have been

exhausted, substitute Taylor expansions much as in §I.
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The sum over sectors and conjugate boxes is complicated because conservation of

momentum must be exploited to restrict the sums over sectors at every vertex. We now

consider this in more detail. The volume cutoff interaction is

VΛ =
1

2

∫
d3ξ

4∏

i=1

d3ηi χΛ(ξ)V (η1, η2, η3, η4)δ(Σηi)ψ̄(ξ+η1)ψ(ξ+η3)ψ̄(ξ+η2)ψ(ξ+η4)

=
1

2

∫
d3ξ

4∏

i=1

(
d3ηi

d3ki
(2π)3

)
χΛ(ξ)V (η1, η2, η3, η4)δ(Σηi)ψ̄(k1)ψ(k3)ψ̄(k2)ψ(k4)

e−i<k1,ξ+η1>−ei<k3 ,ξ+η3>−e−i<k2,ξ+η2>−ei<k4,ξ+η4>−

=
1

2

∫ 4∏

i=1

d3ki
(2π)3

χ̃Λ(−k1 − k2 + k3 + k4) < k1, k2|V |k3, k4 > ψ̄(k1)ψ(k3)ψ̄(k2)ψ(k4)

=
1

2

∑

m∈Z3

∫ 4∏

i=1

d3ki
(2π)3

χ(k1 + k2 − k3 − k4 +M jm)χ̃Λ(−k1 − k2 + k3 + k4)

< k1, k2|V |k3, k4 > ψ̄(k1)ψ(k3)ψ̄(k2)ψ(k4) .

Here

1 =
∑

m∈Z3

χ(M−jk +m)

is a partition of momentum space by C∞
0 functions supported on cubes of side M j and

< k1, k2|V |k3, k4 > =

∫ 4∏

i=1

d3ηiV (η1, η2, η3, η4)δ(η1 + η2 + η3 + η4)

e−i<k1 ,η1>−ei<k3,η3>−e−i<k2 ,η2>−ei<k4,η4>− .

Reversing the calculation above expresses

V =
∑

m∈Z3

1

2

∫
d3ξ

4∏

i=1

d3ηi χm,Λ(ξ)V (η1, η2, η3, η4)δ(Σηi)ψ̄(ξ+η1)ψ(ξ+η3)ψ̄(ξ+η2)ψ(ξ+η4)

=
∑

m∈Z3

1

2

∫ 4∏

i=1

d3ξi χm,Λ

(
ξ1 + ξ2 + ξ3 + ξ4

4

)
V (ξ1, ξ2, ξ3, ξ4)ψ̄(ξ1)ψ(ξ3)ψ̄(ξ2)ψ(ξ4)

(III.2)

where χm,Λ is the inverse Fourier transform of χ(M−jk +m)χ̃Λ(k). Even if the interaction

V is of compact support, with respect to the center of mass, χm,ΛV is no longer supported

in a compact neighborhood of Λ because χ is of compact support in momentum space. This

is no problem. The vertex is already connected by propagators to the external generalized

vertex A, so integration over the center of mass variable is taken care of.
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Only two properties of χm,Λ are required. The first is

sup
ξ∈IR3

|χm,Λ(ξ)| ≤ sup
ξ

∣∣∣∣M
3j

∫
d3η ei<η,M

jm>−χ̃(M jη)χΛ(ξ − η)

∣∣∣∣

≤ constN (1 + |m|)
−N

(III.3)

independent of j, provided derivatives acting on χΛ produce, at worst, M j ’s. In other words

χΛ must decay from 1 down to zero in a distance O(M−j). This is a consequence of the

standard integration by parts trick, as in the proof of Lemma 4, and
∣∣∣∇η

bχ̃(η)
∣∣∣ ≤ const b

1

(1 + |η|)4
.

Once conservation of momentum at a vertex has been implemented by (III.2), each

field at the vertex is expanded in sectors. Recall that the vertex was produced by an appli-

cation of the integration by parts formulae (I.6) to a source field. So, one of its legs inherits

its sector number from this source field. A priori, decomposing each of the three remaining

fields into a sum over sectors could produce M−3j/2 terms. The second property of χm,Λ

is that there are only O(|m|2M−j/2) nonzero terms because of the constraints imposed by

conservation of momentum and the fact that we are in two space dimensions. See Lemma 3.

Finally, each field
( )

ψ
(ℓ)

is expanded in boxes ∆ ∈ Dℓ. Altogether, the “sum over

sectors and dual boxes” operation replaces (I.7) by

V =
∑

m∈Z3

∑

ℓ1,ℓ2,ℓ3,ℓ4

1

2

4∏

i=1


 ∑

∆i∈Dℓi

∫

∆i

d3ξi


 χm,Λ

(
ξ1 + ξ2 + ξ3 + ξ4

4

)

× V (ξ1, ξ2, ξ3, ξ4)ψ̄
(ℓ1)(ξ1)ψ

(ℓ3)(ξ3)ψ̄
(ℓ2)(ξ2)ψ

(ℓ4)(ξ4)
(III.4)

In step s = 0 the only fields downstairs are those belonging to the monomial A. One

decomposes each field in sectors Σℓ and then in conjugate boxes ∆ ∈ Dℓ. There is no need

for the sum over m associated with conservation of momentum.

We describe the Taylor expansions in more detail. Now there are sectors to be taken

into account. Let π(s+1, ℓ,∆, σ, b) be the number of fields with the specified values of σ, b, ℓ

and ∆ ∈ Dℓ. For each ℓ, σ, b and ∆ ∈ Dℓ we divide ∆ into π(s + 1, ℓ,∆, σ, b)ǫ identical

sub-boxes (really rectangular parallelepipeds) δ each similar to ∆. Thus each little box has

dimensions

π(s+ 1, ℓ,∆, σ, b)−
ǫ
3M−j × π(s+ 1, ℓ,∆, σ, b)−

ǫ
3M−j × π(s+ 1, ℓ,∆, σ, b)−

ǫ
3M−j/2.
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The value of ǫ will be picked later. As in §I the center of δ is called cδ and the number of

fields in δ with specified values of ℓ, σ and b is called π(s+ 1, ℓ, δ, σ, b).

The action of derivatives, given by Lemma 4.b, differs from (I.2) in several respects.

In particular the appearance of the phase e−i<rℓ,ξ−ξ̄>− forces us to modify the Taylor expan-

sion. Based on this remark we define

Ψ(ℓ)(ξ) = e−i<rℓ ,ξ>ψ(ℓ)(ξ)

Ψ̄(ℓ)(ξ) = ei<rℓ,ξ>ψ̄(ℓ)(ξ).

We expand each Ψ(ℓ)(ξ), Ψ̄(ℓ)(ξ) downstairs in a Taylor polynomial

( )

Ψ
(ℓ)

(ξ) =
( )

Ψ
(ℓ)

(cδ) + · · · +
1

t!

(
(ξ − cδ) · ∇ξ

)t ( )

Ψ
(ℓ)

(cδ)

+
1

t!

∫ 1

0

dw(1− w)t
(
(ξ − cδ) · ∇ξ

)t+1 ( )

Ψ
(ℓ)

(cδ + w(ξ − cδ))

(III.5)

with δ being the box that contains ξ. As before, the Taylor expansion is done inside the ξ

integrals. One might worry that the restriction to a very small box δ weakens conservation

of momentum and consequently increases the number of nonzero terms in the sector sums.

However, the sector sums have already been cut down, so there is no problem.

Each Taylor expansion contains

1 + 3 + 32 + · · ·+ 3t + 3t+1 ≤ 2× 3t+1

terms. Note that, by Lemma 4.b, each (ξ − cδ) · ∇ξ that acts on a
( )

Ψ
(ℓ)

produces a factor of

π(s+ 1, ℓ,∆, σ, b)−
ǫ
3

[
M−jM j +M−jM j +M−j/2M j/2

]
= 3π(s+ 1, ℓ,∆, σ, b)−

ǫ
3 .

Since the fields anticommute, any nonzero integral may contain at most one field having any

given value of ℓ, σ, b at any cδ. The same is true for each derivative of the fields. Thus, for

each ℓ, σ, b, δ, all but 2 × 3t of the fields having this ℓ, σ, b and located in δ must be Taylor

remainders. That is, there are at least π(s + 1, ℓ, δ, σ, b) − 2 × 3t Taylor remainders. This

completes the description of the expansion.

We use the same strategy for performing the estimates as in Lemma 5. Here are the

combinatorial factors used to control each of the three operations.
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(1)Integration by parts.

- A factor of two, assigned to the leg initiating the integration by parts suffices to

decide whether or not the leg brings down a new vertex from the exponent.

When it does,

- a factor of two, assigned to the target leg, counts the number of possible target legs.

When it doesn’t, we count the number of possible source legs for each target leg by applying

the rules of Lemma 5 in each sector ℓ. Precisely, for each target leg, we organize the sum

over source legs according first, to the cube ∆ ∈ Dℓ of the source and second, to which leg

in ∆ is the source.

- A factor of two per leg suffices to decide whether or not the leg is a target leg.

- A factor of const ρ(j,ℓ)(∆,∆′)4 , assigned to the line generated, suffices to control

the sum over ∆.

- A factor π(s+1, ℓ,∆, σ, b), assigned to the source leg, counts the number of possible

source legs within ∆.

(2)Sums over sectors and conjugate boxes. The sum
∑
m∈ZZ3 · · · χm,Λ is controlled by

- a factor const |m|4 assigned to the vertex.

When a vertex first moves downstairs from the exponent the sector of one of its legs is fixed

by the source leg that initiates the process. By Lemma 3 the number of sectors accessible to

the remaining legs is bounded by

- a factor const (1 + |m|4/3)M−j/2 assigned to the vertex.

- If the external vertex does not impose any constraint on the sector sums of its 2p

legs then the number of sectors accessible is M−pj .

The sums
∑

∆i∈Dℓ
are not controlled by combinatorial factors. They will be performed

explicitly.

(3)Pauli exclusion principle.

- The Taylor expansion splits each leg into at most 2× 3t+1 pieces.

It remains only to bound an integral. The integration variables are the positions of

the fields of A and the interaction vertices V that have been brought down from the exponent.

The integrand is the supremum, over positions and diagrams, of the product of
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- the above combinatorial factors

- const ρ(j,ℓ)(∆,∆′)−γ per line of the diagram

- |λ|
(
supξ∈IR3 |χm,Λ(ξ)|

)
|V (ξ1, ξ2, ξ3, ξ4)| ≤ const|λ| (1 + |m|)

−N
|V (ξ1, ξ2, ξ3, ξ4)| per

vertex of the diagram (see (III.3))

- |A(ξ1, · · · , ξ2p)|

- and the factors that come from the Taylor expansions used to implement the Pauli

exclusion principle.

The latter are

∏

s

∏

ℓ,σ,b

∏

∆∈Dℓ

∏

δ∈∆

[
3π(s, ℓ,∆, σ, b)−

ǫ
3

](t+1)
(
π(s,ℓ,δ,σ,b)−2×3t

)

≤
∏

s

∏

ℓ,σ,b

∏

∆∈Dℓ

[
3π(s, ℓ,∆, σ, b)−

ǫ
3

](t+1)
(
π(s,ℓ,∆,σ,b)−2×3tπ(s,ℓ,∆,σ,b)ǫ

)
.

(III.6)

Pick any ζ > 0. It is possible to choose ǫ and t, depending only on ζ so that

(III.6) ≤
∏

s

∏

ℓ,σ,b

∏

∆∈Dℓ

const π(s, ℓ,∆, σ, b)−ζπ(s,ℓ,∆,σ,b).

Altogether

|an(j,Λ)| ≤ const n+p
∫ ∏

i

dξi|A|
(∏

|V |
)(∏

ρ(j,ℓ)(∆,∆′)−γ+4
)
M

3
2 j

4n+2p
2 M−jn/2M−pj

(III.7)

where the second product is over vertices and the third is over lines. The first power of

M j came from covariance bounds and the second and third from sector sums for fields at

interaction vertices and A respectively. After discarding some of the decay factors ρ(j,ℓ), we

can view the integrand as a connected tree with generalized vertices V and A and lines ρ(j,ℓ).

Integrate starting at the extremities of the tree and working towards the root A. Suppose

that the extremal vertex V is connected to the tree by the argument ξ1. The integral over

ξ2, ξ3, ξ4 with ξ1 held fixed produces a |||V |||. A decay factor ρ(j,ℓ) is enough to fix the box in

which ξ1 lives. The integral over ξ1 within that box costs M−5j/2, the volume of the box.

Repeat for all the other V ’s. Finally, the integral over the arguments of A gives ‖A‖1. In

conclusion

|an(j,Λ)| ≤ const n+p‖A‖1|||V |||nM−5jn/2M3j(n+p/2)M−jn/2M−pj

= const n+p‖A‖1|||V |||nM−pj/2 .
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When the finite volume, i.e. Λ, constraint is removed, an is expressed as an abso-

lutely convergent series obeying the same bound.

The next order of business is the effective potential

G
(j)
Λ (ψe, ψ̄e) = log

1

Z
(j)
Λ

∫
e−λVΛ(ψ+ψe,ψ̄+ψ̄e)dµC(j)(ψ, ψ̄).

Let G
(j,Λ)
p be the p-point Green’s function generated by G

(j)
Λ . We now prove the

Theorem 1

Let d = 2. There exists a const , independent of j and Λ, such that

|||gn(p, j,Λ)||| ≤ const n+pM (2−5p/2)j|||V |||n

where

|||gn(p, j,Λ)||| = max
k

sup
ξk

∫ ∏

i6=k

dξi |gn(p, j,Λ)(ξ1, · · · , ξ2p)|.

Furthermore the limits

gn(p, j) = lim
Λ→IR3

gn(p, j,Λ)

exist and the infinite volume Green’s functions at scale j

G(j)
p =

∞∑

n=0

gn(p, j)λ
n

are analytic in |λ| < R = (const |||V |||)−1.

Proof: To get started apply a single functional derivative

δ

δψe
G
(j)
Λ = −λ

∫ (
δ
δψeVΛ(ψ + ψe, ψ̄ + ψ̄e)

)
e−λVΛ(ψ+ψe,ψ̄+ψ̄e)dµC(j)(ψ, ψ̄)

∫
e−λVΛ(ψ+ψe,ψ̄+ψ̄e)dµC(j)(ψ, ψ̄)

. (III.8)

Now expand as in Lemma 6. However, before each application of the integration by parts

formulae, decompose the downstairs of the numerator into a polynomial in ψ, ψe, ψ̄, ψ̄e. That

is, multiply out products of ψ + ψe and ψ̄ + ψ̄e. The integration by parts formulae are then
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applied to the ψ, ψ̄’s. The expansion terminates for those monomials that are independent of

ψ, ψ̄, i.e. that are functions of the external fields ψe, ψ̄e alone. For these terms the monomial

factors out of the numerator, leaving the quotient of two identical integrals that cancel.

The rest of the expansion and most of the estimates are the same as before. However,

the external legs enter the effective potential in a way different from the Schwinger functions

of Lemma 6.

The only combinatorial factors that change are those that count sectors. Lemma 3,

the main tool for sector counting, does not apply to vertices containing external legs, since

the momentum of the external leg need not be near the Fermi circle. It is still true that when

a vertex first moves downstairs from the exponent the sector of one of its legs is fixed by the

source leg that initiates the process. By Lemma 3 the number of sectors accessible to the

remaining legs is bounded by

- a factor const (1 + |m|4/3)M−j/2, assigned to the vertex, when the vertex contains

no external legs.

- If the vertex does contain an external leg, there are at most two other internal legs.

There are at most M−j sectors accessible to these legs.

- The first external vertex was created by a functional derivative, rather than in-

tegration by parts. There are at most M−3j/2 sectors accessible to its internal

legs.

The main bound

|||gn(p, j,Λ)|||

≤ const n+p
∫ ∏

i

dξi

(∏
|V |
)(∏

ρ(j,ℓ)(∆,∆′)−γ+4
)
M

3
2 j

4n−2p
2 M−jn/2M−pjM−j/2

(III.7′)

is obtained from (III.7) by deleting |A| and adjusting the powers of M j. External lines are

amputated, so that the number of lines 4n+2p
2 becomes 4n−2p

2 , accounting for the first factor of

M j. The remaining powers of M j come from the sector counts. We have included one sector

sum per vertex, plus one “extra” sector sum per external leg, plus an additional supplement

for the first vertex. Finally, by definition of the norm ||| · ||| the position of one argument ξj
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of one vertex is held fixed, removing one volume integral M−5j/2. Thus

|||gn(p, j,Λ)||| ≤ const n+p|||V |||nM−5j(n−1)/2M3j(n−p/2)M−jn/2M−pjM−j/2

= const n+p|||V |||nM (2−5p/2)j .
(III.9)

Under a renormalization group flow, the effective potential of scale j becomes the

interaction at scale j − 1. If we are to use an expansion like that of Theorem 1 in such a

setting, we must allow the interaction to contain monomials of degree 2q for all q ≥ 1, not

just q = 2. On the other hand we must retain the memory that the 2q-legged monomial

began life as a bunch of four-legged monomials.

So, let’s collect together some additional consequences, not stated in Theorem 1.

First each graph contributing to g(q, j) must have at least max{1, q−1} (four-legged) vertices

so it comes with a power of at least λmax{1,q−1}, though the estimates will eat up a portion

of this.

Second, the magnitude of g(q, j) reflects the the power counting of a graph built

from four-legged vertices. Consider any graph having v four-legged vertices and 2q amputated

external legs. This graph has 2v−q propagators. The supremum of a single sector propagator

in position space is M3j/2. Each vertex, save one which is held fixed to break translation

invariance, is integrated over all IR3. Each such integral gives M−5j/2. When g(q, j) acts

as an interaction at scale j or lower, the momenta of its external legs are restricted to lie

within M j of the Fermi surface. Then the sector counting Lemma 3 applies to both internal

and external vertices. Roughly speaking, the sector counting Lemma says that the legs of

a four-legged vertex are paired and that the sector of either leg of the pair determines that

of the other leg of the pair. As the sector of one leg at each vertex is fixed by conservation

of momentum, there is one sum over M−j/2 sectors per vertex. This gives a total power

counting factor, including the sector sums for the external legs, of

M (2v−q)3j/2M−(v−1)5j/2M−vj/2 =M (5−3q)j/2 .

The sector sums for the (amputated) external legs are only performed when propagators are

later hooked onto them. It is convenient to save up the sector sums for external legs in a way
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that avoids having to distinguish between external/internal pairings and external/external

pairings. So we leave the sum over sectors for each external vertex explicit, instead of bounding

it by the number of terms times the size of the maximum term. Each term in the resulting

expansion for the 2q-point function then has the sectors of all external legs fixed. But it also

has the sectors of all internal propagators hooked to the vertex fixed.

Third, approximate conservation of momentum increases the number of available

sectors by a factor that depends on the degree of approximateness in the conservation of

momentum. The degree to which g(q, j) conserves momentum depends on the degree to

which its internal vertices conserve momentum. Suppose that the original model is supported

in a volume of size |Λ| = M−3J and that the cutoff function decays smoothly to zero in a

distance M−J . When we apply (III.4) each vertex v in g(q, j) is assigned a number Ev with

the property that the vertex is zero unless the sum of the momenta feeding into it is bounded

by EvM
J . Consequently, g(q, j) is zero unless the sum of the momenta feeding into it is

bounded by
∑
v EvM

J .

Based on the motivation of the last paragraph we now consider interactions of the

form

VΛ =
∑

j′>j

∞∑

q=1

∫ q∏

i=1

dξidξ̄i V
(j′)
Λ,q (ξ1, ξ̄1, · · · , ξq, ξ̄q)

q∏

i=1

ψ̄(ξ̄i)ψ(ξi) (III.10a)

when evaluating the effective potential with covariance of scale j. The term V
(0)
Λ,2 in this sum

is the ordinary vertex (III.2) with four fields. Each kernel is expressed as a sum

V
(j′)
Λ,q =

∑

m∈Mq

V
(j′)
Λ,q,m . (III.10b)

The index j′ gives the scale at which the graphs contributing to V
(j′)
Λ,q,m were formed. You

should think of m as measuring the extent to which exact conservation of momentum fails as

well as giving the sectors of some internal lines. In particular,

- there is an E
(j′)
q,m ∈ ZZ such that V

(j′)
Λ,q,m is zero unless the sum of the momenta flowing

into it is bounded by E
(j′)
q,mMJ (III.10c)

We assume that there is an 0 < α < 1 such that, when all the arguments of V
(j′)
Λ,q have

momentum within constM j of the Fermi surface and when one argument lies in a fixed

sector of scale j,
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- the remaining 2q − 1 legs of each nonzero V
(j′)
Λ,q,m are supported in

Cq1 exp
{(
E

(j′)
q,mMJ−j

)α}
M (2q−3)(j′−j)/2K

(j′)
q,m sector (2q − 1)-tuples of scale j.

(III.10d)

That is, K
(j′)
q,m is the number of sector (2q − 1)-tuples at scale j′ when the kernel was first

generated. However, a sector that is introduced with widthM j′/2 is subdivided intoM (j′−j)/2

sectors at scale j. The number of accessible sectors of scale j for the 2q−1 remaining external

legs given their sectors at scale j′ is bounded by constq(1 + E
(j′)
q,mMJ−j)2M (2q−3)(j′−j)/2 in

Lemma 3. It is convenient for us to use the multiplicative property of the exponential so we

bound (1 + EMJ−j)2 ≤ const exp
{(
EMJ−j

)α}
.

We further assume that the kernel is analytic in the region |λ| < R and obeys the

bound

∑

m∈Mq

exp





j′−1∑

ı=J

(
E(j′)
q,mM

J−ı
)α


K(j′)

q,m|||V
(j′)
Λ,q,m||| ≤ K1|λ|

q/2M
1
2 (5−3q)j′ . (III.10e)

throughout that region. Note that λ times the vertex (III.2) is of this form, with

V
(j′)
Λ,q = 0 for all q 6= 2, j′ 6= 0

M2 = ZZ
3

V
(0)
Λ,2,m =

1

2
χm,ΛV

K
(0)
2,m = const

E
(0)
2,m = |m1|+ |m2|+ |m3|

|||V
(0)
Λ,2,m||| ≤ |λ|const e−const |m|1/2|||V |||

α =
1

3

R = ∞

We are making a somewhat stronger hypothesis on the cutoff function χm,Λ here than in

(III.3). The standard C∞ compactly supported functions obey this stronger hypothesis. To

be precise let

χ1(x) =

{
0 x ≤ 0
e−x

−2

e−(x−1)−2

0 < x < 1
0 x ≥ 1

χ2(x) =

[∫ 1

0

χ1(t)dt

]−1 ∫ x

0

χ1(t)dt

χ3(x) = χ2(x+ 2)χ2(−x− 2)

38



and finally

χΛ(ξ) =
2∏

i=0

χ3(M
Jξi) . (III.11)

Then

sup
x∈IR

∣∣∣∣
dn

dxn
χ3(x)

∣∣∣∣ ≤ const n n3n/2

so that the Fourier transform

|χ̃3(k)| ≤ 4
constn n3n/2

kn

for all even n ≥ 0. Let β > 3/2. Choosing n to be the even integer nearest |k|1/β yields

|χ̃3(k)| ≤ constn
n3n/2

nβn

≤ e−(β− 3
2 )n lnn+n ln const

≤ const e−(β− 3
2 )n

≤ const e−const |k|1/β .

We know from the perturbative analysis of [FT2] that two and four point interaction

vertices which have internal scales j′ higher than the external scale j have to be renormalized.

This problem will be treated in a later paper. But we can already state a rigorous result if

we limit ourselves to the part of the theory containing only convergent graphs. This part of

the model is the sum of all graphs that have no two or four point subgraphs with the scales

assigned to their internal lines higher than the scales assigned to their external lines. This

was called completely positive power counting case in [Ri]. To isolate this part of the model

it suffices to require that, with the exception of q = 2, j′ = 0, all V
(j′)
Λ,q with q ≤ 2, j′ > j be

zero.
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Theorem 2

Let V obey (III.10) and let V
(j′)
Λ,q = 0 for q = 1, j′ > j and q = 2, 0 > j′ > j. Then,

if M is large enough, there is an R0(M,K1) > 0 such that the effective potential G obeys

(III.10) for all |λ| < min(R,R0).

Proof: The expansion and bounds are the same as for Theorem 1, with the exception

that the vertices are more complicated and that we leave the sums associated with external

vertices explicit. We use a tilde to designate index sets and constants that refer to the

effective potential. There is, of course the trivial graph in which a V
(j′)
Λ,q gets fed directly

into the effective potential as a single vertex graph. All nontrivial contributions get put into

Ṽ
(j)
Λ,p,m’s. The new index set

M̃p = ZZ
>0

2p

X
v=1

⋃
jv>j

∞⋃
qv=0

⋃
mv∈Mqv

I⊂{1,···,2qv}

{sector assignments to the lines I of V
(jv)
Λ,qv,mv

}

Here v labels the external vertices of terms contributing to Ṽ
(j)
Λ,p,m . In the event that there

are fewer than 2p external vertices, the extra qv’s are set to zero. The set I selects the legs of

the vertex v that will be internal to the 2p-point function. We shall denote by ıv and ev the

number of legs of the vertex v that end up being internal and external legs, respectively, of

Ṽ
(j)
Λ,p,m. Suppose, for example, that the first seven vertices brought down from the exponent

end up being internal, but that the eighth ends up being a V
(j1)
Λ,q1,m1

with the legs in I1, a

proper subset of {1, · · · , 2q1}, being internal and of sectors ℓ1, · · · , ℓ|I1|. Then this term will

contribute to a Ṽ
(j)
Λ,p,m with the second component (out of 2p + 1 components) of m being

(j1, q1, m1, I1, ℓ1, · · · , ℓ|I1|). The new conservation of momentum index is

E(j)
p,m = E +

∑

v

E(jv)
qv,mv

where E, the first of the 2p+1 components of m, is the sum of the conservation of momentum

indices of all internal vertices.
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The main bound (III.9) of Theorem 1 is replaced by

|||Ṽ
(j)
Λ,p,m|||≤

∏

internal
vertices


∑

jv>j

∑

qv

∑

mv∈Mqv

Cq1exp
{
E(jv)

α

qv,mv
M (J−j)α

}
M (qv−

3
2 )(jv−j)K(jv)

qv,mv
|||V

(jv)
Λ,qv,mv

|||





 ∏

external
vertices

|||V
(jv)
Λ,qv,mv

|||


M−5j(n−1)/2M

3
2 j(Σ2qv−2p)/2KΣ2qv−2p

2 KΣ2qv
3

(III.9′)

The constant K2 includes the constants arising from bounding the propagator and summing

or taking the supremum of ρ(j,ℓ)(∆,∆′)−γ+4. The constant K3 includes the combinatorial

factors associated with propagators and external legs. The latter include a factor of two for

deciding whether or not a leg contracted to the exponent, a factor of two to decide which

leg was the target leg, in the event that there was contraction to the exponent (note that

q ≤ 2q) and a factor of (2× 3t+1)2 from the Taylor expansion. The differences between K2

and K3 are that the former applies only to propagators, i.e. internal legs, while the latter is

independent of M .

Moving around the powers of M

M−5j(n−1)/2M
3
2 j(Σ2qv−2p)/2

∏

internal
vertices

M (qv−
3
2 )(jv−j)

=M
1
2 (5−3p)j

∏

internal
vertices

M (qv−
3
2 )(jv−j)M− 1

2 (5−3qv)j
∏

external
vertices

M− 1
2 (5−3qv)j

=M
1
2 (5−3p)j

∏

internal
vertices

M
1
2 (2−qv)(jv−j)M− 1

2 (5−3qv)jv
∏

external
vertices

M− 1
2 (5−3qv)j

we end up with

|||Ṽ
(j)
Λ,p,m||| ≤

∏

internal
vertices

(
∑

jv>j

∑

qv

∑

mv∈Mqv

M
1
2 (2−qv)(jv−j)M− 1

2 (5−3qv)jv exp
{
E(jv)

α

qv,mv
M (J−j)α

}

(C1K
2
2K

2
3 )
qvK(jv)

qv,mv
|||V

(jv)
Λ,qv,mv

|||

)


 ∏

external
vertices

M− 1
2 (5−3qv)jKıv

2 K
2qv
3 |||V

(jv)
Λ,qv,mv

|||


M

1
2 (5−3p)j

Now summing over m ∈ M̃p entails, for each external vertex, a factor of two per

line (to decide whether it is internal or not), a sum over jv and mv and a sum over sector
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assignments to the lines of V
(jv)
Λ,qv,mv

that ended up being internal to Ṽ
(j)
Λ,p,m. Including a factor

K̃
(j)
p,m accounts for a sum over sector assignments to the lines that ended up external. So there

is a sum over assignments to all legs and, since

E(j)α

q,m ≤
∑

all
vertices

E(jv)
α

qv,mv
,

the left hand side of (III.10a) for Ṽ
(j)
Λ,p,m is bounded by

M− 1
2 (5−3p)j

∑

m∈M̃p

exp

{
j−1∑

ı=J

(
E(j)α

q,mMJ−ı
)}

K̃(j)
p,m|||Ṽ

(j)
Λ,p,m|||

≤
∏

all
vertices

(
∑

jv>j

∑

qv

∑

mv∈Mqv

M
1
2 (2−qv)(jv−j)M− 1

2 (5−3qv)jv exp

{
j∑

ı=J

(
E(jv)

α

qv,mv
MJ−ı

)}

Kıv
2 (2C1K

2
3)
qv
K(jv)
qv,mv

|||V
(jv)
Λ,qv,mv

|||

)

≤
∏

all
vertices


∑

jv>j

∑

qv

M
1
2 (2−qv)(jv−j)K1K

ıv
2 (2C1K

2
3 )
qv
|λ|qv/2




≤ |λ|p/2
∏

all
vertices


∑

jv>j

∑

qv

M− 1
4 (jv−j)M

1
4 (2−qv)K1K

ıv
2 (2C1K

2
3)
qv
|λ|ıv/4




≤ |λ|p/2
∏

all
vertices

K1M
1/2|λ|1/8


∑

jv>j

∑

qv

M− 1
4 (jv−j)M−qv/4Kıv

2 (2C1K
2
3 )
qv
|λ|ıv/8




For the second inequality we used jv > j. For the third we also used qv ≥ 3. Since C1 and

K3 are independent of M we can choose M so that 2C1K
2
3 ≤M1/8. Then, if |λ|1/8 ≤ K−1

2 ,

M− 1
2 (5−3p)j

∑

m∈M̃p

exp

{
j−1∑

ı=J

(
E(j)α

q,mMJ−ı
)}

K̃(j)
p,m|||Ṽ

(j)
Λ,p,m|||

≤ |λ|p/2
∏

all
vertices

K1M
1/2|λ|1/8


∑

jv>j

∑

qv

M− 1
4 (jv−j)M−qv/8




≤ |λ|p/2
∏

all
vertices

K1M
1/2 M− 1

4

1−M− 1
4

M− 5
8

1−M− 1
8

|λ|1/8

≤ |λ|p/2

provided |λ| is small enough.
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Using Theorem 2 inductively, we conclude that the sum over all scales of the com-

pletely convergent graphs contributing to any given Green’s function is analytic in λ at λ = 0.
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